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The Einstein-Boltzmann equations 
 
 

 



Einstein equations 
 

 scalar perturbations  

We will consider metric scalar perturbations and derive the Einstein equations 
in the Newtonian gauge to linear order 
 
In this case, the perturbed Robertson-Walker metric is: 

Note that there are different sign conventions (+,-) (-,+) (+,+) and different naming 
conventions found in the literature: 
 
For example   

is used in Dodelson  

is used in Liddle & Lyth 
and Baumann  



Einstein tensor: 
 
 
Ricci scalar:  
 
 
Ricci tensor: 
 
 
Connection:  

In order to write the Einstein equations, we need first to compute the following 
quantities: 

given our metric: 
 
 
 
and its inverse: 



The results for all terms are: 

We need first to compute the connections. 
 
For example, for the term 000 we have, 
 



Note the results show a natural separation between the background RW and 
perturbation:  



From this we can compute the Ricci tensor 

(it includes sums over all t,x derivatives and sums of products of two connections) 

Now, computing for example for 00: 

in this case, a term with ρ=0 always cancels out some other term, and so: 

Note: some useful sums are:  



The results for all terms are: 

To compute the Einstein tensor, we also need the Ricci scalar:  

This requires to raise an index. Note that this needs to be done using the full 
metric, we cannot just raise the index of the background and perturbative parts 
separately:   

(i.e., there are cross-terms) 



The results for all terms are: 

(Note: here the results are given for Rµ
ν and not for Rµν, hence the a-2 factors) 

and the Ricci scalar is thus: 



Finally, the Einstein tensor is: 

This is the linearized Einstein tensor for the scalar-perturbed Robertson-
Walker metric in the conformal Newtonian gauge. 
 
It depends on : 

 a(t) and its time derivative, 
  the two metric potentials and their time and spatial derivatives. 
 
Note that the off-diagonal components only have perturbations, while the diagonal 
components have both perturbations and background terms. 



We can now write the Einstein equations  
 
considering the energy-momentum tensor background + perturbations 

Remember: the perturbations are density contrast δ, pressure δp , peculiar 
velocity, anisotropy tensor 
 
 
The velocity 4-vector is    and its norm is -1 
 

 in the background:  
 

 the perturbation defines the peculiar velocity:  
 



Hence, the 4-velocity vector is: 
 
 
Note the 0 component does not introduce a new perturbation because of the 
norm constraint.  
The perturbation is the spatial part vi    
 
-- vi , δ, δp  are 5 components = 3S+2V  
 
(for scalar perturbations, we just consider the scalar perturbation v associated 
with the vector vi à vi = grad(v) ) 
 
 
 
-- the traceless anisotropic stress Πij accounts for the remaining  
5 components = 1S+2V+2T 

(the 3x3 spatial tensor) 



In conclusion, the perturbed part of the energy-momentum tensor is:  

Note that the velocity perturbation does not contribute to the diagonal at linear 
order because it would contribute with a quadratic term vδ. 



We can now write the Einstein equations  
 
showing only linearized perturbations, i.e.,   
 
 - no background zero-order terms present 
 
 - no higher-order terms present à not valid for non-linear evolution 
  



The ij equations can be separated in diagonal and off-diagonal parts, and the full set 
of equations is,  

The equations can also be written in Fourier space: 



In the case of a perfect fluid (Πij = 0) and only scalar fluid perturbations, there are only 
4 independent Einstein equations (00, 0i, ii, ij) since all spatial i are identical. 
 
In this case, the 4 first-order linearized Einstein equations in the Newtonian gauge 
reduce to: 

“Friedmann / Poisson” 

“Raychaudhuri / eq. movement” 

new “velocity” 

new “anisotropy” 

We see that there are 4 fundamental Einstein equations at first-order perturbative 
level, in contrast with only 2 at background level. 
 
