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Perturbation theory 

When the density contrast reaches δ ~1, we can no longer linearize the 
equations. 
 
 
The evolution equation up to second-order may be written as, 
 
 
 
 
 
The multiplications of perturbations become convolutions in Fourier space, and so 
the spatial dependence is no longer local (i.e., each mode can no longer be treated 
as independent) and there is mode coupling à the evolution equation in Fourier 
space to second-order becomes, 
 



Now, perturbation theory assumes that it is possible to expand the density 
and velocity fields around the linear solution:  

is the linear solution 

with the evolution of a 
scale depends on all 
the other scales  

This defines the density contrast (and the same for the velocity perturbation) in 
several orders:  n=0 (homogeneous), n=1 (linear), n=2 (quadratic) ,…, up to infinity. 

In addition, another equation is needed for v (terms with v were neglected before 
because they only appeared in higher-order terms). That equation is also found from 
a combination of Euler, continuity and Poisson equations. 



In PT the equation of motion is solved recursively: 
 

 Insert the linear solution δ(1)
 (a)  in the non-linear terms (A, B), while the low-

order terms are written with δ(2)
. This provides an equation of  motion for δ(2)

. 
(and the same for the equation for v). 
 
Solving the system finds a solution  δ(2)

 (a), which can then be inserted in A, B, to 
get an equation for δ(3),  
 

 and so on …. 
 
 
Summing all orders up to n provides the result δ(a) up to order n in 
perturbation theory: 
 
 
 



the linear solution is:  δ(1)
 (a)  ~ a  in the case of EdS model, single component) 

(or δ(1)
 (a)  ~ af in the case of DM+DE) 

 
Applying the recursion, the growing solutions for the different orders are 
found to be proportional to an  à growth becomes very fast in the non-linear 
regime. 
 
 
The solution for each order is: 
 
 
δ(n)

 (k,a) = an   
 
 
We see that:  
 
-  the growth of δ for a given scale k and in a given order is a power of “a” times a 

factor that might in principle depend on all scales. 
 

In the matter-dominated epoch 



-  the kernel Fn encapsulates the mode couplings, and it is an n-point quantity, i.e., 
for each order, Fn is a coupling between n scales 

-  the Dirac delta tells us which scales contribute 

For example in second order 

the Dirac delta shows that the δ(2) contribution to the growth of the density contrast 
of a scale k is determined by the mode coupling of the linear field δ(1) at all pairs of 
scales q1 and q2 such that q12 (i.e.  q1 + q2) is equal to k: 

The kernel for the second-order density contrast is given by 

for each pair of scales (k1, k2) such 
that k1 + k2 = k  
 
F2 is a number 



For example, consider the growth of scale k = 10 h/Mpc:   
 

 the contribution from parallel scales |k| = 8 h/Mpc and |k| = 2 h/Mpc is 
  F2 = 5/7 + 0.5*2/8 + 0.5*8/2 +  2/7 = 3.125 

 
 while the contribution from parallel scales |k| = 6 h/Mpc and |k| = 4 h/Mpc is 
  F2 = 5/7 + 0.5*2/8 + 0.5*8/2 +  2/7 = 2.08 

 
and so  

  δ10
(2) (a) = [3.125 δ8

(1) (a) δ2
(1) (a) + 2.08 δ6

(1) (a) δ4
(1) (a) +….] a2 

 

But perturbation theory fails quite soon.  
 
Indeed, once collapsed bound structures form, there will be multiple streams of 
matter, i.e., matter no longer defines a unique flow in a perturbed region, and the idea 
of a global cosmological fluid breaks down, and the expansion in orders of 
perturbations, with solutions found recursively is no longer a good description. 
 
However, we can gain some insight on the collapse and even build models to 
describe the non-linear distribution of matter by making some assumptions 
about collapsed halos. 



Spherical collapse model 

Let us consider a spherical halo within the expanding flat background. 
  
