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5. Machine Learning
➢ What is machine learning?
➢ Tasks for machine learning
➢ Machine learning models
➢ Generalization, Overfitting
➢ k-NN algorithm
➢ Linear Models
➢ Decision Trees
➢ Neural Network
➢ Convolutional Neural Network
➢ Generative Deep Learning
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Remote sensing multispectral image data, behavioural geography data (person 
location and trip), transportation network data…  BIG DATA of geography.

Machine learning is believed to be the powerful tool to explore and analyze the 
geography big data.

What is machine learning?

Machine learning evolved from the study of pattern recognition and 
computational learning theory in artificial intelligence (AI).

Machine Learning
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“A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at tasks in T, as 
measured by P, improves with experience E” — Tom Michell (1997)

Machine Learning

Machine Learning

T: Playing checkers
P: Games won
E: playing games against 
itsef
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Machine Learning

http://www.erogol.com/wp-content/uploads/2014/05/test.jpg

A brief history of machine learning

http://www.erogol.com/wp-content/uploads/2014/05/test.jpg
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How to connect the machine learning 
with geospatial data?
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Machine Learning

Machine 
Learning 
in Remote 
Sensing
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Bibliography and slides
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Software



D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 14

Software
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Tasks for machine learning
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Machine learning Models
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Models that share characteristics are plotted closer 
together: logical models to the right, geometric models on 
the top left and probabilistic models on the bottom left. 
The horizontal dimension roughly ranges from grading 
models on the left to grouping models on the right.

Machine Learning Taxonomy

The colours indicate the type of 
model, from left to right: logical 
(red), probabilistic (orange) and 
geometric (purple).

Grading/ Classification Grouping
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Predictive machine learning scenarios
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Classification
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Generalization, Overfitting, and Underfitting

Trade-off of model complexity against training and test accuracy

More complex the model => better we will be able to predict on the training data. 
However : Too complex => focusing too much in our training set => not generalize well to new data. 
There is a sweet spot in between that will yield the best generalization performance. 

If a model is able to make accurate predictions 
on unseen data, we say it is able 
to generalize from the training set to the test 
set. We want to build a model that is able to 
generalize as accurately as possible.

Overfitting occurs when you fit a model too 
closely to the particularities of the training 
set and obtain a model that works well on 
the training set but is not able to generalize 
to new data. 
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Scatter plot of training dataset
2 bands and 2 classes 

(Band 1)
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d
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K-NN (K-Nearest Neighbours)

Predictions made by the one-nearest-
neighbour model on the dataset
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Instead of considering only the closest neighbour, we 
can also consider an arbitrary number, k, of 
neighbours. 

This is where the name of the k-nearest neighbours 
algorithm comes from. 

When considering more than one neighbour, we 
use voting to assign a label. This means that for each 
test point, we count how many neighbours belong to 
class 0 and how many neighbours belong to class 1. 

We then assign the class that is more frequent: in 
other words, the majority class among the k-nearest 
neighbours.

Predictions made by the three-nearest-
neighbours model on the dataset

K-NN (K-Nearest Neighbours)
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Decision boundaries created by the nearest neighbours model for different values 
of k_neighbours

K-NN (K-Nearest Neighbours)



D R M

M A C H I N E L E A R N I N G

João Catalão Fernandes (jcfernandes@fc.ul.pt) 26

Linear models are a class of models that are widely used 
in practice and have been studied extensively in the last 
few decades, with roots going back over a hundred 
years. 

Linear models make a prediction using a linear 
function of the input features, which we will explain 
shortly. For regression:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in our case, the spectral 
bands, p+1) of a single pixel (or set of pixels), w and b are 
parameters of the model that are learned, and ŷ is the prediction 
the model makes.

For a dataset with a single feature, this is:

ŷ = w[0] * x[0] + b

Linear Models
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• Machine Learning Regression Techniques

• Linear Regression (LR)

• Random Forest Regressor (RFR)

• ExtraTree + Bagging Regressor (ETBR) 

• Data inputs: InSAR coherence, phase and soil type

• Data output: soil moisture change between two dates

Assess the usefulness of the temporal coherence matrix on the 
estimation of the soil moisture changes
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Coh→ dSM Coh & Phase → dSM Coh, Phase & Soil → dSM

Orbit 
74

Orbit 
154

SM estimation vs SM observation
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Linear Models for Classification

Linear models are also extensively used for classification. 

In this case, a prediction is made using the following formula:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0

The formula looks very similar to the one for linear regression, 
but instead of just returning the weighted sum of the 
features, we threshold the predicted value at zero. 

If the function is smaller than zero, we predict the class –1; if 
it is larger than zero, we predict the class +1. 

