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δ_dm à shear γ 

Weak Lensing 

Observationally à the gravitational 
lensing distortions shear power 
spectrum (measured cosmological 
function) is estimated from the observed 
correlation function of galaxies ellipticities 
(observable) 

Theoretically à need to compute the 
shear power spectrum from the 
gravitational potential power spectrum 
that in turn is related with the matter 
power spectrum  

It goes from 2D galaxy ellipticities à to 2D 
correlation function of shear à to 2D 
correlation function of dark matter 



We are interested in a specific gravitational lensing system: cosmological weak 
lensing, i.e.,  
 
the weak gravitational lensing produced by the large-scale structure of dark 
matter (the lens) in the light emitted by distant galaxies (the sources) 

Weak lensing: theoretical predictions 

It is a direct tracer of the dark matter distribution 



We already derived the deflection using the principle of Fermat, and found that the 
deflection is the gradient of the lens potential in the plane orthogonal to the 
tangent to the path. 
  

We want to derive the lens equation for this system.  
 
For this we need to consider propagation of light in the inhomogeneous 
universe 
 
 
 
 
We assume that a bundle of light rays emitted from a galaxy travels through the 
homogeneous spacetime and is deflected on a series of lens planes where the LSS 
are placed. 

Light propagation in the inhomogeneous universe 



On the other hand, when travelling through the homogeneous universe there is 
no deflection à the separation between two light rays of the bundle is just the 
trivial separation x between two light rays:  
 
 
 
 
It is useful to write this simple result as the solution of a differential equation for 
the evolution of the comoving transverse separation: 
 
 
 
 
We can now add the local deflection solution (caused by the gravitational 
potentials) to this equation, to get the complete equation for the evolution of the 
comoving transverse separation   
(defined with respect to a reference light ray at x = 0): 

note it has a homogenous and an inhomogenous term 



The lens equation is the solution of the differential equation of the evolution of 
the comoving transverse separation.  
 
The general solution of an inhomogeneous differential equation is a linear 
combination of the homogeneous solution and the convolution of the equation 
Green’s function with the inhomogeneous term.  
 
So: 
 
 
where the Green’s function of our differential equation is  

The solution is thus: 

Lens equation and the optical scalars 



The second term of the equation is thus the solution for the deflection as 
function of the potential. 

Note that the total deflection is the 
integral over all local deflections (the 
gradients of the various local potentials), 
each one multiplied by the ‘weight’ that 
appeared naturally in the solution (the 
ratio of distances i.e. of fK functions) à 
this is known as the lensing efficiency 
factor: 

This factor shows that the lens at halfway of 
the trajectory is the one that contributes 
the most for the total deflection. 

Note that this is essentially a deviation to the usual triangle  x = DA θ  (or x = fK θ ) 
(valid for the homogeneous spacetime). 
 
In the language of the lens equation this triangle would be β = θ, i.e. a case with zero 
deflection.  
 
When there are perturbations  there is deflection and the ‘triangle’ changes to  
 β = θ + α 



Also note that the solution is recursive, because the separation x depends on the 
potential at the position x. 
 
To get rid of this difficulty, we can Taylor expand the solution around the 
unperturbed trajectory (the one that lies on the positions x = fK θ ).  
 
 
 
 
 
This results in: 

Born approximation 
(the same that is 
done in quantum 
mechanics 
scattering) 
+ 
higher-order terms 

Keeping only the solution in the Born approximation, we can insert the amplification 
 
 matrix definition                                 to get the optical scalars: 



where we defined the  
effective lensing potential: 
 
 
We recover the result that the optical scalar fields are second-order derivatives 
of the potential: 

convergence 

shear 

rotation 



We see that the convergence field is a weighted integral of the density contrast 
field.  
 
This also means that the power spectrum of the convergence can be related 
to the power spectrum of dark matter. 

Lensing produces no Rotation. This is a consequence of the fact that a 
gravitational field is a gradient field (of a potential) à its rotational is zero. 
 
Shear γ has two components, two terms in the optical matrix à it is a polar vector 
 
Convergence k is a scalar and is the Laplacian of the potential à it is related with 
the mass of the lens through the Poisson equation: 



The convergence and shear amplitudes (i.e. the lensing signal) from the 
cosmological lensing effect over one galaxy are very small. 
 