Assumption: a DM halo can be treated as a mini-universe that expands within 
the Universe.  
The halo expands with a slower rate than the expanding Universe, meaning it is 
clustering with respect to the comoving flow. 
 
Extending this process to the non-linear collapse (and not only to the linear 
evolution, as we saw earlier), the mini-universe expands with a decreasing rate, 
stops at a time tmax , and then contracts. 

Halo properties 



So the halo mini-universe needs to be a closed universe, with curvature, in 
order to be able to expand and then contract. 
 
 Its solution a(t) is found from the Friedmann equation, it grows from 0 to amax 
(the turnaround point) and contracts to 0. The scale factor a(t) corresponds to 
the size of the halo r(t) of mass M. 
 
The solution a(t) for the closed mini-universe (a 2-component fluid with Ωm > 1, 
i.e., positive curvature and assuming negligible dark energy and radiation)  
cannot be written explicitly but can be given analytically as a parametric solution 
using an intermediate parameter θ: 
 
(see homework) 
 
 
 
  
 
where θ goes from 0 to π (when a = amax) to 2π (when a=0). The process is 
symmetric, i.e., the maximum expansion occurs at t = tmax and the full collapse 
ends at t = 2 tmax. 
 



In the beginning of the process (for small θ) we can insert the parametric functions 
and expand to low order in θ, to find an explicit solution for the expansion of the 
mini-universe a(t): 

Notice the first term, with a(t) ~ t2/3 is the expansion in a matter-dominated flat 
Universe, while the square bracket term gives the correction from the presence of 
curvature. 
 
The density of the halo (the mini-universe) decreases as its volume expands ~ alin

-3, 
while the density of the universe decreases as its volume expands ~ aback

-3 
 
The linear density contrast of the halo with respect to the mean density of the 
universe is the ratio: 
 
	
  

(h=1)	
  



We have the alin(t) solution  
 
The background solution is aback(t) ~t2/3 , or more precisely, in this framework of the 
parametric variable is  

   aback =           amax 
 
So we get:  
 
 

     ( using (1 - A)-3 ~ 1 + 3A ) 
 
 
We find that at turnaround (t=tmax), the linear density contrast is: 
 
 
 
 
Notice that the approximate expression of a(t) for small θ is not valid at the 
turnaround point where θ = π.  
 
So alin(tmax) is not the actual value of the scale factor of the mini-universe. It is the 
value it would have if the linear regime was still valid (this is why it was called the 
linear density contrast). 



The true value of the scale factor of the mini-universe at turnaround is of course  
a = amax, where aback = (6 π)2/3 / 4 
 
So the true non-linear density contrast is simply: 
 
 
 
 
 
which shows that the density contrast is already quite large at the turnaround point. 
 
 
After contracting, at the end of the collapse, 
 i.e., at θ = 2π (or t=2tmax), the linear density contrast is 
 
 
 
 
 
and this is the value chosen for the threshold that defines collapsed regions 
(halos) in the Press-Schechter theory. 



Again, the true (non-linear) density contrast is much larger than this.  
 
In fact, if the collapse goes to zero, it would even be infinite. 
 
In reality the collapsing dark matter particles in the halo deviate from exact 
radial trajectories, dissipative physics convert their kinetic energy into random 
motions à the random motions make the collapse to relax leading to an 
equilibrium state: virialization instead of complete collapse. 
 
 
It is usually assumed (supported by N-body simulations) that during the 
contraction phase (from t=tmax to t=2tmax), the halo virializes,  
 

 stabilizing at a size equal to half its maximum size. 
 
 
So its density at virialization is  ~ (amax / 2)3 , i.e.,  
 

 the halo density increases a factor of 8 since the turnaround 
(and not a factor of infinite as if there would be in a total collapse to a 
singularity) 
 



On the other hand at that time (t=2tmax), the background scale factor (that grows 
with t2/3) increased by a factor of 22/3 =1.6  
 

 à the background density decreased by a factor of 1.63 = 4. 
 