This prediction rule is common to all linear models for 
classification. Again, there are many different ways to find the 
coefficients (w) and the intercept (b).

Class 1

Class 0
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Linear Models for multiclass Classification

A common technique to extend a binary classification 
algorithm to a multiclass classification algorithm is the one-vs.-
rest approach. 

In the one-vs.-rest approach, a binary model is learned for each 
class that tries to separate that class from all of the other 
classes, resulting in as many binary models as there are classes. 

Having one binary classifier per class results in having one 
vector of coefficients (w) and one intercept (b) for each class. 

The class for which the result of the classification confidence 
formula given here is highest is the assigned class label:

w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b The classifier that has the highest score on its single class 
“wins,” and this class label is returned as the prediction.
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Linear Models for multiclass Classification

Multiclass decision boundaries derived from the three one-vs.-rest classifiers
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Blue: water
Red:Land
Green: intertidal
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Decision trees

Decision trees are widely used models for classification and 
regression tasks. Essentially, they learn a hierarchy of if/else 
questions, leading to a decision.

Imagine you want to distinguish between the 
following four animals: 

bears, hawks, penguins, and dolphins. 

Your goal is to get to the right answer by asking 
as few if/else questions as possible.

penas

(barbatanas)

In this illustration, each node in the tree either represents a question or a terminal node (also called a leaf) that contains 
the answer. The edges connect the answers to a question with the next question you would ask.
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Decision trees

Learning a decision tree means learning the 
sequence of if/else questions that gets us to 
the true answer most quickly. 

In the machine learning setting, these 
questions are called tests (not to be confused 
with the test set, which is the data we use to 
test to see how generalizable our model is). 

Usually data does not come in the form of binary yes/no 
features as in the animal example, but is instead 
represented as continuous features such as in the 2D 
dataset shown in figure. 

The tests that are used on continuous data are of the 
form “Is feature i larger than value a?” Two-moons dataset on which the decision tree will be 

built
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Splitting the dataset horizontally at x[1]=0.0596 yields the most information; it best separates the points in 
class 0 from the points in class 1. The top node, also called the root, represents the whole dataset, 
consisting of 50 points belonging to class 0 and 50 points belonging to class 1. The split is done by testing 
whether x[1] <= 0.0596, indicated by a black line. If the test is true, a point is assigned to the left node, 
which contains 2 points belonging to class 0 and 32 points belonging to class 1.

To build a tree, the 
algorithm searches over all 
possible tests and finds the 
one that is most 
informative about the 
target variable.

0.0596

(Root)

Decision trees
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Even though the first split did a good job of separating the two classes, the bottom region still contains points belonging 
to class 0, and the top region still contains points belonging to class 1. We can build a more accurate model by repeating 
the process of looking for the best test in both regions.

This recursive process yields a binary tree of decisions, with each node containing a test.

Decision trees
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Typically, building a tree as described here and continuing until all leaves are pure leads to models that are very 
complex and highly overfit to the training data. The presence of pure leaves mean that a tree is 100% accurate on the 
training set; each data point in the training set is in a leaf that has the correct majority class.

Decision trees
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Instead of looking at the whole tree, there are 
some useful properties that we can derive to 
summarize the workings of the tree. 

The most commonly used summary is feature 
importance, which rates how important each 
feature is for the decision a tree makes. 

It is a number between 0 and 1 for each 
feature, where 0 means “not used at all” and 
1 means “perfectly predicts the target.”

Importância relativa das variáveis na classificação com RF para dados de 
2018 (a azul) e de 2019 (a laranja). As denominações das variáveis 
dizem respeito à banda, mês e dia de aquisição da imagem, 
respetivamente.

Feature Importance
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Ensembles of decision trees

Decision boundaries found by five randomized decision trees and the decision 
boundary obtained by averaging their predicted probabilities

In any real 
application, we 
would use many 
more trees (often 
hundreds or 
thousands), leading 
to even smoother 
boundaries.

The Random 
Forest 
overfits less 
than any of 
the trees 
individually
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Neural Network

Multilayer perceptrons (MLPs) are also known as feed-
forward neural networks, or sometimes just 
neural networks.

MLPs can be viewed as generalizations of linear models that 
perform multiple stages of processing to come to a decision.

Remember that the prediction by a linear regressor is given as:

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b

in plain English, ŷ is a weighted sum of the input features x[0] 
to x[p] (our spectral bands), weighted by the learned 
coefficients w[0] to w[p]. 

(“deep learning” are a revival of the neural networks tailored very carefully to a specific use case)
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Here, each node on the left represents an input 
feature, the connecting lines represent the learned 
coefficients, and the node on the right represents 
the output, which is a weighted sum of the inputs.

