
D R M

M A C H I N E L E A R N I N G

Machine Learning

1

João Catalão Fernandes, FCUL

Deteção Remota Multiespectral, MEGeoespacial, MSIG-TA

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 2

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 3

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt)

Tópicos

4

5. Machine Learning
➢ What is machine learning?
➢ Tasks for machine learning
➢ Machine learning models
➢ Generalization, Overfitting
➢ k-NN algorithm
➢ Linear Models
➢ Decision Trees
➢ Neural Network
➢ Convolutional Neural Network
➢ Generative Deep Learning

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 5

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 6

Remote sensing multispectral image data, behavioural geography data (person
location and trip), transportation network data… BIG DATA of geography.

Machine learning is believed to be the powerful tool to explore and analyze the
geography big data.

What is machine learning?

Machine learning evolved from the study of pattern recognition and
computational learning theory in artificial intelligence (AI).

Machine Learning

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 7

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E” — Tom Michell (1997)

Machine Learning

Machine Learning

T: Playing checkers
P: Games won
E: playing games against
itsef

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 8

Machine Learning

http://www.erogol.com/wp-content/uploads/2014/05/test.jpg

A brief history of machine learning

http://www.erogol.com/wp-content/uploads/2014/05/test.jpg

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 9

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 10

How to connect the machine learning
with geospatial data?

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 11

Machine Learning

Machine
Learning
in Remote
Sensing

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 12

Bibliography and slides

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 13

Software

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 14

Software

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 15

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 16

Tasks for machine learning

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 17

Machine learning Models

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 19

Models that share characteristics are plotted closer
together: logical models to the right, geometric models on
the top left and probabilistic models on the bottom left.
The horizontal dimension roughly ranges from grading
models on the left to grouping models on the right.

Machine Learning Taxonomy

The colours indicate the type of
model, from left to right: logical
(red), probabilistic (orange) and
geometric (purple).

Grading/ Classification Grouping

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 20

Predictive machine learning scenarios

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 21

Classification

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 22

Generalization, Overfitting, and Underfitting

Trade-off of model complexity against training and test accuracy

More complex the model => better we will be able to predict on the training data.
However : Too complex => focusing too much in our training set => not generalize well to new data.
There is a sweet spot in between that will yield the best generalization performance.

If a model is able to make accurate predictions
on unseen data, we say it is able
to generalize from the training set to the test
set. We want to build a model that is able to
generalize as accurately as possible.

Overfitting occurs when you fit a model too
closely to the particularities of the training
set and obtain a model that works well on
the training set but is not able to generalize
to new data.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 23

Scatter plot of training dataset
2 bands and 2 classes

(Band 1)

(B
an

d
 2

)

K-NN (K-Nearest Neighbours)

Predictions made by the one-nearest-
neighbour model on the dataset

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 24

Instead of considering only the closest neighbour, we
can also consider an arbitrary number, k, of
neighbours.

This is where the name of the k-nearest neighbours
algorithm comes from.

When considering more than one neighbour, we
use voting to assign a label. This means that for each
test point, we count how many neighbours belong to
class 0 and how many neighbours belong to class 1.

We then assign the class that is more frequent: in
other words, the majority class among the k-nearest
neighbours.

Predictions made by the three-nearest-
neighbours model on the dataset

K-NN (K-Nearest Neighbours)

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 25

Decision boundaries created by the nearest neighbours model for different values
of k_neighbours

K-NN (K-Nearest Neighbours)

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 26

Linear models are a class of models that are widely used
in practice and have been studied extensively in the last
few decades, with roots going back over a hundred
years.

Linear models make a prediction using a linear
function of the input features, which we will explain
shortly. For regression:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in our case, the spectral
bands, p+1) of a single pixel (or set of pixels), w and b are
parameters of the model that are learned, and ŷ is the prediction
the model makes.

For a dataset with a single feature, this is:

ŷ = w[0] * x[0] + b

Linear Models

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 27

• Machine Learning Regression Techniques

• Linear Regression (LR)

• Random Forest Regressor (RFR)

• ExtraTree + Bagging Regressor (ETBR)

• Data inputs: InSAR coherence, phase and soil type

• Data output: soil moisture change between two dates

Assess the usefulness of the temporal coherence matrix on the
estimation of the soil moisture changes

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 28

Coh→ dSM Coh & Phase → dSM Coh, Phase & Soil → dSM

Orbit
74

Orbit
154

SM estimation vs SM observation

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 29

Linear Models for Classification

Linear models are also extensively used for classification.

In this case, a prediction is made using the following formula:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0

The formula looks very similar to the one for linear regression,
but instead of just returning the weighted sum of the
features, we threshold the predicted value at zero.