 
So the final true (non-linear) density contrast increases by a factor of 8x4 = 32  
from the value of 5.55 at turnaround, i.e.,  
 
 
 
 
(see homework for an alternative derivation) 
 
 



Even though the full details of the non-linear clustering cannot be studied in this 
approach, and the non-linear power spectrum cannot be computed for all scales, 
the spherical collapse method allows us to compute typical values of the 
overdensities: 
 

 δ ~ 5, at the decoupling from the comoving flow   (δl ~1) 
 

 δ - 178, for virialized structures (δl ~1.68) 
 
The spherical collapse method also provides a threshold value to recognize 
fully collapsed (virialized) halos, based only on linear density fields.   
 
This means that if we extrapolate calculations in the linear regime and find a value 
of δ ~ 1.68, we know we are dealing with a collapsed object. 
 
Note that the derivation assumes the collapse occurs at z=0.  
For higher redshifts, the threshold value is lower (there are less regions collapsed):  
 

 δc
lin  ~ 1.68 / (1+z)  

 
The derivation can also be made for different cosmological models.  
The value of the typical virialized overdensity of dark matter in the presence of other 
dark energy models will be different. 



The mass function, the number of halos in mass bins, dN/dM, may be analytically 
derived under the following  assumption:  the probability that the smoothed δ, 
i.e. δR or  δM,  is above a threshold δc (critical overdensity), gives the fraction 
of mass contained in non-linear collapsed objects (halos) of mass larger than 
M. 
 
 
The idea and pioneering derivation is known as the Press-Schechter theory (1970s).  

  
First, consider a density field and smooth it with a filter of a given scale R 
(associated to a mass scale M). 

  

M1	
   M2	
  

Mass function 



Remember the overdensities grow as  δ = af δ0 = D+(t) δ0   (D<1). 
 
So a region that today has δ0 >  δc / D(t) , was already collapsed at time t  

δc : critical density for the non-linear collapse à δc = 1.68 according to the spherical 
collapse assumption, where it is the value of linear δ in virialized halos 
	
  

Then, assume that the probability that the smoothed linear δ is above a threshold 
δc gives the fraction of mass contained in halos of mass larger than M. 
	
  



We do not know the expression for the non-Gaussian distribution of the non-linear 
density contrast. But the assumption is made on the smoothed linear density contrast 
field δM , which is a Gaussian random field (like the linear density contrast δ) 

The probability of δM being above δc is the integral over the (tail of the) Gaussian, 
i.e., the complementary error function:   

erfc(x) = 1 - erf(x) = 1 -  

(Note	
  there	
  is	
  one	
  such	
  expression	
  for	
  each	
  smoothing	
  radius,	
  i.e.,	
  for	
  each	
  variable	
  δM	
  )	
  



- At first thought yes, because there are regions with δ < 0 (underdensities), they 
do not attract matter, do not form halos.  
 

 On average they might account for half of the total mass in the Universe.   
 
- However, matter from underdense regions must fall towards the overdensities à 
they have to end up inside larger halos: 

Note that erfc(0) = 1 à the PS assumption tells us that if the threshold was 
zero, only half of the mass would be collapsed in halos. 
 
(the half on the positive side of the distribution) 
 
 
Does this make sense?  



So all matter is in one way or another inside a halo, and the PS assumption needs to 
be corrected. It is modified to: 
 

 The probability that δM,  is above a threshold δc gives half of the fraction of 
the total mass contained in non-linear collapsed objects (halos) of mass larger 
than M: 
 

 correct fraction = 2 P (δM > δc)  
 



From the fraction of total mass, we can write the  
 

 mass function  dn(M,t) = n(M,t) dM, i.e., the number of halos with masses in  
the range M to M+dM per comoving volume: 
 
 

 dn (M,t)  = dn/dM dM  
 
i.e., dn (M,t) =  - 2 dP/dM  ρ0 / M  dM    
 
(the minus sign meaning the number is a decreasing function of mass) 
 
 
This is the integrand of the probability expression, times the factor two, and dividing 
by volume to get a number density à (1/V = ρ/ M ) 

and so the Press-Schechter mass function is 



where the mean density ρ0 is written as Ωm ρc; the density contrast is fixed by the integration 
limit (i.e. we write δc); and its time-dependence is indicated explicitly. 
(Notice that the time dependence could alternatively have been in σM (z) and the value of δc 
today used instead). 