In an MLP this process of computing weighted sums 
is repeated multiple times, 

first computing hidden units that represent an 
intermediate processing step, which are again 
combined using weighted sums to yield the final 
result.

This model has a lot more coefficients (also called weights) to learn: there is one between every input and every hidden 
unit (which make up the hidden layer), and one between every unit in the hidden layer and the output.

Multilayer perceptron with a single hidden layer

Neural Network

v[0]

w[0, 0] 
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Computing a series of weighted sums is 
mathematically the same as computing just one 
weighted sum, so to make this model truly more 
powerful than a linear model, we need one extra 
trick. 

After computing a weighted sum for each hidden 
unit, a nonlinear function is applied to the result—
usually the rectifying nonlinearity (also known as 
rectified linear unit or relu) or the tangens
hyperbolicus (tanh). 

The result of this function is then used in the 
weighted sum that computes the output, ŷ.

Neural Network

h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3] + b[0])
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For the small neural network the full formula for computing ŷ in the case of regression would be 
(when using a tanh nonlinearity):

h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3] + b[0])
h[1] = tanh(w[0, 1] * x[0] + w[1, 1] * x[1] + w[2, 1] * x[2] + w[3, 1] * x[3] + b[1])
h[2] = tanh(w[0, 2] * x[0] + w[1, 2] * x[1] + w[2, 2] * x[2] + w[3, 2] * x[3] + b[2])

ŷ = v[0] * h[0] + v[1] * h[1] + v[2] * h[2] + b

Here, w are the weights between the input x and the hidden layer h, and v are the weights between the 
hidden layer h and the output ŷ. The weights v and w are learned from data, x are the input features, ŷ is 
the computed output, and h are intermediate computations.

Neural Network

1 pixel = 19 weights
we know (x,y) for a sample of pixels
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An important parameter that needs to be 
set by the user is the number of nodes in 
the hidden layer. 

This can be as small as 10 for very small or 
simple datasets and as big as 10,000 for 
very complex data.

Having large neural networks made up 
of many of these layers of 
computation is what inspired the term 
“deep learning.”

Neural Network
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Decision boundary learned by a neural network 
with 100 hidden units on the two_moons dataset

Decision boundary learned by a neural network 
with 10 hidden units on the two_moons dataset

Neural Network
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Decision boundary learned using 2 hidden layers 
with 10 hidden units each, with rect activation 
function

Decision boundary learned using 2 hidden 
layers with 10 hidden units each, with tanh
activation function

Neural Network
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A quick summary of when to use each model:

Algorithm Characteristics

Nearest neighbors For small datasets, good as a baseline, easy to explain.

Decision trees Very fast, don’t need scaling of the data, can be visualized and easily explained.

Random forests Nearly always perform better than a single decision tree, very robust and powerful. 
Don’t need scaling of data. Not good for very high-dimensional sparse data.

Support vector machines Powerful for medium-sized datasets of features with similar meaning. Require 
scaling of data, sensitive to parameters.

Neural networks Can build very complex models, particularly for large datasets. Sensitive to scaling 
of the data and to the choice of parameters. Large models need a long time to 
train.

Summary
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Classification using Random Forest algorithm

Inês Silva (2020)
A dimensão dos círculos ilustra a 
frequência de cada classe nos dados.
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Transfer Learning 
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Transfer Learning in time
2019 - 2019

2018 - 2019
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Convolutional Neural Network

David H. Hubel and Torsten Wiesel performed 
a series of experiments on cats in
1958and 1959(and a few years later on 
monkeys), giving crucial insights on the
structure of the visual cortex.

The authors showed that some neurons 
react only to images of horizontal
lines, while others react only to lines with 
different orientations.

These studies of the visual cortex inspired the neocognitron, 
introduced in 1980, which gradually evolved into what we now call 
convolutional neural networks. 

An important milestone was a 1998 paperby Yann LeCun, Leon 
Bottou, Yoshua Bengio, and Patrick Haffner, which introduced the 
famous LeNet-5 architecture, widely used to recognize handwritten 
check numbers.

These observations led to the idea that the 
higher-level neurons are based on the 
outputs of neighbouring lower-level 
neurons.
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Convolutional Neural Network

CNN layers with rectangular local receptive fields

A neuron located in position (i,j) in the upper layer is 
connected to the outputs of the neurons in the previous 
layer located in 
Rows: [i × sh to i × sh + fh – 1]
Column: [ j × sw to j × sw + fw –1], 

where sh and sw are the vertical and horizontal strides.
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Aplicação de um filtro vertical e um filtro horizontal

Aplicação de multiplos
filtros em cada layer
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Max pooling layer (2 × 2 pooling 
kernel, stride 2, no padding)

Typical CNN 
architecture
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Imagem 4x4 e filtro 3x3 Sobrepoisção do filtro na imagem Cálculo do filtro

Sobel vertical filter Sobel horizontal filter

Convolutions
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Padding (preencher)

Using padding to keep the output image with the same size as 
the input image. To do this, we add zeros around the image so 
we can overlay the filter in more places. A 3x3 filter requires 1 
pixel of padding. This is called “same” padding.