For dark matter (no pressure or pressure perturbations) they can be used 
to solve for the 4 unknowns: Φ, Ψ, δ, v   



We can also write separate zeroth-order Einstein equations, i.e., for the 
homogeneous background.  
 
Since Tµν is the sum of background + matter perturbations and only two of the 
Einstein tensor components (G00 and GII) are a sum of background + metric 
perturbations, there are only 2 background Einstein equations. 
 
These are: 

notice that 

i.e., we recover Friedmann and Raychaudhuri equations. 



Let us go through the equations one by one. 
 
00 - the Hamiltonian constraint 
 
This equation relates the Laplacian of the potential with the matter density à it is a 
relativistic Poisson equation. 
 
The two new terms, Ψ’ and Φ, function of the potentials, are relativistic corrections 
to the Newtonian Poisson equation.  
 
The corresponding background equation is the Friedmann equation  
 
à so Friedmann equation is a kind of Poisson equation, relating the density with 
gravity (metric) properties.  
 
In the homogeneous case the metric property is the scale factor and not the 
potential. The potential is a perturbation and does not appear in the homogeneous 
FRW universe. 
 
The scale factor is related to the “potential of the homogeneous universe”, being 
responsible for the redshift (like the potential is responsible for a gravitational 
redshift). The potential has dimensions of velocity square à the Hubble flow. 



 
0i - the momentum constraint 
 
This is the peculiar velocity equation.  
 
 
It has no background counterpart. 
 
 
Combining equations 00 and 0i, we can cancel out the relativistic corrections and 
obtain a Poisson equation for the gauge-invariant Δ 
 
 
 
 
that thus defines the GR meaningful “effective density contrast”. 



 
ii - the pressure constraint (potential evolution equation) 
 
 
This equation involves second-order time derivative of the potential à it is 
an equation of movement of the potential, describing the evolution of the metric 
perturbation.  
 
 
 
 
 
The corresponding background equation is the Raychaudhuri equation à  
it is the equation of movement for the scale factor. 
 



ij - the anisotropy constraint 
 
This equation tells us that the two Bardeen potentials are equal à it is called the 
anisotropy equation.  
 
If there is anisotropic stress, the two potentials are no longer equal à  in GR, a 
perfect fluid always induces a metric with equal potentials.  
 
It has no background counterpart. 
 
 

Let us see a few results of these equations. 



 
This signature is usually parameterized introducing the gravitational slip 
parameter η 
 
 
 
Since there are 2 independent scalar metric perturbations à 2 scalar dof à 2 
gravitational potentials in a relativistic theory of gravitation à there is room for a 
second independent modified gravity signature. 
This is usually parameterized by the mass screening parameter Q, or equivalently 
by an effective gravitational constant G_eff. 
 
This means that G would be different in that theory à it would be equivalent 
to consider that the same value of the potential is created by a different 
value of density, through a modified Poisson equation: 

Equation 4 (ij): anisotropy equation 

A detection of a difference between the potentials  (in the case of a perfect fluid) 
is a possible signature of modified gravity.  

Ψ 



 
Let us start by introducing the definition of sound speed in the equation 
 
 
 
 
 
We see that the right-hand sides of equations 00 and ii only differ by a 
 factor cs

2, i.e. à  00 = ii cs
2 

 
Inserting eq. 00 in  eq. ii, and using  eq. ij (Ψ = Φ) , we obtain an equation of  
motion for Φ: 

Equation 3 (ii): evolution of the potential  Φ 



On small scales  
 
 
 
the evolution of the metric perturbation Φ can be approximated by (in the 
harmonic space) 
 
 
 
i.e., all terms with H are neglected. 
 
 
This is a wave equation à Φ oscillates in time, propagating with a 
velocity given by cs.  
 
This equation confirms that the ratio of the pressure to the density 
perturbations is the velocity of propagation in the fluid. 
 