If the function is smaller than zero, we predict the class –1; if
it is larger than zero, we predict the class +1.

This prediction rule is common to all linear models for
classification. Again, there are many different ways to find the
coefficients (w) and the intercept (b).

Class 1

Class 0

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 30

Linear Models for multiclass Classification

A common technique to extend a binary classification
algorithm to a multiclass classification algorithm is the one-vs.-
rest approach.

In the one-vs.-rest approach, a binary model is learned for each
class that tries to separate that class from all of the other
classes, resulting in as many binary models as there are classes.

Having one binary classifier per class results in having one
vector of coefficients (w) and one intercept (b) for each class.

The class for which the result of the classification confidence
formula given here is highest is the assigned class label:

w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b The classifier that has the highest score on its single class
“wins,” and this class label is returned as the prediction.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 31

Linear Models for multiclass Classification

Multiclass decision boundaries derived from the three one-vs.-rest classifiers

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 32

Blue: water
Red:Land
Green: intertidal

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 33

Decision trees

Decision trees are widely used models for classification and
regression tasks. Essentially, they learn a hierarchy of if/else
questions, leading to a decision.

Imagine you want to distinguish between the
following four animals:

bears, hawks, penguins, and dolphins.

Your goal is to get to the right answer by asking
as few if/else questions as possible.

penas

(barbatanas)

In this illustration, each node in the tree either represents a question or a terminal node (also called a leaf) that contains
the answer. The edges connect the answers to a question with the next question you would ask.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 34

Decision trees

Learning a decision tree means learning the
sequence of if/else questions that gets us to
the true answer most quickly.

In the machine learning setting, these
questions are called tests (not to be confused
with the test set, which is the data we use to
test to see how generalizable our model is).

Usually data does not come in the form of binary yes/no
features as in the animal example, but is instead
represented as continuous features such as in the 2D
dataset shown in figure.

The tests that are used on continuous data are of the
form “Is feature i larger than value a?” Two-moons dataset on which the decision tree will be

built

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 35

Splitting the dataset horizontally at x[1]=0.0596 yields the most information; it best separates the points in
class 0 from the points in class 1. The top node, also called the root, represents the whole dataset,
consisting of 50 points belonging to class 0 and 50 points belonging to class 1. The split is done by testing
whether x[1] <= 0.0596, indicated by a black line. If the test is true, a point is assigned to the left node,
which contains 2 points belonging to class 0 and 32 points belonging to class 1.

To build a tree, the
algorithm searches over all
possible tests and finds the
one that is most
informative about the
target variable.

0.0596

(Root)

Decision trees

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 36

Even though the first split did a good job of separating the two classes, the bottom region still contains points belonging
to class 0, and the top region still contains points belonging to class 1. We can build a more accurate model by repeating
the process of looking for the best test in both regions.

This recursive process yields a binary tree of decisions, with each node containing a test.

Decision trees

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 37

Typically, building a tree as described here and continuing until all leaves are pure leads to models that are very
complex and highly overfit to the training data. The presence of pure leaves mean that a tree is 100% accurate on the
training set; each data point in the training set is in a leaf that has the correct majority class.

Decision trees

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 39

Instead of looking at the whole tree, there are
some useful properties that we can derive to
summarize the workings of the tree.

The most commonly used summary is feature
importance, which rates how important each
feature is for the decision a tree makes.

It is a number between 0 and 1 for each
feature, where 0 means “not used at all” and
1 means “perfectly predicts the target.”

Importância relativa das variáveis na classificação com RF para dados de
2018 (a azul) e de 2019 (a laranja). As denominações das variáveis
dizem respeito à banda, mês e dia de aquisição da imagem,
respetivamente.

Feature Importance

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 40

Ensembles of decision trees

Decision boundaries found by five randomized decision trees and the decision
boundary obtained by averaging their predicted probabilities

In any real
application, we
would use many
more trees (often
hundreds or
thousands), leading
to even smoother
boundaries.

The Random
Forest
overfits less
than any of
the trees
individually

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 42

Neural Network

Multilayer perceptrons (MLPs) are also known as feed-
forward neural networks, or sometimes just
neural networks.

MLPs can be viewed as generalizations of linear models that
perform multiple stages of processing to come to a decision.

Remember that the prediction by a linear regressor is given as:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

in plain English, ŷ is a weighted sum of the input features x[0]
to x[p] (our spectral bands), weighted by the learned
coefficients w[0] to w[p].

(“deep learning” are a revival of the neural networks tailored very carefully to a specific use case)

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 43

Here, each node on the left represents an input
feature, the connecting lines represent the learned
coefficients, and the node on the right represents
the output, which is a weighted sum of the inputs.