It is usual to change the integration variable to σ. In this case, we need to 
consider that 

     dP/dM = dP/dσ dσ/dM 
 
The change of variable introduces a factor δc/σ in the integrand, and the mass 
function takes the alternative form 
 

It is also usual to write the mass function in logarithmic intervals of mass or 
logarithmic intervals of variance of the overdensity (σ), which introduces an extra 
 1/M or σ factors. For example, 
  



The mass function depends on the variance of the smoothed overdensity. 
 
Remember this is computed from a filtered integral of the power spectrum: 

with (for a top-hat window) 

Since M ~ R3, there is a one-to-one relation between the size of the smoothed 
region R and its mass M, and we can also define a σR, which is identical to 
σM. 

Note that if we integrate the power law power spectrum P(k) = A kn using various 
filter sizes R and find the various σR , we can find an expression relating the 
variance of the various scales.  
 
For example using R=8 Mpc/h as a reference, the result is: 



and analogously for σM  

where M8 is the mass enclosed in the 
R=8 Mpc/h sphere 

Notice that σ is monotonic in mass à it decreases with mass (a larger smoothing 
radius leads to a smaller variance )à 1/σ  is a proxy for mass.  
 
This allows us to write the mass function in logarithmic bins of 1/σ instead of 
mass. It turns out the expression gets simpler, because the derivatives cancel: 
 

 dn/dlnσ-1 = - dn/dM dM/dlnσ 
 
and the mass function becomes: 
 



So the mass function has a simple form if written when using the inverse variance 
as an indicator of mass.  
 
This expression also introduced the peak height : ν(z) =  δc(z) / σM   (which is the 
quantity that directly appears in the Gaussian)     

It is also usual to define the characteristic mass M*  -  the mass of dark matter 
halos that virialize today. 
 

 It corresponds to the scale that has ν = 1 today, i.e.,  σM =  δc (a=1)  
 
 
In ΛCDM concordance model (σ8 = 0.9,  ns = 1), the characteristic mass scale 
is  

  M* ~ 0.1 M8  à  R* ~ 0.5 R8  à half the radius of a typical cluster, it is still 
in the cluster range. 
 
 
So larger clusters have linear δ ~1 (start to collapse today), while smaller 
clusters have linear δ = δc = 1.68 today (are already virialized collapsed 
structures) 



It is important to note that there is an uncertainty on the theoretical mass 
function. 
 
For example, if assuming an ellipsoidal collapse model, instead of a spherical 
collapse, the resulting mass function is different (it is the Sheth & Tormen mass 
function). Many other mass functions were derived based on different 
assumptions, or based on fits to the halo abundance found in N-body simulations. 

Chronological list of dark matter 
halo mass functions: 



Halo model 

The Halo model is a description of the non-linear inhomogeneous Universe 
based on the following assumptions: all collapsed dark matter is contained 
inside halos, and it can be inside halos of various scales. 
 
 
With this assumptions, the non-linear power spectrum (and correlation 
function) is determined from the linear power spectrum if we know three 
properties of the halos: 
 
 -  the distribution of matter inside the halos, i.e., their density profiles à this 
determines the non-linear power spectrum on the smallest scales 
 
 -  the mass function of the collapsed halos, i.e., the distribution of halos as 
function of scale à this gives a weight function 
 
- the halo bias à this determines the non-linear power spectrum from the linear 
power spectrum 
 
  



In the halo model, the mass is contained in Nh halos,  
 

 and within a halo, the mass is discretized in Ni points forming a number 
density profile u(r) 
 