For example, consider a source galaxy at zs = 0.8 and a lens at zl = 0.4 with 
comoving size 8 Mpc (a cluster). For this system: 
 
 
 
 
Inserting the distances DL=1120 Mpc, DS = 1500 Mpc, DLS = 400 Mpc and rH = 3000 
Mpc/h, we get:    

    k ~ 0.0001 
 
With these redshifts (which are typical of current surveys), a number N = DS / R of 
lens planes fit along the trajectory.  If a light ray typically crosses DS / R ~100 planes, 
the signal increases to   

      k ~ 0.01 
 
This is a small number, well inside the weak lensing regime. 

Lensing signal 



Note that a shear of 0.01 corresponds to the difference in ellipticity between the 
ellipticities of Uranus and the Moon. 

This shows that the cosmological 
weak lensing signal can only be 
detected statistically, measuring it 
over a large number of source 
galaxies. 

For this, we need to consider the convergence from a distribution of sources 
at various redshifts.  
 
The signal is integrated over the distribution: 

with for example, 



where 

For a distribution of sources, the convergence can be rewritten as 

(integral along the line of sight, over the lenses at w’) 

(integral over the sources at w, for each lens at w’ ) 

Note that the optical scalars are perturbed quantities (as we say they do not arise in 
the homogeneous space-time).  
 
They have zero mean, 
 
and the cosmological information is on the moments, i.e., in the correlation 
function and power spectrum.  



The power spectrum of the convergence field is of course related with the 
power spectrum of dark matter:  
 

The convergence 
power spectrum 
is a weighted line-of-
sight integral of the 
matter power spectrum 

matter/gravity relation diameter angular  
distances 
 
redshift of sources primordial power spectrum (inflation) 

 
transfer function 
 
linear growth 
 
non-linear corrections 

cosmological 
parameters 



Linear and non-linear convergence power spectrum for two different  source redshift 
distributions (higher zs has higher amplitude) à there is a strong degeneracy between zs 
and σ8 à this shows it is crucial to know the redshifts in cosmic shear surveys. 

Weak lensing cosmic shear surveys 
measure a lensing signal in the scale range 
from few arcmin to few degrees. A typical 
scale of cosmic shear measurements is: 
 
θ=30 arcmin à l=1000 
 if zs=1  à k=0.8 h/Mpc à r = 8 Mpc/h 
(mildly non-linear scales)  

The convergence power spectrum is a projected power spectrum. 
 
At each angular scale l = 2π/θ, its amplitude has contributions from various k scales 
from the matter power spectrum at different redshifts:  

              k = l /fK (w (zlens) ) 



We can also derive the power spectrum of the shear. 
 
 
Since shear and convergence are both second-order derivatives of the 
cosmological lensing potential, their power spectra are related. 
 
The Fourier transform of a function of the form                            is: 
 
 
 
 
 
and so: 



Computing the shear power spectrum: 
 
 
 
 
we get  
 
 
 
 
 
i.e., the shear and the convergence power spectra are identical. 
 



We can also derive the correlation function of the shear 

Writing the scale vector (l1, l2) in polar coordinates,  
 
d2 l = dl l dφ, and the angular part  dφ can be integrated out, since from 
isotropy the power spectrum only depends on the modulus of l. 
 
 
The integral of the angular part of the plane wave is given by a Bessel 
function:  

Bessel function of the first kind, with order n 



After integrating out the angular part, the correlation function is the following 
radial integral of the power spectrum: 

This shows that, as usual, the correlation function is a filtered version of the 
power spectrum, mixing the power of its scales, depending on the filter function. 



We can also define a power spectrum and correlation function for individual 
components of shear: 

and so it relates with the convergence power spectrum as, 

The corresponding correlation function is the Fourier transform of P11.  
 
