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Overlap of atomic states
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Electronic energy along a line of atoms
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Bloch’s theorem

we can rewrite the Bloch theoremequation (2 + a) = exp(ika)v(z)alternative form
U (@) = u(xexp (ikr)

where u(x) is periodic with the lattice periodicity.

envelope /—\\_

unit cell function N

Bloch function

Conceptofthe Bloch functions. We can think of the exp(ikx) as being an example of an “envelope”
functionthat multiplies the unit cell function u(x)



Bloch function
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Bloch functions
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Bands of copper in the 100 direction




Band overlap
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Bonding and anti-bonding states & energies
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Many atoms: bands

AE




&+ 2t

go+ t

&p 1

go—t

&p— 2t

Exercise: tight binding model in 1d

Tight-Binding Model, N=23,a=2

Tight-Binding Model, N =23,a=2

g+ 2t

Eo+ 1

Eo—t

—— E(k) =€ — 2tcos(ka)
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® Eigenvalues of H

—— FE(k) =&p — 2tcos(ka)
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Simon, S. H. (2013). The Oxford solid state basics. Oxford, UK: Oxford Univ. Press.
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Free electron bands in 1d
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Bragg reflection of free electrons
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Free
electron
theory

Band gaps of nearly free electrons in 1d
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Nearly free electron bands in 1d

FIGURE 7-7 Energy as a function of propa-
gation vector magnitude for nearly free elec-
trons. The propagation vector is taken to be
parallel to reciprocal lattice vector G;, which
is bisected by a Brillouin zone boundary. The
curves are similar to those of Fig. 7-6b but gaps
-1|G,| 0 12|G,| occur at k = *3G,. The gap width depends

on the Fourier component U(G,) of the po-

k tential energy function.
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Brillouin zones in 2d
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Nearly free electron bands in 2d




Free electron bands in 3d: Al
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Nearly free electron bands In 3d: Al
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Bands of potassium in 3 directions

Energy (eV)
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FIGURE 7-8 Electron band structure of potassium for energies near the 4s atomic level: (a) k
in the [100] direction; (b) k in the [110] direction; and (c) k in the [111] direction. Some curves
are incomplete. The bands shown are quite similar in form to those predicted by the nearly
free electron model. (From F. S. Ham, Phys. Rev. 128:82, 1962. Used with permission.)



Bands of silicon in 3 directions
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FIGURE 7-9 Electron band structure of crystalline silicon for energies near the 3s and 3p
atomic levels: (a) k in the [100] direction; (b) k in the [110] direction; and (c) k in the [111]
direction. Bands below E = 0 are valence bands and are associated with bonding. Higher bands
are conduction bands and are important for the electrical properties of silicon. A gap exists
between the valence and conduction bands. (From A. Zunger and M. L. Cohen, Phys. Rev. B
20:4082, 1979. Used with permission.)
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Fermi level

- w

.

.

.

.
v




Density of states
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Fermi surface of free electrons in 2d (square)
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Fermi surface of nearly free electrons in 20

(square)
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BZ of the square lattice: electrons & holes
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BZ of the rectangular lattice: electrons &
holes



BZ of the face centred rectangular lattice:
electrons & holes
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BZ of the hexagonal lattice: electrons & holes
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BZ of the oblique lattice: electrons & holes
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Fermi surface of alkali (bcc) and noble (fcc)
metals of valence 1




Fermi surface of Cu (fcc valence 1




Fermi surface in 3d of Al (fcc valence 3
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4™ BAND
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5th & 6th BANDS

3rd & 4th BANDS
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Fermi-Dirac distribution
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Electronic specific heat
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Specific heat of solids

2
10° |
Law of Dulong and Petit
"_ """""""""""" -
. o
1} S"'an «" Approaches
= specific Dulong-Petit
5 [ heat at high temp
€ o
¥ 10
<>
s T Low temperature
10 T2 behavior matches
Debye model
'6 1 1 1 1 1 3§ 1 1 1
10
10 10 100 10° 10’

T3 (K3)

10 -

Copper
specific C =aT?
\
hoat matches
Debye

Departs from Debye

model at low temp
where electron specific
heat contributes.

T3 (K3)

after Rohlf



—o—-K —o-Al —-Cu

i\

©c © o©Oo o o o o o o o
S 0~ OO T N0 N -

(M/10w/rw) yeay 213199dg 21U01399|3

Electronic specific heat of metals

—-L

25 35 45

Temperature(K)

15