The mass density at a point r, in the neighborhood of some mass points “i” , is 
then 

The matter power spectrum is separated in two contributions:  

- 1-halo term: for the smallest scales, when the two points belong to the same halo 
  
- 2-halo term: for larger scales, when the two points are in different halos  
 



1-halo term:  
 
the power spectrum is the mean <δδ> (the overdensities ρ/<ρ>) over all halos,  
i.e. the sum of <mu mu> auto-correlation (same halo) over all halos,  
weighted by the number of halos in each mass bin (i.e., weighted by the mass 
function). 

u(k|m) is the Fourier transform of the density profile of the halo of mass m 
	
  

2-halo term:  
 
similarly, the power spectrum is also the mean <δδ> (the overdensities ρ/<ρ>) 
over all halos, but now it is the sum of <mu mu> correlation  (between two halos), 
weighted by the mass function.  
 
Since the probability of finding a second halo, given a first one is not 
independent, a conditional probability is needed, i.e. a halo-halo correlation 
function (or in this case, in Fourier space, a halo-halo power spectrum Phh ).	
  



Now, what is the halo power spectrum ? 
 
Is it different from the matter power spectrum? 

Consider two spatial locations with identical small scale σR overdensities, with 
respect to the local mean density. 
 
Even though they have identical matter clustering properties (linear matter 
power spectrum), the one in the higher local environment will form a halo, 
and the other will not. 
 
 



So, the halo density distribution is biased with respect to the (linear) matter density 
field à halo bias (there is also a bias between galaxy distribution and matter 
distribution à galaxy bias ) 
 
 
 
The	
  bias	
  is	
  mass-­‐dependent,	
  larger	
  halos	
  are	
  more	
  biased	
  	
  b(m)	
  
	
  

We can estimate the bias 
 

 by splitting the density field in small-scale and large-scale modes, i.e., 
writing at each location,  δ = δl +  δs 
 
A halo will form if the threshold is reached, i.e., when δs = δc -  δl . As expected, 
the halo formation is easier in locations with an already large value of δl  
 
 
So, for a given mass M,  the bias can be defined as the difference between 
the number of halos that form in the presence of δl and the number of halos 
that would form if there were no underlying δl (which would correspond to the 
matter power spectrum), i.e. 
 



This can be computed from the mass function 

where the peak height is now  

i.e., the mass function n in the presence of  δl is a modification of the original 
mass function n(0) that consists on changing the peak height value. Let us write it 
as a Taylor expansion around the original mass function: 

We need to compute the derivative of the mass function: 

à	
  



to first order, n in the derivative is  ~ n(0) and we get the result, 

The halo bias is then given by 

We see that the peak height is a determining quantity:  
 
 - halos with the characteristic mass M* (ν = 1) have no bias, their correlation 
function is representative of the underlying matter correlation 
 
 - halos with a larger mass (small σM , ν > 1) have a larger bias, are more 
correlated than the underlying matter distribution 
 
- halos with small mass  (ν < 1) have a bias b < 1 



The 1-halo term gives a good result on the smallest scales (deviating at most by 
10% ) 
 
The 2-halo term gives a very good result on the largest scales. 

With an estimate for the halo bias, the mass function, the halo density profile (to 
be seen later), and the linear matter power spectrum, the halo model predicts the 
following matter non-linear power spectrum: 

The dimensionless 
non-linear matter 
power spectrum from 
the halo model is 
compared with other two 
non-linear Δ2 that were 
computed with fitting 
functions from N-body 
simulations 
	
  



The general approach to simulate the space and time evolution of the dark 
matter density field is  
 

 to discretize the system in a set of N particles of mass M (they are not 
microscopic individual DM particles),  
 

 within an evolving comoving volume of at least side L = 200 Mpc/h  (to be 
able to contain large-scale structures),  
 

 and introduce periodic boundary conditions (particles leaving the cube, re-
enter from another side) in order to simulate the force from particles outside the 
cube. 

