Cosmologia Física

Ismael Tereno (IA/FCUL)

Lectures

Monday 14h00-16h00 Zoom

Thursday 14h00-16h00 Zoom

Fenix page

(lecture slides and homework uploaded there, will send the links)

Contact

tereno@fc.ul.pt

Evaluation

Homework (60%) + Presentation (30%) (from a list of topics to be given, no written report required) + Margin (10%)

Program: introduction

Cosmology studies the global properties of the Universe

Physical Cosmology uses physics to describe/understand:

- the current state of the Universe,
- its past and future evolution,
- its structures and their large-scale spatial distributions (note: large = grande)

Two courses on physical cosmology in FCUL:

- Theoretical/Physical/Primordial Cosmology Universo primitivo (thermal history, particle physics, field theory)
- Observational/Astrophysical/Modern Cosmology Cosmologia Física (properties of observable astrophysical quantities that allow to evaluate cosmological models → cosmological probes)

	Time	Temperature (K)	Event
		The Quantum Gravity Era	
	$1 \times 10^{-43} \mathrm{s}$	1×10^{32}	quantum limit of general relativity
	(Planck time)		
		The Inflation Era	
	$1 \times 10^{-35} \mathrm{s}$	1×10^{28}	grand unification symmetry breaking
	$1 \times 10^{-34} \mathrm{s}$	1×10^{27}	start of inflation
	$1 \times 10^{-32} \mathrm{s}$	1×10^{27}	start of reheating and end of inflation
	$1 \times 10^{-11} \mathrm{s}$	3×10^{15}	ew unification symmetry breaking
		The Quark-Lepton Era	
Universo primitivo Cosmologia Física	$1 \times 10^{-5} \mathrm{s}$	2×10^{12}	formation of hadrons from quarks
	$0.1 \mathrm{s}$	3×10^{10}	neutrinos decouple
	1 s	1×10^{10}	neutron to proton ratio freezes out
	$10\mathrm{s}$	5×10^{9}	electron positron annihilation
		The Radiation Era	
	$3 \min$	1×10^9	nucleosynthesis begins
	$30 \mathrm{min}$	4×10^{8}	nucleosynthesis ends
	2000 anos	$6 \times 10^4 (z \approx 10^4)$	matter-radiation equivalence
		The Matter Era	
	10 mil anos	1×10^4	matter is fully ionized
	(the plasma epoch)		
	300 mil anos	3.5×10^{3}	electrons and protons recombine
	400 mil anos	$3.0 \times 10^3 (z \approx 1100)$	photon decoupling
		,	(last scattering surface)
	400 milhoes de anos	$(z \approx 15)$	first bound structures form
			formation of intergalactic medium
			first dark halos of galaxies
			first stars (first heavy elements)
			clusters
			filaments and voids
		The Dark Energy Era	
	13.6 mil milhoes de anos	2.726	today

Stable particles are the only ones left: photons, neutrinos, protons, neutrons, electrons, DM particles.

During the thermal history, the various species gradually decouple (leave the equilibrium) as their reaction rates become smaller than the expansion rate.

Inflation - mechanism introduced to solve some of the problems of the Big Bang model. It also provides the inhomogeneities initial conditions from quantum fluctuations.

Linear scale


```
2001: H 0 distance ladder (HST Key Proj) (Freedman)
```

1998: Accelerated expansion (SNIa)

2005: Detection of the BAO peak (SDSS)

2001: LSS updated map (SDSS, 2dFGRS) → SDSS IV (2019)

2000: Cosmic shear (LSS of DM)→DES(2019)→Euclid(2022)

1986: The Great Wall (scale of homogeneity?)

1970: Large-scale structure (first z-surveys of galaxies)

2006: Bullet Cluster (Chandra, Lensing) (DM observed?)

1996: Nbody simulations (Virgo) (Universal profile NFW)

1993: M_b from clusters is 15% of M_tot (White) (DE?)

