Probes of Structure Formation

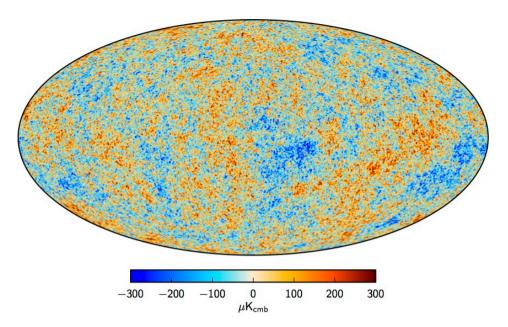
Cosmic Microwave Background

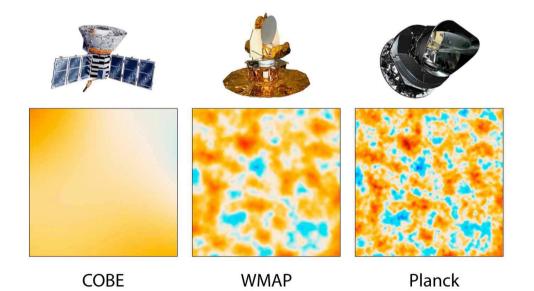
Cosmic Microwave Background

Observationally → the CMB power

spectrum (cosmological function) is estimated from the observed correlation function of the temperature anisotropies δ_T (observable)

Theoretically → need to compute the temperature power spectrum from the plama perturbations





$$\delta_b/r \rightarrow \delta_T$$

The observed δ_T is an unbiased tracer of δ_b/r

CMB anisotropies: estimator

We want to estimate the CMB two-point angular function C_I from the observed map of CMB temperature contrast

Note that direct measurements of a power spectrum from a map, $<\delta_k \delta_k >$, cannot be directly compared to the theoretical predicted power spectrum.

This is because "**experimental complications**" such as finite resolution of the instruments (**PSF**, **beam**), or incomplete coverage of the sky (**masks**), or observing window functions, **bias the measured power spectrum**.

The way to proceed is to derive an expression (function of the measured power spectrum) that gives a power spectrum as close as possible to the true one \rightarrow i.e., **unbiased** and with **high S/N**.

This expression is called an estimator of the true (the theoretical) power spectrum from the measured one.

We already saw some examples of estimators:

- The distance modulus estimator

In this case there are "**experimental complications**", such as the observing filter function (that requires the **K-correction**), or the flux-limited observations (that introduces the **Malmquist bias**) and "**astrophysical complications**", such as the non-universality of the SNe luminosity (that requires to shift the light-curves and the introduction of a magnitude response model with **nuisance parameters**).

- The galaxy power spectrum estimator

In this case, there are "**experimental complications**" like the fact that the measurements are made on discrete positions (that requires to subtract the shot noise to the measurement), and "**astrophysical complications**", such as the fact that galaxies form on dark matter halos, which are a biased representation of the dark matter density field (that requires the introduction of a bias model with **nuisance parameters**).

In the case of estimating the true CMB C_1 from the data, we have to deal with effects introduced by the finite resolution of the instrument (the presence of a **beam**) and of **noise** in the data.

On each direction **n** on the sky there is a value of δT - the true (**theoretical**) "temperature overdensity" (usually denoted by Θ in the literature and not δT)

The measured value (denoted Δ) $\Delta = (T - T_0)/T_0$

of the **clean map** in a direction (pixel) **n** is given by

$$\Delta(\hat{\boldsymbol{n}}) = \int d\Omega' \Theta(\hat{\boldsymbol{n}}') B(\hat{\boldsymbol{n}}, \hat{\boldsymbol{n}}') + \eta(\hat{\boldsymbol{n}})$$

This means that due to the finite angular resolution of the detector there is a **smearing** of the signal (like a **point-spread-function** in optical telescopes), described by the function B.

In a radio telescope this is called the **beam**.

The effect of the beam is a convolution in real space.

There is also noise $\eta(\hat{n})$ affecting the measurement.