 
 



On large scales  

the terms with k are neglected 

In the case of a barotropic fluid: p = wρ 
  
In the case of a adiabatic fluid:   

à cs
2 = w  

In this case, the evolution of the potential is given by: 

This second-order differential equation has 2 solutions:   
   
 -- a constant à the potential remains constant in time 

 
 -- a decaying solution  

 
The actual solution Φ (t) depends on the background evolution H(t).  

(since                                   )  



 In the late universe when dark energy becomes important, the dominating 
behaviour is the decaying solution à the potential decreases with time.  
 
 
That evolution can be used to test dark energy models à when CMB 
photons cross an evolving LSS potential they are blue-shifted (gain energy  
when entering) and then redshifted (lose energy when leaving).  
 
The energy balance is not zero, they gain energy if the potentials decay à 
their temperature increases with respect to their original temperature. 
 
 



The effect is larger on large scales (because photons take longer to cross the 
larger potentials) à it is measurable as a change in the amplitude of the 
CMB power spectrum at large scales.  

It is a test of dark energy (or also a 
signature of modified gravity), called 
the Integrated Sachs-Wolfe effect. 



Taking now the 0i equation, and inserting the constant potential solution, and 
the Friedmann equation, the equation for the velocity becomes, 
 
 
 
 
 
In the matter-dominated epoch, the conformal Hubble function  
decreases as a-1/2 à the peculiar velocity grows with a1/2  as dark matter 
clusters in the matter-dominated epoch. 
 

Equation 2 (0i): evolution of the peculiar velocity  v 



 
 
Inserting the constant potential solution in the 00 equation (Poisson),  
and using Friedmann’s equation, the equation for the density becomes, 

Equation 1 (00): evolution of the density contrast  δ 

Small-scales à the k2 term dominates.   
 
In the matter-dominated epoch, the conformal Hubble function decreases as a-1/2 

à the density contrast grows with a   
 
 
Large-scales à the constant term dominates.  
 
δ does not grow.  
However, on large scales we need to consider the comoving gauge-
invariant density contrast Δ. This is the one that enters the relativistic Poisson 
equation and is the quantity that has physical meaning in a general relativistic 
covariant framework. 
 



From this Poisson equation, we see that: 
 
- radiation epoch à Δ ~ a-2 a4 ~a2 

- matter epoch à Δ ~ a-2 a3 ~a1 
 
 

This result can also be found with the mini-universe approach. 

Now: the Einstein equations do not contain differential equations for the 
source perturbations, but only for the metric perturbations. 
 
However, observations measure parameters of the source (not of the metric 
potential) à it would be more convenient to study the evolution of δ from a 
differential equation for δ, defining initial conditions (cosmological 
parameters) for δ. 



Energy conservation equations 

Like it is done for the background, we can obtain more equations by considering the 
energy conservation of the energy-momentum tensor: 
 
 
 
i.e.,  
 
 
 
At first-order we obtain 2 conservation equations (instead of a single one as was the 
case for the background) 
 
 
 
 



ν = 0 
 
 
 
 
 
This case has a time derivative of T00 and a spatial derivative of T0i ,  
plus dependence on the potential through the metric (covariant derivative). 
 
 
Inserting the energy-momentum components and the connection coefficients, the 
result is an energy conservation equation. 
 
Collecting the pure background terms, the result is the zero-order continuity 
equation, that accounts for the energy conservation in the expanding background: 
 
 



The remaining terms are the first-order relativistic continuity equation: 

We can compare it with the Newtonian first-order (linearized) comoving continuity 
equation (for dark matter):  

For dark matter (w=0, cs
2 = 0), the only difference (i.e. the relativistic correction) is 

the term with the derivative of the potential, that is negligible for slow-varying or 
constant potentials. 

note that the divergence of the peculiar velocity is usually denoted  



ν = 1 
 
 
 
This case has a time derivative of T0i and spatial derivatives, plus dependence on 
the potential through the metric (covariant derivative). 
 
At background level there is no T0i term and thus there is just one conservation 
equation.  
 