After integrating out the angular part, the 11 correlation function is: 



Usually the following linear combinations of shear correlation functions are defined: 

Solid: filter ξ+ (low-pass band) 
Dotted: filter ξ- (narrow-band) 

Similarly for the other components: 



The cosmological weak lensing power spectra define various filtered versions of the 
matter power spectrum Pδ 
 
The cosmological weak lensing deflections are produced by LSS gravitational 
potentials à by the total mass in the structure (which is mostly dark matter) à 
lensing is sensitive to the total mass, it is independent of the nature of matter 
(baryonic or dark) and of its dynamical state (relaxed or merging) 
 
It is sensitive to the cosmological  
parameters: 
 
- through structure formation (Pδ)  
- through direct dependences on H0, Ωm 
- through the background evolution   
(DA(z) in the function g(w) ) 

Cosmological content 

It is mainly sensitive to Ωm and to the amplitude of Pδ (i.e., to σ8) with a well 
defined degeneracy direction, and to the sources redshift distribution 



Lensing Analysis Pipeline 

Weak lensing: estimator 



only stars and foreground galaxies 
are visible in this image 

background galaxies are visible now, 
and also the “ghosts” from a 
saturated star 



Masking 

Stars	
  
Saturated	
  stars	
  

Galaxies	
  

Ar/facts	
  
Stars (green) / Galaxies (red) separation  



Shear estimator 

The estimator of shear is the ellipticity. 
 
The shapes of distant galaxies in a 2D image are approximately ellipses (valid for 
both elliptical and spiral galaxies). They can be described by 2 parameters: 
eccentricity |e| (deviation from a circle) and orientation φ. These 2 parameters 
define the ellipticity, which is a traceless symmetric tensor. 
 
Note that under a rotation of α, a traceless symmetric tensor transforms in 
the same way as a vector under a rotation of 2α. 



For this reason, traceless symmetric tensors are also called pseudo-vectors, which 
have π  symmetry, instead of 2 π.  
They are also called spin-2 quantities and its components can be written in vector 
form: 

The ellipticity of an object is computed from the second-order moments of 
brightness (with respect to the centroid of the image), 
 
 
 
as, 

So component e+  measures the normalized excess of flux along  
the x-axis with respect to the flux along the y-axis  
 
and component eX measures the normalized excess of flux along the  
y = x line with respect to the flux along the y = −x line  



The ellipticity ranges from 0 à the ellipticity of a circular object, to 1 à the limiting 
case of an extremely elliptical object that becomes one-dimensional. 
 
It is dimensionless, not containing information about the size of the object, which is 
encoded in the trace Qxx + Qyy 
	
  



To understand why the ellipticity is an estimator of the shear, let us consider   
a 2D image of a galaxy (the source shape) that is subject to weak gravitational 
lensing and will be transformed into a slightly different 2D (the image shape).  
 
The moments of the source are transformed by the lens equation (the lensing 
transformation) into the moments of the image: 
 
 
 
For example, for the trace of the moments we get, 

Computing the transformation for all moments, and combining them to form the 
ellipticities, we get an expression for the transformation of the ellipticities. 
  
 We may neglect quadratic terms in the transformation, because we are in the weak 
lensing regime: 

where g is the reduced shear 



In the weak lensing approximation the resulting transformation is: 
 
 
 
 
and this is the shear estimator. 
 
So the reduced shear produced by the lensing effect (which is  g ~γ)  
adds linearly to the intrinsic (source) ellipticity of the galaxy to produce the 
image galaxy ellipticity.  
 
 
The estimator cannot give us the exact value of the shear acting on a galaxy 
because we do not know the source ellipticity es of a galaxy. 
 
But it can be used to estimate the shear from the measured ellipticity, if we know the 
properties of the intrinsic ellipticity distribution. 
 



If the galaxies have intrinsically random ellipticities, which implies random 
orientations à <es> = 0 à the estimator is unbiased. 
 
If the galaxies eccentricities and orientations are intrinsically correlated (for example 
for having been formed together in the same DM halo) à <es> ≠ 0 à the estimator 
is biased. 
 
In general it is always possible to find a sample of uncorrelated galaxies in the same 
2D area of the sky, and have an unbiased estimator. 

We already saw that the typical 
convergence (and shear) signal is 0.01. 
 
The measured rms of ellipticity distributions 
is ~0.3 à it is much larger that the cosmic 
shear signal à it is due to the intrinsic 
ellipticities dispersion. 
 
This means that the shear estimator is very 
noisy à a large number of galaxies is 
needed to be able to detect the 
cosmological lensing signal. intrinsic ellipticities distribution 



But the ellipticity of a galaxy image is not only induced by gravitational lensing à 
there are several other effects 

So in reality the estimator is biased, and the non-cosmological distortions need 
to be corrected. 
 