1982: X-ray cluster mass (Einstein satellite)

1933: Cluster dynamics: DM needed (Zwicky)

1996: z-evolution of Star-formation rate (HDF, Madau)

1988: Galaxy counts (Tyson) (Olbers limit?,confusion limit)

1979: First gravitational lens system

1974: Mass function (Press, Schechter) (NL collapse)

1970: Rotation curves: DM also needed in galaxies (Rubin)

2010: Cosmological HI 21cm (Pen) → SKA (> 2022)

1970s: Discovery of Ly-a forest

1967: GRB discovery

1965: Gunn-Peterson test (the universe is highly ionized)

1963: Discovery of the first quasar (first high-z source)

2013: CMB high precision and polarization (Planck)

2003: CMB small scales (WMAP)

2000: CMB 1st peak (Boomerang, Maxima) (Universe flat)

1992: Anisotropies of CMB (COBE) (DM needed)

1990: CMB Black-body (COBE) (Big Bang)

2016: Gravitational waves (LIGO) → LISA (2034)

2002: Neutrino oscillations

Program: plan

1. The Homogeneous Universe

geometry, dynamics, age, distances, cosmological parameters, contents of the Universe (dark matter, dark energy, radiation, baryonic matter)

2. Testing the Homogeneous Universe: probes of geometry

standard candles (SN), standard rulers (BAO), standard abundances, distance ladder (HO), densities (lensing, dark matter), estimators, biases, statistical inference (Fisher matrix, MCMC)

3. The Inhomogeneous Universe

linear spatial perturbations, random fields, structure formation, power spectra of dark/baryonic matter, non-linear structure

4. Testing the Inhomogeneous Universe: probes of structure gravitational lensing (cosmic shear), galaxy clustering (redshift space distortions), CMB anisotropies

The goal of this program is to make a theoretical description of aspects of the cosmological model needed to derive quantities related to observables.

All topics of the program turn out to be elements of a general pipeline for cosmological parameter estimation:

Bibliography

Intermediate level: Main books

- D. Lyth and A. Liddle *The primordial density perturbation* (2009), Ch. 6-12
- P. Peter and J.P. Uzan Primordial Cosmology (2009), Ch. 3,5,6,7
- Y. Wang Dark Energy (2010), Ch. 1,2 (a quick summary of most topics of the course), Ch. 4-7 (details on the main cosmological probes)
- L. Amendola and S. Tsujikawa Dark Energy (2010), Ch. 1-5, 13,14

Intermediate level: Other books

- S. Weinberg Cosmology (2008), Ch. 1,2,5,6,8,9
- J. Peacock Cosmological Physics (1999), Ch. 15,16
- V. Mukhanov Physical Foundations of Cosmology (2005), Ch. 1,2,6,7,9
- H.Mo, F. van deBosch and S.White Galaxy formation and evolution (2011), Ch. 4-6
- S. Dodelson Gravitational Lensing (2017) (focus on gravitational lensing only)

Simpler (but usually with more details on the homogeneous universe than the main books)

- P. Coles and F. Lucchin Cosmology 2nd ed. (2002), Ch. 1,2,4,10-19
- S. Serjeant Observational Cosmology (2010)
- M. Longair Galaxy Formation 2nd ed. (2008), Ch. 1-8, 11-18
- G. Borner The Early Universe facts and fiction (2003), Ch. 1,2,4,10,11
- P. Schneider Extragalactic Astronomy and Cosmology an introduction (2006), Ch. 4,7,8
- B. Ryden Introduction to Cosmology (2006)

More advanced

- S. Dodelson - *Modern Cosmology* (2003) (focus on the inhomogeneous universe theory and tests)

Lecture notes

You can search for some good lecture notes on-line. For example:

Intermediate level

Luca Amendola - Introduction to Cosmology
Daniel Baumann - Cosmology
Julien Lesgourgues - Cosmology

Simpler

Michael Hudson - Cosmology

Matthias Bartelmann - Observing the Big Bang

Matthias Bartelmann - Cosmology

More advanced

Oliver Piattella - Lecture notes on cosmology