At perturbative level we get a momentum conservation equation: 
 

This is also a fundamental equation in fluid dynamics - the Euler equation -  it is the 
(acceleration) equation of movement of a Newtonian fluid.  



These two fluid evolution equations are not independent of the Einstein 
equations, but they can be used instead of the two Einstein evolution 
equations, or in combination with them. 
 
They have the interest of introducing explicitly differential equations for the 
density contrast and peculiar velocity. 

It tells us that the rate of change of velocity depends on the background expansion, 
and of the gradients of pressure and gravitational potential (“forces”). 
 
Like we saw, it has no counterpart in homogeneous cosmology.  
 

We can compare it with the Newtonian first-order (linearized) comoving Euler 
equation (for dark matter):  

For dark matter (w=0, cs
2 = 0, w’=0), the Newtonian and relativistic equations are 

identical. 



Up to now, the results we found in the relativistic approach are not very 
different from the ones in the Newtonian approach.   
 
The main differences were: 
 
-  the Friedmann equation appears as a Poisson equation (no need to introduce 

it by hand)  

-  the Raychadhuri equation appears as an equation for the evolution of the 
potential (was not part of the set of Newtonian equations) 

-  the relativistic terms of those equations contain new information that allows us  
to compute the evolution on large scales, and define a gauge-invariant 
density contrast 

-  the continuity and Euler equation appear naturally as before 

 



However, the energy-momentum fluid description is not always valid. 
 
Beyond background level, radiation is not well described by a cosmological 
fluid approach. 
 
The perturbations in the plasma density cannot be described by a coherent fluid with 
a well defined velocity à various particle fluxes intersect in the global fluid (multi-
streams).   
 
Even for dark matter, in the radiation epoch, the evolution is not accurately 
computed by using an energy-momentum fluid in the Einstein equations. 
 
 
The energy-momentum conservation must be studied at the level of particles and 
not at fluid level, using a kinetic approach (statistical physics) à a transport 
equation that describes the evolution of a distribution function f(x,p,t) of the 
cosmological species in the phase space. 
 

Perturbed Boltzmann equation 



The evolution of a distribution function f(x,p,t) is described by the Boltzmann 
equation:  

or the Vlasov equation if the total derivative of f is conserved (the collisionless 
case): 

The perturbations - density contrast = n(1) / n(0); and velocity v - are moments 
of the energy-momentum distribution.  
Remember that the α- order moment of a distribution of a variable, is the integral of 
the variable over its space weighted by its distribution function.  
 

(the normalization of f) (the weighted mean of the velocity) 



Since the Boltzmann equation describes the evolution of the distribution f in 
the phase space à the moments of this equation will be equations that 
describe the evolution of the moments of particles that follows that 
distribution à i.e. equations for the evolution of energy density and 
momentum à i.e. conservation equations. 
 
This description implies a hierarchy of equations, corresponding to the moments of 
the Boltzmann equation.  
 
In particular, for cold dark matter, the energy and momentum of particles of mass 
m in the perturbed scalar RW metric, are written as 

(Notation: here the naming of the potentials is inverted) 

The collisionless Boltzmann equation is then: 



The zeroth-order moment of the collisionless CDM Boltzmann equation for dark 
matter is found by computing the integral of each term :  

Integrating all terms, the result is: 

this is the continuity equation 

The first-order moment of the collisionless CDM Boltzmann equation is its 
integration in momentum space with its terms multiplied by 
 
The result is: 

this is the Euler equation 



For cold dark matter, this approach just provided an alternative method that led to 
the same conservation equations (alternative to using the conservation of the Tab 
tensor).  
 
However, for perturbations in the radiation component this approach is really 
needed, since they cannot be described by a fluid.  
 
