8. Estados electrónicos

Overlap of atomic states

Bands

Electronic energy along a line of atoms

Bloch's theorem

we can rewrite the Bloch theorem equation $\psi(x+a) = \exp(ika)\psi(x)$ alternative form

 $\psi(x) = u(x)\exp(ikx)$

where u(x) is periodic with the lattice periodicity.

Concept of the Bloch functions. We can think of the exp(ikx) as being an example of an "envelope" function that multiplies the unit cell function u(x)

Bloch function

Bloch functions

Bands of copper in the 100 direction

Band overlap

Recall: Covalent Bonding

Bonding and anti-bonding states & energies

Many atoms: bands

Exercise: tight binding model in 1d

Simon, S. H. (2013). The Oxford solid state basics. Oxford, UK: Oxford Univ. Press.

Free electron bands in 1d

Bragg reflection of free electrons

Band gaps of nearly free electrons in 1d

Nearly free electron bands in 1d

FIGURE 7-7 Energy as a function of propagation vector magnitude for nearly free electrons. The propagation vector is taken to be parallel to reciprocal lattice vector G_1 , which is bisected by a Brillouin zone boundary. The curves are similar to those of Fig. 7-6b but gaps occur at $\mathbf{k} = \pm \frac{1}{2}G_1$. The gap width depends on the Fourier component $U(G_1)$ of the potential energy function.

Brillouin zones in 2d

Nearly free electron bands in 2d

Free electron bands in 3d: Al

Nearly free electron bands In 3d: Al

Bands of potassium in 3 directions

FIGURE 7-8 Electron band structure of potassium for energies near the 4s atomic level: (a) **k** in the [100] direction; (b) **k** in the [110] direction; and (c) **k** in the [111] direction. Some curves are incomplete. The bands shown are quite similar in form to those predicted by the nearly free electron model. (From F. S. Ham, *Phys. Rev.* **128**:82, 1962. Used with permission.)

Bands of silicon in 3 directions

FIGURE 7-9 Electron band structure of crystalline silicon for energies near the 3s and 3p atomic levels: (a) k in the [100] direction; (b) k in the [110] direction; and (c) k in the [111] direction. Bands below E = 0 are valence bands and are associated with bonding. Higher bands are conduction bands and are important for the electrical properties of silicon. A gap exists between the valence and conduction bands. (From A. Zunger and M. L. Cohen, *Phys. Rev.* **B** 20:4082, 1979. Used with permission.)

9. Termodinâmica de electrões

Fermi level

Density of states

Fermi surface of free electrons in 2d (square)

Fermi surface of nearly free electrons in 2d (square)

BZ of the square lattice: electrons & holes

BZ of the rectangular lattice: electrons & holes

BZ of the face centred rectangular lattice: electrons & holes

BZ of the hexagonal lattice: electrons & holes

BZ of the oblique lattice: electrons & holes

Fermi surface of alkali (bcc) and noble (fcc) metals of valence 1

Fermi surface of Cu (fcc valence 1)

Fermi surface in 3d of Al (fcc valence 3)

Fcc lattice

Bcc lattice

Hexagonal lattice

3rd & 4th BANDS

5th & 6th BANDS

VALENCE I

VALENCE 3

Fermi-Dirac distribution

Electronic specific heat

$$C_{electrons} = \frac{\pi^2 N_A k^2 T}{2E_F} mole^{-1}$$

Specific heat of solids