In an MLP this process of computing weighted sums
is repeated multiple times,

first computing hidden units that represent an
intermediate processing step, which are again
combined using weighted sums to yield the final
result.

This model has a lot more coefficients (also called weights) to learn: there is one between every input and every hidden
unit (which make up the hidden layer), and one between every unit in the hidden layer and the output.

Multilayer perceptron with a single hidden layer

Neural Network

v[0]

w[0, 0]

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 44

Computing a series of weighted sums is
mathematically the same as computing just one
weighted sum, so to make this model truly more
powerful than a linear model, we need one extra
trick.

After computing a weighted sum for each hidden
unit, a nonlinear function is applied to the result—
usually the rectifying nonlinearity (also known as
rectified linear unit or relu) or the tangens
hyperbolicus (tanh).

The result of this function is then used in the
weighted sum that computes the output, ŷ.

Neural Network

h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3] + b[0])

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 45

For the small neural network the full formula for computing ŷ in the case of regression would be
(when using a tanh nonlinearity):

h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3] + b[0])
h[1] = tanh(w[0, 1] * x[0] + w[1, 1] * x[1] + w[2, 1] * x[2] + w[3, 1] * x[3] + b[1])
h[2] = tanh(w[0, 2] * x[0] + w[1, 2] * x[1] + w[2, 2] * x[2] + w[3, 2] * x[3] + b[2])

ŷ = v[0] * h[0] + v[1] * h[1] + v[2] * h[2] + b

Here, w are the weights between the input x and the hidden layer h, and v are the weights between the
hidden layer h and the output ŷ. The weights v and w are learned from data, x are the input features, ŷ is
the computed output, and h are intermediate computations.

Neural Network

1 pixel = 19 weights
we know (x,y) for a sample of pixels

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 46

An important parameter that needs to be
set by the user is the number of nodes in
the hidden layer.

This can be as small as 10 for very small or
simple datasets and as big as 10,000 for
very complex data.

Having large neural networks made up
of many of these layers of
computation is what inspired the term
“deep learning.”

Neural Network

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 47

Decision boundary learned by a neural network
with 100 hidden units on the two_moons dataset

Decision boundary learned by a neural network
with 10 hidden units on the two_moons dataset

Neural Network

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 48

Decision boundary learned using 2 hidden layers
with 10 hidden units each, with rect activation
function

Decision boundary learned using 2 hidden
layers with 10 hidden units each, with tanh
activation function

Neural Network

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 49

A quick summary of when to use each model:

Algorithm Characteristics

Nearest neighbors For small datasets, good as a baseline, easy to explain.

Decision trees Very fast, don’t need scaling of the data, can be visualized and easily explained.

Random forests Nearly always perform better than a single decision tree, very robust and powerful.
Don’t need scaling of data. Not good for very high-dimensional sparse data.

Support vector machines Powerful for medium-sized datasets of features with similar meaning. Require
scaling of data, sensitive to parameters.

Neural networks Can build very complex models, particularly for large datasets. Sensitive to scaling
of the data and to the choice of parameters. Large models need a long time to
train.

Summary

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 50

Classification using Random Forest algorithm

Inês Silva (2020)
A dimensão dos círculos ilustra a
frequência de cada classe nos dados.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 51

Transfer Learning

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 52

Transfer Learning in time
2019 - 2019

2018 - 2019

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 53

Convolutional Neural Network

David H. Hubel and Torsten Wiesel performed
a series of experiments on cats in
1958and 1959(and a few years later on
monkeys), giving crucial insights on the
structure of the visual cortex.

The authors showed that some neurons
react only to images of horizontal
lines, while others react only to lines with
different orientations.

These studies of the visual cortex inspired the neocognitron,
introduced in 1980, which gradually evolved into what we now call
convolutional neural networks.

An important milestone was a 1998 paperby Yann LeCun, Leon
Bottou, Yoshua Bengio, and Patrick Haffner, which introduced the
famous LeNet-5 architecture, widely used to recognize handwritten
check numbers.