 
It is the correct procedure to compute the density perturbations in the 
radiation-baryonic plasma (needed to compute the CMB power spectrum) or 
the velocity radiation perturbations (needed to compute dark matter 
perturbations in multi-fluid coupled equations)  
 
 
For example for photons, we need to consider the Bose-Einstein distribution 
function: 
 
 
 

where the temperature fluctuations are 
 



The Boltzmann equation leads to the differential equation for the evolution of 
the temperature fluctuations:  

For baryons, this approach is also needed, but since they are massive particles, the 
distribution function is different, as well as the relation between energy and 
momentum. 
 
This allows us to derive the full set of photon-baryon coupled equations: 
(written in Fourier space) 

The public codes (CAMB, CLASS) that compute the linear evolution of cosmological 
structures for all cosmological species and for a large range of scales and redshift, 
implement this approach à they solve the system of Einstein-Boltzmann differential 
equations. 



There are 4 V perturbations in the metric and 2 V components of the 
transformation vector ξ (the 2 vector components       ) à the choice of gauge 
fixes 2 V components of the metric.  
 
This can be done, for example, by setting the vector part of h to 0,  
(in addition to fixing 2 scalar components, for example w = h = 0) 
 
There remains 2 V components of the metric (the vector parts of w).  
 
In the Einstein equations, there are 3 equations that involve the vector metric 
perturbations and the vector source perturbations.  

Vector perturbations 

Up to know we focused on scalar perturbations. 
 
However, remember that there are also vector and tensor perturbations, and a 
possible total of 10 Einstein equations. 

Other types of perturbations 



The solution, from the first equation is: 

This shows that the vector perturbations decay with time. 
 
The vector part of initial velocity perturbations eventually disappear and they are 
not relevant in the standard cosmological model. 

Those 3 equations are: 



There are 2 T perturbations in the metric and no T components of the transformation 
vector ξ à tensor perturbations are gauge-invariant by construction à no 
gauge fixing needed. 
 
Even if the energy-momentum tensor has no tensor part (no anisotropic stress) there 
exists still one equation in the Einstein - energy conservation system that involves 
only tensor metric perturbations 
 
(in fact 2 equations, since there are 2 T components) à these 2 components may 
also be written as a polarization vector (a polar vector). 
 
 
The equations are: 
 
 
 
 
This is a second-order differential equation in time and space: a wave equation, also 
containing a first-order derivative term (a friction term, known as the Hubble drag). 

Tensor perturbations 



The solution is: 
 
 
 
This means that the tensor perturbations evolve in time and space in a coherent 
way, as a propagating wave. 
 
 
Even with no sources, initial tensor metric perturbations do not vanish and 
propagate as a wave.  
We can say it is an intrinsic property of GR à these are the gravitational waves. 
 
 
It seems a more fundamental property than gravity being attractive, because 
attraction depends on the source à with no initial sources (δ), there would be 
no structure formation, but there would still exist gravitational waves.   
 
 
The amplitude of the wave does not remain constant, it decreases in time 
due to the Hubble drag term. 



Remember that inflation sets the initial conditions for scalar and tensor metric 
perturbations: 
 
For scalar perturbations à sets the slope of the primordial power spectrum of the 
curvature potential  (the scalar index ns) à sets the slope of the primordial matter 
power spectrum (through Poisson equation). 
 
For tensor perturbations à sets the slope of the primordial power spectrum of 
tensor perturbations  (the tensor index nt) à no equivalence in a source power 
spectrum. 
 
 
These are the primordial gravitational waves. 
 
Local interactions of strong gravity can produce secondary gravitational waves 
à produced by periodic movement of compact objects: black holes, neutron stars 
binaries, etc.  
(These are the ones that have been detected, not related to cosmology). 



Observationally, there are two main signatures of (cosmological) primordial 
gravitational waves that are being explored: 
 
 - The metric at a location changes as the wave passes à produces a periodical 
change in the size (or distance) of objects 
 
 - GW polarize the CMB photons à could be detected in the CMB polarization 
power spectra. 
 
 
Being a fundamental property of gravitation, GW can also be used to test modified 
gravity. Some theories of gravity may have a different number of tensor modes à 
different types of polarization in their gravitational waves. 
 


