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Cosmic Microwave Background  

δ_b/r à δ_T   

The observed δ_T is an  
unbiased tracer of δ_b/r 
 

Observationally à the CMB power 
spectrum (cosmological function) is 
estimated from the observed 
correlation function of the temperature 
anisotropies δT (observable) 

 Theoretically à need to compute the 
temperature power spectrum from the 
plama perturbations 



Note that direct measurements of a power spectrum from a map,  <δk δk> , 
cannot be directly compared to the theoretical predicted power spectrum.  
 
This is because “experimental complications" such as finite resolution of the 
instruments (PSF, beam), or incomplete coverage of the sky (masks), or 
observing window functions, bias the measured power spectrum.  
 
The way to proceed is to derive an expression (function of the measured 
power spectrum) that gives a power spectrum as close as possible to the true 
one à i.e., unbiased and with high S/N.  
 
This expression is called an estimator of the true (the theoretical) power 
spectrum from the measured one.  

CMB anisotropies: estimator 

We want to estimate the CMB two-point angular function Cl from the observed 
map of CMB temperature contrast 



We already saw some examples of estimators: 
 
- The distance modulus estimator 
 
In this case there are “experimental complications” , such as the observing filter 
function (that requires the K-correction) , or the flux-limited observations (that 
introduces the Malmquist bias) and “astrophysical complications”, such as the 
non-universality of the SNe luminosity (that requires to shift the light-curves and the 
introduction of a magnitude response model with nuisance parameters). 
 
 
- The galaxy power spectrum estimator 
 
In this case, there are ”experimental complications” like the fact that the 
measurements are made on discrete positions (that requires to subtract the shot 
noise to the measurement), and “astrophysical complications”, such as the fact 
that galaxies form on dark matter halos, which are a biased representation of the 
dark matter density field (that requires the introduction of a bias model with 
nuisance parameters). 



On each direction n on the sky there is a value of δT - the true (theoretical) 
“temperature overdensity” (usually denoted by     in the literature and not δT) 
 
The measured value (denoted Δ)  
  
of the clean map in a direction (pixel) n is given by 

This means that due to the finite angular resolution of the detector there is a 
smearing of the signal (like a point-spread-function in optical telescopes), 
described by the function B. 
 In a radio telescope this is called the beam.  
The effect of the beam is a convolution in real space. 
 
There is also noise            affecting the measurement.  

In the case of estimating the true CMB Cl from the data, we have to deal with 
effects introduced by the finite resolution of the instrument (the presence of a 
beam) and of noise in the data. 



The full-sky transform of the measured δT in spherical harmonics is: 
 

and so, it involves the transforms of the beam and of the noise: 

true alm 
the beam transform is a 2-pt quantity 
because it connects two positions 

For a constant and isotropic beam, e.g.:  
 
the measured alm simplifies to: 
 
 
and hence depends on the power spectrum of the bean Bl and the power 
spectrum of the noise 
 



In real space, the value of δT in a location is the convolution of the true δT with 
the beam, plus the noise at that location. 
 
But in harmonic space we lose the one-to-one local relation. So, the estimator of 
the true CMB power spectrum |alm

2|  is not simply found by inverting  

It is found with a likelihood procedure:  
 

 what is the probability of getting the data alm
obs  given the true alm  

Assuming a Gaussian distribution, this probability is: 

(assuming the noise has zero mean, and it contributes only to the variance) 



After an analytical marginalization over the true alm,  

and maximizing the likelihood    
 0 

we can derive the Cl estimator: 



So, from the map we need to: 
 
•  measure δT,  

•  compute its harmonic transform alm,  

•  compute the corresponding power spectrum,  

•  sum over m,  

•  subtract the Noise power spectrum,  

•  divide by the Beam power spectrum squared. 
 
 
 
This is the maximum likelihood estimator of the true CMB power spectrum. 



Its variance is given by: 

It is a diagonal matrix (independent modes)  
 
It depends on: 
 

  the Cl itself (cosmic variance term) à dominates on large scales  
 

 the noise amplified by the inverse beam (noise term) à dominates on 
small scales, because the transform of the beam goes to zero on small scales  

cosmic variance 
noise 



All these operations are performed on clean maps, i.e : 
 
•   after subtracting all astrophysical contaminants (biases) from each observed 

map 



Then all the power spectrum is estimated in each of the observed maps 
(observations at different frequencies) 



Beam and Noise are different for each map 

Beam profile Compact source 

30 GHz 

545 GHz 



Finally, the Planck 2018  estimated dimensionless power spectrum of temperature 
anisotropies  (combined from the measurements on the various maps)  looks like this: 
 

(datapoints,  error bars,  ΛCDM best-fit) 