N-body dark matter simulations 

The most complete way to compute the evolution of the density field is 
numerically, with N-body simulations. 
 
On the resulting map, we can make a direct measurement of the non-linear matter 
power spectrum. In addition we can also find halos, and measure all their 
properties (mass function, density profile, halo bias). 



Initial conditions 
 
The first step is to set the initial conditions:  
 

 Place the particles in spatial initial positions (at the starting redshift of the 
simulation), such that the density (computed from that configuration) is a realization 
of the initial power spectrum.  
 
 
Volume and resolution  
 
The simulations are usually a trade-off between volume and resolution (i.e., size of 
the simulations vs. mass of the particles).  
 
For example, two versions of the Millenium simulations contain 1010 particles in two 
different configurations: 
 

The DM particles are colisionless, they do not interact with each other. 
 

 They evolve because they feel the gravitational field. 



Millennium 
 

Larger volume: 
z=18, L=500 Mpc /h  

 
Lower resolution: 
M=9 x 108 MSun 

Millennium II 
 

Smaller volume: 
z=6, L=100 Mpc /h  

 
Higher resolution: 
M=7 x 106 MSun 

  sides of inner images are (Mpc/h):  
  500, 100, 25, 5 

sides of inner images are (Mpc/h):  
100, 40, 15, 5, 2, 0.5 



Iterative evolution 
 
From the initial configuration, the system can start to evolve iteratively (in time 
steps): 
 
     First compute the potential for that discrete configuration (Poisson equation): 
 
 
 
 
Note that the potential is usual modified at small separation, deviating from 1/r, (by 
introducing a softening length ε - given by a fraction of the mean separation between 
two particles) that prevents strong collisions between the macroscopic particles. 
 

 This size will be a resolution limit for the simulation. 
 
Then compute the acceleration on each particle from the Euler equation: 
 
 
 
Additional sources of acceleration may be included, like gradient of pressure, or the 
effect of a dark energy scalar field.  In that case, we need an additional equation of 
motion to describe the evolution of the scalar field (Klein-Gordon equation). 



 Then repeat for the next time step. 
 
Grid 
 

 Because of the long-range of gravitational interactions, the potential at a 
given location depends on all particles à this standard process of direct 
summation is very slow, order N2 computation. 
 
To be faster, different algorithms were developed, where particles are placed 
on a grid à this enables an order logN computation. 
 

 From the initial conditions, the mass of each particle is distributed among 
the nearest cubic grid points.   
 

 The acceleration field of this grid mass distribution is then computed with 
Fast Fourier Transform: FT of density à leads to the potential  Фk through Poisson 
equation  and acceleration gk = ik Фk  à  acceleration field transformed back to the 
real space and used in the acceleration equation. 
 
A simulation can contain several levels of grids, with different resolutions (adaptive 
mesh). 



There are many different grid techniques. One example is the P3M (particle-particle 
particle-mesh) where:  
 

 - particle-mesh (grid) interactions are used on larger separations and  
 

 - particle-particle interactions are used on smaller separations for better 
spatial resolution (need to subtract these contributions from the Fourier calculation). 
 



Post-processing of N-body dark matter simulations 
 
Non-linear power spectrum  
 
The power spectrum of the resulting density field can be measured in the output 
map.  
 

 It is automatically the non-linear power spectrum. 
 
From the measured non-linear power spectrum  it was possible to develop fitting 
functions that allow us to compute the non-linear power spectrum from the 
linear one. 

Peacock & Dodds 
prescription 

This complicated expression fits the resulting NL dimensionless power spectrum 
from N-body simulations, with a complicated expression written as function of the 
linear dimensionless power spectrum and of a number of functions (that depend on 
the cosmological parameters and were fixed by measurements in the simulations). 