The dominating effect is the Point Spread Function (PSF) produced by the 
atmosphere and by the optical system of the telescope. 
 
The PSF model convolves the image.  
The amplitude of the PSF effect is much larger than the cosmological 
effect. 
 



The types of PSF present in the optical system are characterized when building 
the telescope by simulating its wavefront. 



The bias can be corrected because the PSF can be measured using stars.  
Stars are not affected by cosmological lensing à any ellipticity detected in the 
stars in the image is produced by the PSF. 

The biased shear estimator can be written as: 

It includes the PSF anisotropy q à modeled as an additive bias 
and the PSF isotropy, which decreases the response of the galaxies to shear, 
producing a change in the factor 2 in the original unbiased estimator à modeled 
as a multiplicative bias  

In fact, stars are point-like and would not even be seen in an image if there was 
no isotropic PSF (like the seeing produced by the atmosphere). 



PSF is measured at stars positions à It is then interpolated across the FoV to 
find its values at the galaxies positions 
 
PSF deconvolution: 

The PSF can then be subtracted 
(deconvolved) from the image. 
 
Simulations with known cosmic shear and 
PSF models may be used to check for 
residuals of the correction procedure à to 
calibrate the result: 



Multiplicative and additive residuals  
for 6 PSF simulations: 

m and c evolution with redshift 

If shear simulations are not used, the values of the residuals are not known. In 
that case they may be included in the estimator as nuisance parameters à 
PSF calibration 



Alternatively, PSF may be corrected with forward model fitting: 
 

The PSF (measured from stars) is convolved (multiplied in Fourier space) with 
models for the galaxy image. 
 
Compare the results with the observed image à  Bayesian analysis to find the 
best model. 
 
In both cases calibration nuisance parameters are introduced, to ensure greater 
accuracy. 



The goal of weak lensing measurements is to go from ellipticity measurements à to 
2D correlation function of shear à to 2D metric (potential) power spectrum or dark 
matter power spectrum à to compare with theoretical predictions 

We are interested in the statistical properties of the ellipticity field and not on finding 
the individual shear of each galaxy à we may estimate directly the shear 
correlation function instead of the shear. 
 
Roughly speaking, we saw that the shear is estimated from 
 

    e = es + γ (neglecting calibration factors) 
 
 
So the ellipticity correlation function is an estimator of the shear correlation 
function: 
 

Shear correlation function estimator 



The ellipticity correlation function of a discrete galaxy field is measured from the 
correlation of ellipticity pairs as function of separation:  

θ	
  

x	
   x	
  



However, the ellipticity correlation function does not give us directly the shear 
correlation function. It is a biased estimator of it, due to the two additional effects 
that also contribute to the ellipticity correlation function: 
 
 -      correlation function of the source ellipticities  (i.e., the  

     intrinsic distribution of ellipticities, before the lensing effect). 
 

  It depends on the type of pairs involved: 
 

 - for i=j it is a monopole constant term à a shot noise   
 
  - for i ≠j it is the correlation of the intrinsic ellipticities between  

 different galaxies à an intrinsic alignment (II) 
 
 
-    shear-ellipticity cross-correlation  
 

 It is the correlation between the intrinsic shape of a galaxy  
 and the shear produced in a second galaxy (its i=j contribution is 
 zero, but i ≠j is not zero)à another type of intrinsic alignment (GI) 

Bias of the estimator 



The contamination from              (II) is zero if we do not consider galaxies at the 
same redshift bin 
 
The contamination from            (GI) depends on galaxy formation. It can be 
measured with <eδ> (galaxy-galaxy lensing) 

Randomly oriented 
source galaxies 

Sheared galaxies get 
tangentially oriented 
with respect to halo GG	
  >	
  0	
  	
  

GI	
  <	
  	
  0	
  	
  



Elliptical galaxies near halos are tidally streched à creates II  

Spiral galaxies orientation near halos determined by angular momentum L à do 
not correlate with halo orientation à no GI 

Origin of the intrinsic alignments 



However, if the galaxy pairs in the correlation are at different redshifts, the dominant 
contribution for the ellipticity correlation is the shear correlation (GG):  
 
II is zero (because the two galaxies are distant in redshift) 
 
GI < 0 and  ~ 10% GG 

GI can be estimated from galaxy-
galaxy lensing measurements using 
early-type (ellipticals) and late-type 
(spirals) galaxies 

So the shear correlation function estimator is biased by construction, due to 
the presence of intrinsic alignments.  