These observations led to the idea that the
higher-level neurons are based on the
outputs of neighbouring lower-level
neurons.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 54

Convolutional Neural Network

CNN layers with rectangular local receptive fields

A neuron located in position (i,j) in the upper layer is
connected to the outputs of the neurons in the previous
layer located in
Rows: [i × sh to i × sh + fh – 1]
Column: [j × sw to j × sw + fw –1],

where sh and sw are the vertical and horizontal strides.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 55

Aplicação de um filtro vertical e um filtro horizontal

Aplicação de multiplos
filtros em cada layer

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 56

Max pooling layer (2 × 2 pooling
kernel, stride 2, no padding)

Typical CNN
architecture

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 57

Imagem 4x4 e filtro 3x3 Sobrepoisção do filtro na imagem Cálculo do filtro

Sobel vertical filter Sobel horizontal filter

Convolutions

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 58

Padding (preencher)

Using padding to keep the output image with the same size as
the input image. To do this, we add zeros around the image so
we can overlay the filter in more places. A 3x3 filter requires 1
pixel of padding. This is called “same” padding.

MNIST
dataset

With valid padding (without padding) and 8 filters

Each of the 8 filters in the conv layer produces a 26x26
output, so stacked together they make up a 26x26x8
volume. All of this happens because of 3 ×× 3 (filter
size) ×× 8 (number of filters) = only 72 weights!

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 59

Pooling (agrupar)

Neighboring pixels in images tend to have similar values, so
conv layers will typically also produce similar values for
neighboring pixels in outputs. As a result, much of the
information contained in a conv layer’s output is redundant.

Pooling layers solve this problem. All they do is reduce the
size of the input it’s given by (you guessed it)
pooling values together in the input. The pooling is usually
done by a simple operation like MAX, MIN, AVERAGE

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 60

Softmax

To complete our CNN, we need to give it the ability to actually
make predictions. We’ll do that by using the standard final
layer for a multiclass classification problem: the Softmax layer,
a fully-connected (dense) layer that uses the Softmax
function as its activation.

We’ll use a softmax layer with 10 nodes, one representing
each digit (0 a 9), as the final layer in our CNN.
The digit represented by the node with the highest
probability will be the output of the CNN!

Training a neural network typically consists of two phases:

1. A forward phase, where the input is passed completely
through the network.

2. A backward phase, where gradients are backpropagated
(backprop) and weights are updated.

•During the forward phase, each layer will cache any data
(like inputs, intermediate values, etc) it’ll need for the
backward phase. This means that any backward phase must
be preceded by a corresponding forward phase.

•During the backward phase, each layer will receive a
gradient and also return a gradient. It will receive the
gradient of loss with respect to its outputs and return the
gradient of loss with respect to its inputs .

https://victorzhou.com/blog/softmax/

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 61

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 62

In a typical neural network, each neuron in the input layer is
connected to a neuron in the hidden layer. However, in a
CNN, only a small region of input layer neurons connects to
neurons in the hidden layer. These regions are referred to as
local receptive fields.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 63

INPUT Image (RGB) Zero Padding

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 64

Peso (w)

> 0 => x
< 0 => 0

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 65

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 66

https://spectrum.ieee.org/biomedical/devices/ai-medicine-comes-to-africas-rural-clinics

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 67

LeNet-5
The LeNet-5 architecture is the most widely
known CNN architecture. It was created by
Yann LeCun in 1998 and widely used for
handwritten digit recognition

AlexNet
The AlexNet CNN architecture was developed by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton.

It is quite similar to LeNet-5, only much larger and deeper, and it was
the first to stack convolutional layers directly on top of each other,
instead of stacking a pooling layer on top of each convolutional layer.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 68

U-Net (Olaf Ronneberger, 2015)

GoogLeNet

VGGNet

Outras Arquiteturas:

ResNet

Desenvolvidas nos ultimos 5 anos

Xception (variante da GoogLeNet)

SENet

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 69

def modelo_unet(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = inputs

#Descida
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D((2, 2))(c4)
#Fundo
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)

#Subida
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

return model

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 71

João Sacadura, 2021

Vias

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 72

Caminhos agrícolas

Edificios Industriais

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 73

Compared with the conventional
multilayer perceptron (MLP),
which only consists of fully
connected layers, the
convolutional network has less
parameters due to its local
connectivity characteristic.

For example, for a 300 × 300
image, we assume that there are
ten hidden neurons. There are
300×300×10 = 900 000 weight
parameters for MLP.

In convolutional network, if we
use 10×10 local connectivity
pattern, the number of weight
parameters is 10×10×10 = 1000.

Automatic road detection and centerline extraction via cascaded end-to-end
convolutional neural network,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 6, pp. 3322–3337, 2017.

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 74

Redes neurais de convolução na classificação
de edifícios em imagens de alta resolução
espacial, Tese Mestrado EGeoespacial,
Henrique Silva, 2022

Inria Aerial Image Labeling, Maggiori et al. em 2017

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 75

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 76

D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 78

Identificação e contagem
de árvores em ortoimagens

U-Net
.Imagem RGB+IV
.Ortos 2023 (IFAP)

