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Two-point functions (power spectra and 2-pt correlation functions) of a given 
Gaussian cosmological inhomogeneous field contain the complete spatial 
information of the field. 
(example of cosmological inhomogeneous fields are: density contrast, peculiar velocity, 
gravitational lensing shear, CMB temperature anisotropy, metric perturbations such as Φ 
and Ψ gravitational potentials). 
 
 
From a 2-pt function, we can make a realization of the field, obtaining a map, i.e., the 
field as function of spatial coordinates (2D or 3D depending if we consider 3D or 
projected 2-pt functions), at a given time. 
 
Remember: the density power spectrum does not give the values of δ(x) in specific 
coordinates, but it has all the information needed to produce realizations of δ(x) à 
cosmological theory does not predict the exact maps of the universe 
 
These 2 universes have the same  
cosmological parameters values à the same 
power spectrum. 
 
However  the values of δ(x) in points with the  
same coordinates are different. 

Space and Time description of Gaussian random fields 



The time evolution of the field is obtained from the time evolution of the two-point 
correlation functions or power spectrum.  
 
 
The time evolution of the power spectrum of the density contrast can be computed 
from the cosmological theory, and this evolution is what is known as structure 
formation.  
 
It is computed from a system of differential equations of motion for the various modes 
(scales) δk (t) and for the various cosmological species (δ_cdm, δ_baryons, 
δ_radiation). 

The equations of motion are given by the  Perturbed Einstein equations: 
 

 from a perturbed metric (scalar, vector, tensor perturbations and gauge 
transformation) + energy-momentum tensor of inhomogeneous fluids à Einstein 
equations for the inhomogeneous Universe (‘Friedmann-like’, ‘Raychaudhuri-like’ and 
other new equations) + energy conservation equations (continuity-like or alternatively 
the perturbed Boltzmann equation, which is needed when considering energy 
distributions at particle level instead of coherent fluid, like in the case of relativistic 
species). 



It is also possible to derive the equations of motion in the  
 

 Euclidean approximation (valid for non-relativistic species and for sub-
Hubble scales, i.e. scales smaller than the Hubble radius)  
 
In this case, the power spectrum can be computed from classical fluid equations 
(Poisson, Euler, continuity) and there is no need to use Einstein equations. 
 
 
The equations of motion allow us to compute the evolution of the power 
spectrum for each cosmological species.  
 
 
For this, besides the equations of motion, we also need initial conditions for the 
power spectrum. These introduce new cosmological parameters.   
 
There are also initial conditions between species, which introduce additional 
constraints between the various power sepctra (ex: adiabatic perturbations, 
isocurvature perturbations). 
 
 



Remember: 
 
- The equations of motion compute δk (t) for all scales k and all cosmological species, 
i.e., they compute the cosmological variances, which is the function  
P(k) = δ2(k) (i.e., the power spectrum).  
 

 They do not compute a unique solution δ(x). 
 
- The power spectrum is not enough to describe the inhomogenous Universe if the 
perturbations are non-Gaussian à in that case we also need to consider higher-
order n-pt functions.  
 
 
- Note that the evolution of δ occurs while the universe is expanding “in the 
background”.  
The evolution of the homogeneous universe is also called background evolution. 
 
 
 



For the initial conditions of the density perturbations we need a set of N values 
for each species:  
 

 the amplitude (i.e. the variance) of each scale at a fixed time à in 
principle we will need N new cosmological parameters for each cosmological 
species. 
 
 

Initial conditions 

In the homogeneous universe the initial condition is a free parameter (an Ω 
value) and usually is set at today’s value and not at an initial value.  
 
In the inhomogeneous universe it is possible to derive some theoretical 
constraints on the early Universe (instead of using late-time conditions) from 
inflation.   



Inflation considers that the Universe is filled with a primordial scalar quantum field 
(called the inflaton). The quantum fluctuations that naturally exist in this field, 
evolve in the inflationary expansion, resulting in an inhomogeneous gravitational 
field, i.e., after inflation perturbations in space-time curvature appear. 
 
The curvature perturbation is a combination of Ψ - a gravitational potential, i.e., one 
of the perturbation elements of the inhomogeneous metric -  and δ, the density 
contrast of the cosmological scalar field 

The crucial point is that the inflationary evolution for the curvature perturbation has 
an  attractor solution à the result is independent of  particular realizations of the 
quantum fluctuations.  
 
This is a key aspect of inflation à It allows the computation of the post-
inflationary metric perturbations independently of the original initial 
conditions à no fine-tuning  (the result depends only on the inflationary model 
used). 
 
 



A given inflationary model thus computes the metric perturbations (created by the 
inflaton field). 
 
In particular, it computes the perturbed gravitational random field at all scales, i.e., 
inflation provides the post-inflationary power spectrum of gravity PΦ 
 
(we will introduce later the metric perturbations and the two fields Φ and Ψ) 
 
(In addition, inflation also computes the post-inflationary power spectrum of tensor metric 
perturbations, not relevant for the matter power spectrum). 
 
 
The post-inflationary power spectrum is the initial condition for the 
subsequent process of structure formation à it is known as the 
primordial power spectrum of the gravitational field. 
 
Note that in practice this power spectrum is obtained up to a constant à in 
reality inflation computes only the relative amplitudes between all scales, 
but it does not compute their absolute values. 
 
This means that the result is a function of scale k, with free amplitude. 
 



The result is a scale-invariant power spectrum (of the gravitational potential).  

This  means that the amplitudes of the metric perturbations are the same for all 
scales à the ‘gravitational potential’ at any scale starts the structure formation 
process with the same amplitude.  A priori there is no scale that will be more 
favorable to collapse and form structure. (There is also no homogeneity scale 
for the potential) 
 
This is also known as the Harrison-Zeldovich power spectrum - a flat spectrum 
(also called white noise). 

