5. Bonding

Hydrogen molecule

Schroedinger's equation

$$\begin{split} H\Psi &= i\hbar \frac{\partial \Psi}{\partial t} & \frac{-\hbar^2}{2m} \frac{\partial^2 \Psi(x)}{\partial x^2} + U(x) \Psi(x) = E \Psi(x) \\ \text{Time evolution} & \text{Time independent equation} \end{split}$$

Molecular H_2 ion

Bonding wave function

Energy

Ionic, covalent, van der Waals and metallic bonding

.

Bonding mechanisms

Covalent bonding

Ionic bonding

Van der Waals bonding

When two atoms come within 5 nanometers of each other, there will be a slight interaction between them, thus causing polarity and a slight attraction.

Metallic bonding

Metallic bonding

Aluminum

Magnesium

Titanium

Tungsten

6. Vibraçoes atómicas

Vibrations

Dispersion relation: 1d lattice

N normal modes: 1d lattice

1d lattice with basis of two atoms

1d lattice with basis of two atoms

1d lattice with basis of two atoms: extended zone

3d lattice

3d lattice with basis of two atoms

Brioullin zone

Brioullin zone

FCC path: Γ-X-W-K-Γ-L-U-W-L-K|U-X

[Setyawan & Curtarolo, DOI: 10.1016/j.commatsci.2010.05.010]

3d lattice with basis of two atoms

Crystal momentum

• • • • •

Triple axis neutron spectrometer

7. Termodinâmica de fonões

Number of phonons as a funtion of $x = \beta \hbar \omega$

$$\langle n \rangle \longrightarrow e^{-\beta \hbar \omega}$$

 $\langle E \rangle \longrightarrow \hbar \omega e^{-\beta \hbar \omega} + \frac{1}{2} \hbar \omega ,$

$$\langle n \rangle \longrightarrow \frac{1}{\beta \hbar \omega} = \frac{k_{\rm B} T}{\hbar \omega}$$

Constant frequency surface

FIGURE 8-2 A schematic representation of constant frequency surfaces in reciprocal space. A Brillouin zone is shown and each contour is defined by propagation vectors such that $\omega(\mathbf{q}) = \text{constant}$. Different surfaces are associated with different values of ω .

Density of modes

Models of Einstein and Debye

Models of Einstein and Debye

Models of Einstein and Debye

Model of Debye for various metals