Δ2
NL	
  (kNL)	
  



This is clearly not just a fit of a mathematical function. It is based on a physical 
assumption: stable clustering, 
 

 which assumes that the size rL of a halo in linear theory (containing a 
density ρL) can be related to the true non-linear size rNL  through mass 
conservation: r3

L ρL = r3
NL ρNL  

 
This defines a non-linear scale associated to each linear scale:  

  
kL = kNL [1+ Δ2

NL	
  (kNL)]-1/3 

linear 

P&D (dashed) 

halofit (dotted) 

These and other fitting  functions allow 
us to compute PNL with good precision 
for a range of cosmological parameter 
values without the need to run a new 
simulation for each values of the 
parameters (needed for parameter 
constraints). 

The halofit is an approach that finds the 
halo bias (of the halo model) from N-body 
maps, and produces a PL to PNL function.  



Halo finders 

A halo is a nonlinear peak of the matter density field, with its boundary defined by 
a certain density contrast. 
 
There are different algorithms to identify halos.  
 
A widely  used one is to define a halo as a region around a local peak of density 
such that  ρhalo > 200 ρcr (z) 
 
Another popular method is the Friends-of-Friends algorithm: 
 
It is a purely geometric grouping of particles, where a halo is defined as a 
connected region within a density isosurface (threshold) - not depending on the 
halo being gravitationally bound or not.  
 
The solution is determined by the choice of a single free parameter:  the linking 
length, b  
 

 The algorithm computes the mean distance between particles: 	
  dm  
 Then, it assigns to the same halo all particles such that  |ri - rj| < b dm	
  

	
  



The mass of the various halos can be computed from the number of particles that 
belong to a halo. The volume and number of halos inside a volume can also be 
measured à can measure the halos mass function. 
 

Using a hierarchy of linking lengths, 
we can also detect substructures 
(sub-halos inside a halo),  which 
give origin to (baryonic) satellites. 
 
For example cluster galaxies form 
in sub-halos of a cluster DM halo, 
 while field galaxies form on 
autonomous galaxy halos. Satellite 
galaxies form in substructures of 
galaxy DM halos. 
	
  

The result depends on the choice of the value of b.  The value of b also depends 
on the cosmological model à a model that produces stronger clustering must have 
a larger threshold to define a halo. 
 

 For ΛCDM concordance model, b ~0.1-0.2 



Halo density profile 
 
The halo density profile is found from fitting the halos densities found in the 
simulations.  
 
It is found that the density profile is independent of scale (it is the same for 
halos of all sizes and masses) à it follows a universal form,  
known as the NFW profile  (Navarro, Frenk & White), 
 
 
 It is given by, 
 
 
 
 
 
The density profile introduces two new cosmological parameters :  
 
 
- halo density amplitude ρs 
 
- characteristic radius rs 



(halos at higher z are more compact). 

The mass within a halo of size R is: 

The characteristic scale is related to a third parameter: the halo concentration. 
 
 
 
 
The profile of a halo of size R can alternatively be written using the concentration 
parameter: 

The mean density of a halo is: 



NFW profile: The density goes with 
r -1 at the inner part of the halo and 
r -3 at the outer part. 
 

 à the cusp/core problem of small-scale cosmology 
 
In general, dark matter simulations have a steeper profile (a cusp) while observations 
(e.g. rotation curves of galaxies) have a flatter inner profile (a core).  
 
Simulations with DM+baryons have in general flatter inner profiles due to baryonic 
feedback (SN and AGN gas outflows can change the gravitational potential) 
 
Some DM models can predict flatter inner curves à failure of the ΛCDM description 
on small-scales? 



Semi-analytic models (SAM) for galaxy formation 

The cosmological model sets the initial conditions for galaxy formation. 
 
In particular, the dark matter halos are the cradle of galaxy formation: 

SAM populate dark matter halos with galaxies by considering the baryonic 
physical processes (also known as gastrophysics):  
 
- Gas cooling -  the gas cools down to condense, losing pressure, and falls into 
the center of the halo where it can form stars. Angular momentum conservation 
during the fall produces a disk à spiral galaxies  
 
- Star formation - if the self-gravity of the gas dominates over the gravity of the 
dark matter, it collapses under its own gravity, and forms a baryonic collapsed 
object à star 
 
- Feedback (from stars and AGNs) - the quantity of cold gas available decreases 
by influence of the environment  

density contrast field  à large bias à dark mater halo à small bias à 
astrophysical object (cluster or galaxy) 



These and other physical processes impact the evolution of the four main baryonic 
components of a galaxy, which are : hot gas, cold gas, stars and a  
supermassive black hole.  