= constant 



Note that this is the result expected when the expansion is exponential (like during 
the inflation): a(t) ~ eHt 
 
 

We can see this by thinking on a discretized expansion: 
 

 On each e-folding (equal time intervals where the Universe expands by an 
order of magnitude) the Universe “remains a certain time with a certain size” 
 
That size (the order of magnitude of the e-folding) defines a logarithmic scale.  
 
The time that the Universe stays on each scale is the same (because the inflation 
period is short and so H(t) can be taken as constant). 
 
 
Since the times are the same, there is the same probability of forming 
inhomogeneities on all these logarithmic scales à leading to the same 
amplitude of Φ on all logarithmic scales à the same power per logarithmic bin 
à constant dimensionless power spectrum. 



This means that the dimensionless primordial power spectrum of gravity is 
a power law (in scale k) with index ns - 1. 
 
 
This introduces a new cosmological parameter - the power law index  ns - 
which parametrizes the relative amplitude between all scales. 
 
 
This parameter is related to inflation slow-roll parameters:  
 
         ns = 1 - 2ε + 2η à ns is close to 1 (and smaller than 1). 
 

It is usual to write the result in the form: 

allowing for a small deviation from the exactly scale-invariant power spectrum 
(the case ns = 1).  



Now, the fact that all scales have the same initial gravitational conditions  
to collapse, does not mean that all matter perturbations start with equal 
amplitudes.  
 

 We still need to find out what is the primordial power spectrum of the 
density contrast field. 
 
 
Since the gravitational potential is a metric perturbation, we need the Einstein 
equations to relate metric perturbations to matter perturbations.  
 

 The gravitational potential is a term in the metric (00) that makes the 
inhomogeneous metric deviate from a perfect Robertson-Walker metric.   
 

 The (first-order) Friedmann equation in the inhomogeneous metric relates 
this term of the metric to the matter density perturbation. It is a Poisson-like 
equation (as we will see later). 
 
In the sub-Hubble (Euclidean approximation) the original Poisson equation is valid, 
and we can write: 



So, we want to relate the power spectrum of the gravitational field to the power 
spectrum of the density.   
 

 For this we need to take the Fourier transform of the Poisson equation.  
 
The right-hand side only contains spatially constant quantities and the density 
contrast, so its transform is just the transform of the density contrast: 

The left-hand side contains a Laplacian and the gravitational potential. Its Fourier 
transform is written as: 

Using the product rule, the transform of the Laplacian of the potential may be 
written as:  



à 

This is a very useful result: to Fourier transform the spatial derivative of a 
quantity we just need to multiply it by -(-ik)n. 
 

 So,   grad(F) à ik Fk   and lap(F) à - k2  Fk 

Now, in the second term we can take the second-order derivative of the plane 
wave and  we are left with the Fourier transform of the potential (multiplied by a 
factor k2). 
 
In the first term we can replace the volume integral of the Laplacian by a surface 
integral of the divergence, using the theorem of Gauss (also known as the 
divergence theorem). 
 
So, we can write: 

Since the domain of the d3r integrals is infinity, the surface integral is made on a 
sphere with radius r à ∞ , and since r2         à 0, the first term is zero. 
 
So, Poisson equation in Fourier space is simply: 



Taking the square on both sides of the Poisson equation,  we find a “Poisson 
equation for the power spectrum”: this is the relation between the 
gravitational potential power spectrum and the matter power spectrum:  

So we found that the primordial matter power spectrum (the initial conditions for the 
matter fluctuations after inflation) is also a power-law, but with a different slope.  
 
In particular, it is not scale-invariant:  
       small-scales (large k) start with a larger clustering amplitude than large-
scales.  
 
The primordial power spectrum is parameterized by only 2 free parameters:  
 
•  a slope ns (parameterizing the relative amplitudes between the various scales).  
 
•  an amplitude As (given at a chosen scale; any scale may be used, but usually  

k_0  = 0.02 h/Mpc  is chosen) 
 
The fact that inflation is able to predict a functional form for the power spectrum 
is responsible for reducing the initial condition free parameters from N to only 2.       



Alternatively, the amplitude may be parametrized by the amplitude of the matter 
power spectrum at z=0.  
 

 In that case, the scale k=2π/8  h/Mpc is used.  
 

 and this is called the σ8 parameter.  
 
The relation between σ8  and As depends on the evolution of the power spectrum 
from early times to z=0 à it is not a simple scaling, it depends on all 
cosmological parameters.  

Cosmological parameters 

We have introduced 2 new fundamental cosmological parameters ns and As to 
add to the list of parameters that describe the cosmological model 
 
(which included already H0, Ωcdm , Ωb, Ωrad, ΩΛ, ΩK) 



These two are the most important new parameters, but there are many other 
cosmological parameters (or functions of redshift that can be parametrized) that are 
needed to model all aspects of the cosmological model, such as: 
 
- Describe extra species in the homogeneous universe: 
 

 neutrinos - Ων, Neff      
 dark energy - wDE (z) (and many other parameters depending on the specific dark 

energy model) 
 
- Describe pressure perturbations - speed of sound  cs (z) 
 
- Describe other mechanisms of the perturbed universe: 
 

 reioinization redshift (formation of the first stars) - optical depth τre 
 halo profiles in non-linear collapse - ρc, concentration c 
 power spectrum of tensor perturbations - nt, At or r 
 modified spectrum of initial conditions - running of the spectral index ns(k) 

 
- Describe specific cosmological probes: 
 

 redshift of sources for weak lensing - n(z) 
 mass-to-light bias for galaxy clustering - b(k,z) 