The full-sky transform of the measured δT in **spherical harmonics** is:

$$a_{lm}^{\rm obs} = \int d\Omega Y_{lm}^*(\hat{\boldsymbol{n}}) \Delta(\hat{\boldsymbol{n}}).$$

and so, it involves the transforms of the beam and of the noise:

$$a_{lm}^{\text{obs}} = \sum_{l'm'} B_{lm,l'm'} a_{l'm'} + \eta_{lm},$$
true a_{lm}

the beam transform is a 2-pt quantity because it connects two positions

For a constant and isotropic beam, e.g.: $B_l = \exp(-l^2 \theta_{\text{beam}}^2/2)$

the measured a_{Im} simplifies to:

$$a_{lm}^{\rm obs} = a_{lm} B_l + \eta_{lm}$$

and hence depends on the **power spectrum of the bean** B_1 and the **power spectrum of the noise**

$$\langle \eta_{lm} \eta^*_{l'm'} \rangle = N(l) \delta_{ll'} \delta_{mm'}$$

In real space, the value of δT in a location is the convolution of the true δT with the beam, plus the noise at that location.

But in harmonic space we lose the one-to-one local relation. So, the **estimator of** the true CMB power spectrum $|a_{lm}^2|$ is not simply found by inverting

$$a_{lm}^{\rm obs} = a_{lm} B_l + \eta_{lm}$$

It is found with a likelihood procedure:

what is the probability of getting the data a_{Im}^{obs} given the true a_{Im}

Assuming a Gaussian distribution, this probability is:

$$P(a_{lm}^{\text{obs}}|a_{lm}) = \frac{1}{\sqrt{2\pi N(l)}} \exp\left[-\frac{1}{2N(l)}|a_{lm}^{\text{obs}} - B_l a_{lm}|^2\right]$$

(assuming the noise has zero mean, and it contributes only to the variance)

After an analytical marginalization over the true a_{lm},

$$\mathcal{L} \equiv P\left(\{a_{lm}^{\text{obs}}\}|C(l)\right) = \left(2\pi \left[C(l)B_{l}^{2} + N(l)\right]\right)^{-(2l+1)/2} \exp\left\{-\frac{1}{2}\sum_{m=-l}^{l} \frac{\left|a_{lm}^{\text{obs}}\right|^{2}}{C(l)B_{l}^{2} + N(l)}\right\}$$

and maximizing the likelihood

$$\frac{d\ln\mathcal{L}}{dC(l)} = 0$$

we can derive the **C**_I estimator:

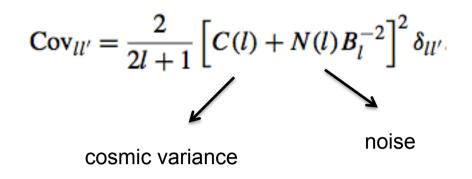
$$\hat{C}(l) = B_l^{-2} \left(\frac{1}{2l+1} \sum_{m=-l}^{l} \left| a_{lm}^{\text{obs}} \right|^2 - N(l) \right)$$

So, from the map we need to:

- measure δT,
- compute its harmonic transform a_{lm},
- compute the corresponding power spectrum,
- sum over m,
- subtract the Noise power spectrum,
- divide by the Beam power spectrum squared.

This is the maximum likelihood estimator of the true CMB power spectrum.

Its **variance** is given by:



It is a diagonal matrix (independent modes)

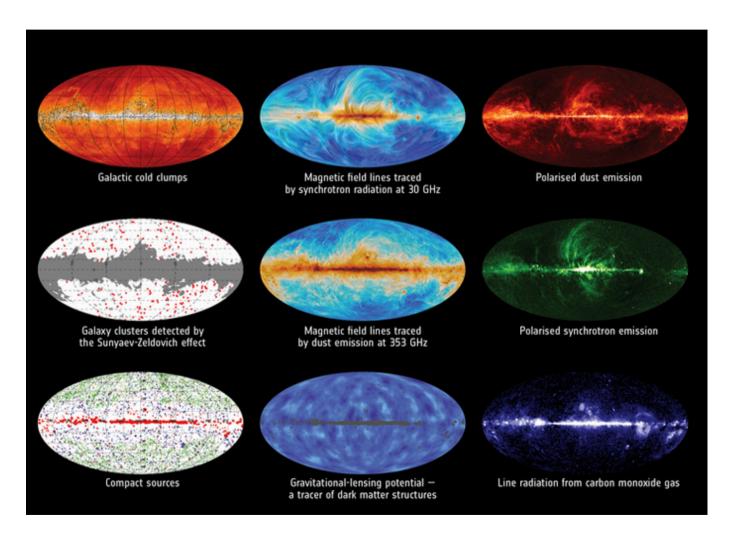
It depends on:

the C₁ itself (cosmic variance term) \rightarrow dominates on large scales

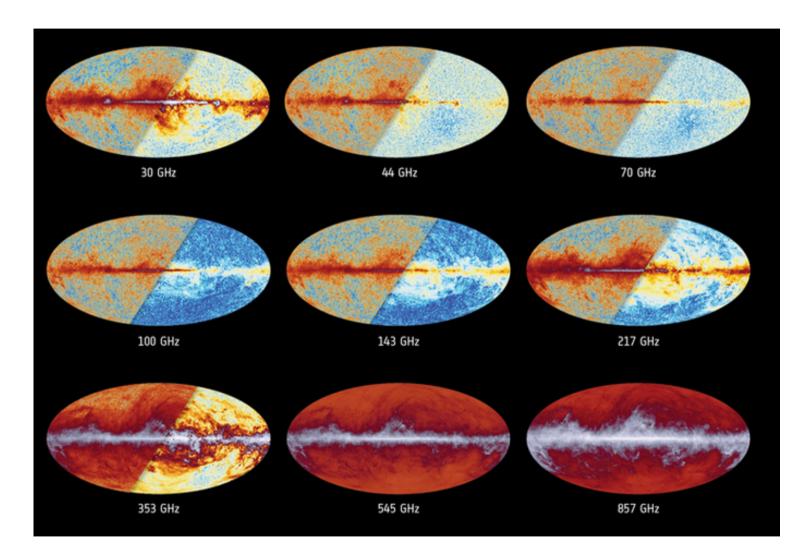
the noise amplified by the inverse beam (noise term) \rightarrow dominates on small scales, because the transform of the beam goes to zero on small scales

All these operations are performed on **clean maps**, i.e :

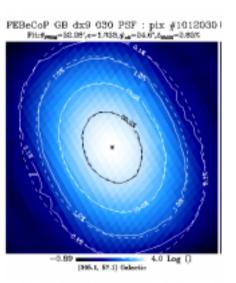
 after subtracting all astrophysical contaminants (biases) from each observed map



Then all the power spectrum is estimated in each of the observed maps (observations at different frequencies)



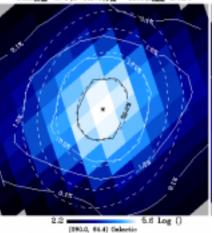
Beam and Noise are different for each map



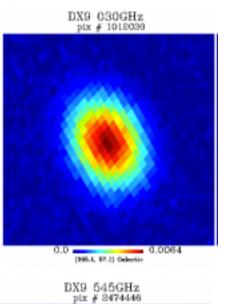
Beam profile

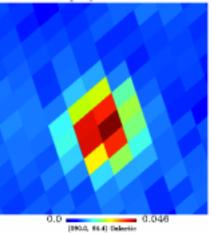
30 GHz

eCoP BS_Mars12 dx9 545 PSF : pix #2474 Fits_wa_=4.76',c=1.275,f_s=-16.2',A_mm=3.73%



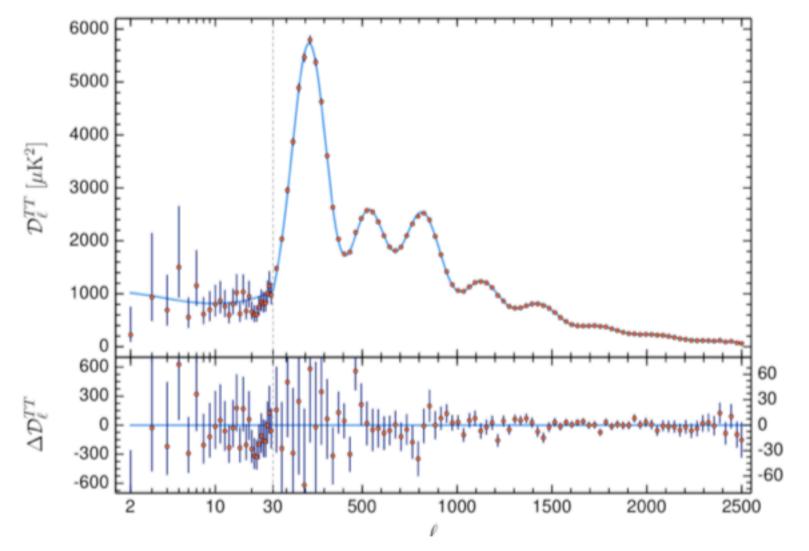
Compact source





545 GHz

Finally, the **Planck 2018** estimated dimensionless power spectrum of temperature anisotropies (combined from the measurements on the various maps) looks like this:



(datapoints, error bars, ACDM best-fit)