MNIST 
dataset

With valid padding (without padding) and 8 filters

Each of the 8 filters in the conv layer produces a 26x26 
output, so stacked together they make up a 26x26x8 
volume. All of this happens because of 3 ×× 3 (filter 
size) ×× 8 (number of filters) = only 72 weights!
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Pooling (agrupar)

Neighboring pixels in images tend to have similar values, so 
conv layers will typically also produce similar values for 
neighboring pixels in outputs. As a result, much of the 
information contained in a conv layer’s output is redundant.

Pooling layers solve this problem. All they do is reduce the 
size of the input it’s given by (you guessed it)   
pooling values together in the input. The pooling is usually 
done by a simple operation like MAX, MIN, AVERAGE
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Softmax

To complete our CNN, we need to give it the ability to actually 
make predictions. We’ll do that by using the standard final 
layer for a multiclass classification problem: the Softmax layer, 
a fully-connected (dense) layer that uses the Softmax
function as its activation.

We’ll use a softmax layer with 10 nodes, one representing 
each digit (0 a 9), as the final layer in our CNN.
The digit represented by the node with the highest 
probability will be the output of the CNN!

Training a neural network typically consists of two phases:

1. A forward phase, where the input is passed completely 
through the network.

2. A backward phase, where gradients are backpropagated 
(backprop) and weights are updated.

•During the forward phase, each layer will cache any data 
(like inputs, intermediate values, etc) it’ll need for the 
backward phase. This means that any backward phase must 
be preceded by a corresponding forward phase.

•During the backward phase, each layer will receive a 
gradient and also return a gradient. It will receive the 
gradient of loss with respect to its outputs and return the 
gradient of loss with respect to its inputs .

https://victorzhou.com/blog/softmax/
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In a typical neural network, each neuron in the input layer is 
connected to a neuron in the hidden layer. However, in a 
CNN, only a small region of input layer neurons connects to 
neurons in the hidden layer. These regions are referred to as 
local receptive fields.
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INPUT Image (RGB) Zero Padding
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Peso (w)

> 0 => x
< 0 => 0
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https://spectrum.ieee.org/biomedical/devices/ai-medicine-comes-to-africas-rural-clinics
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LeNet-5
The LeNet-5 architecture is the most widely 
known CNN architecture. It was created by 
Yann LeCun in 1998 and widely used for 
handwritten digit recognition

AlexNet
The AlexNet CNN architecture was developed by Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton. 

It is quite similar to LeNet-5, only much larger and deeper, and it was 
the first to stack convolutional layers directly on top of each other, 
instead of stacking a pooling layer on top of each convolutional layer. 
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U-Net (Olaf Ronneberger, 2015)

GoogLeNet

VGGNet

Outras Arquiteturas:

ResNet

Desenvolvidas nos ultimos 5 anos

Xception (variante da GoogLeNet)

SENet
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def modelo_unet(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = inputs

#Descida
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
p1 = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
p4 = MaxPooling2D((2, 2))(c4)
#Fundo
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)

#Subida
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

return model
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João Sacadura, 2021

Vias
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Caminhos agrícolas

Edificios Industriais
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Compared with the conventional 
multilayer perceptron (MLP), 
which only consists of fully 
connected layers, the 
convolutional network has less 
parameters due to its local 
connectivity characteristic. 

For example, for a 300 × 300 
image, we assume that there are 
ten hidden neurons. There are 
300×300×10 = 900 000 weight 
parameters for MLP. 

In convolutional network, if we 
use 10×10 local connectivity 
pattern, the number of weight 
parameters is 10×10×10 = 1000. 

Automatic road detection and centerline extraction via cascaded end-to-end 
convolutional neural network,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 55, no. 6, pp. 3322–3337, 2017.
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Redes neurais de convolução na classificação 
de edifícios em imagens de alta resolução 
espacial, Tese Mestrado EGeoespacial, 
Henrique Silva, 2022

Inria Aerial Image Labeling, Maggiori et al. em 2017 
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Identificação e contagem
de árvores em ortoimagens

U-Net
.Imagem RGB+IV
.Ortos 2023 (IFAP)