The various mechanisms are 
interconnected in a complex way 
 
These mechanisms affect the baryonic 
matter in isolated halos. But the 
merging of halos during the DM 
evolution also has an important impact 
in the baryonic evolution  
 
- Mergers - frequent interactions 
between halos lead to  à elliptical 
galaxies 
 
 
So SAM also need to consider the 
formation history of the dark matter 
halos and their abundance as function 
of redshift: the merger trees 
	
  



Hydrodynamic simulations 
 
Instead of populating the dark matter halos with baryonic matter, it is also possible 
to make N-body simulations from scratch with both dark matter particles and 
baryonic matter particles. 
 
Baryonic particles, besides interacting with the gravitational potential (like dark 
matter particles), also experience several radiative processes: short-range forces 
described by hydrodynamic equations. 
 

 The basic set of equations are: continuity equation, Euler equation 
and the first law of thermodynamics, that are applied to the baryonic fluid, 
which is modelled as an ideal monoatomic gas with pressure p = 2/3 ρ u  
 
 
With similar techniques (than in DM N-body simulations) of defining a mesh, and 
discretizing the differential equations, the evolution of the two types of particles is 
simulated and  
 

 at each position and time step, the properties of the fluid are computed à 
overdensity, temperature, etc. 
 



This evolution, however, does not model the full process.  
 
The hydrodynamic equations also have to be complemented by the various 
astrophysical processes (gastrophysics) that shape the galaxy population: 

Gas cooling ; Interstellar medium; Magnetic fields; Cosmic rays; Star formation; 
Stellar feedback; AGN feedback; Supermassive black holes; Thermal conduction; 
Viscosity; Dust physics 

The result of a hydrodynamic simulation is the evolution map of many 
more quantities than just the density à it allows us to explore: galaxy 
clustering as function of galaxy properties; gas distribution; stellar content 
of galaxies;   



Hydrodynamic simulations also allows us to compute a more correct non-
linear matter power spectrum that includes baryonic feedback: 
 
- SN feedback + radiative cooling (green) 
 
- AGN feedback (red) 

In general: 
 

 heating and gas ejection smooth the density field à decrease of  Pδ 
 

 radiative cooling helps the baryonic collapse à increase of  Pδ 



Relativistic N-body simulations 

Newtonian dark matter N-body simulations are possible because the gravitational 
potential is weak on a wide range of scales. 
 
But it becomes strong for k < kH  
 
 
Relativistic N-body simulations already exist and are useful to: 
 
 - compute structure formation on large scales 
 
 - take into account horizon effects relevant for large-scale interactions  
 
 - compute structure formation in modified gravity models 
 
 - take into account dark energy clustering 
 
 - compute the evolution of other perturbations besides δ and Φ à e.g. tensor 
perturbations (gravitational waves), anisotropic stress potential  



This approach is also based on the evolution of a set of N particles, but the 
particles move along geodesics of the metric.  
 
Then, the distribution of particle properties (density, velocity, anisotropic stress) is 
used to re-compute the energy-momentum tensor projected on a grid.  
 
Then, a new metric is computed, keeping all the 6 degrees-of-freedom of the 
perturbed metric: 

Notice that in the Newtonian limit Bi = 0 (2 dof), hij = 0 (2 dof), and Ψ = Φ (1 dof) 
à in that case there is only 1 metric perturbation (the gravitational potential Φ).  
 
 
The N-body simulations compute the evolution of all 6 metric perturbations.  



Example: resulting power spectra and gravitational waves map in Gevolution  