GI 



Besides the fundamental intrinsic alignment biases, there are 3 other main 
classes of systematics that affect the measurement of the shear signal and 
impact the estimation of cosmological parameters.  
 
They come from the measurement of the ellipticities, from the determination of 
the source redshift distribution, and from uncertainties on the shear theoretical 
power spectrum.  
 
 
i) Bias in the shear measurement : there are many sources of bias in the 
measurement of shear, besides PSF residuals, that propagate into the correlation 
measurement. For example: 
 
- Light-profile model bias: due to noise, the brightness moments need to be 
computed using a filter. This needs to correctly model the light profile, otherwise it 
will introduce a bias. It is easy to use a non-appropriate filter in cases of non-
elliptical isophotes, or when there are color gradients (different profiles in different 
filters à bias broad-band measurements) 



- Noise bias: in general, ellipticity is non-linear in pixel data à the simple fact that the 
flux values in the image pixels are noisy changes the shear-to-ellipticity linear 
relation à if we use it, we introduce a bias 
 
- PSF residuals  
 
- Detector effects: charge transfer inefficiency (CTI) 
 
 
ii) Bias in the redshift distribution:  
 
- Wrongly identified photometric redshifts 
 

Typical filters   u ; g r i y z ;  I J K   
 
used to detect the strongest features, like 
the 4000 Angstrom-break for galaxies at 
various redshifts  



Some properties of photometric redshift estimation: 
 
In the redshift desert, z ~ 1.5 - 2.5  à neither 4000 A-break or Ly-break in visible 
range à  very hard to access from ground.  
 
Confusion between low-z dwarf ellipticals and high-z galaxies and confusion 
between Balmer and Lyman break à catastrophic outliers  
 
UV band and IR needed for high redshifts à but UV is very inefficient and IR is 
absorbed by atmosphere à need space observations. 
  
Need spectroscopic galaxy sample for comparison and calibration, or also for cross-
correlation.   
  
The typical accuracy of photo-z determination is:  σ  ~ 0.05 (1 + z)  
 
 
- Selection effects: for example blended galaxy images are discarded à under-
representation of galaxies in crowded fields, which are high-density regions and 
have typically lower redshifts à biased n(z). 



iii) Bias in the shear power spectrum from baryonic effects:  

- on small scales 1 < k < 10 h/Mpc 
gas pressure is important (baryonic matter is 
no longer dust) à suppression of structure 
formation, gas distribution is more diffuse 
than DM à less power in the total matter 
power spectrum 
 
- on very small scales k > 10 Mpc  
(~ R < 0.1 Mpc) there is baryonic cooling 
and AGN+SN feedback à 

The shear correlation estimator can then be written with all the biases terms by 
including N = 4 + n_zbins nuisance parameters: 
 
 
 
where the calibration parameters (m,c) account for all shear measurement biases. 

increase condensation of baryons à formation of stars and galaxies à increase of 
power spectrum amplitude  



The full measurement of a cosmological quantity of interest (power spectrum, 
correlation function, etc) must include not only the estimate of the quantity but 
we also need to quantify the precision of the measurement (compute the error 
bars).  

   is the estimator of the correlation function à it is the measurement.  

The measurement      is interpreted as one possible realization of the true 
value of ξ.  
             
            is the true value of the correlation function à it is the theoretical 
computation of ξ, computed from the model (structure formation). 
 
Even for direct measurements in the real space, 
    and            are different because of noise (variance of the estimator, and also 
intrinsic ‘cosmological noise’) and bias (the estimator may have systematic errors 
that need to be corrected or taken into account in nuisance parameters). 

Variance of the estimator 



The variance of the estimator is: 
 
 
 
 
 
 
In the case of the cosmic shear correlation functions, we can already see that, since 
ξ depends on  <e e> à <ΥΥ> à <δδ>, its variance will depend on 4-pt functions 
<δδδδ> à the full computation of the error bars of a power spectrum requires 
the theoretical computation of the trispectrum.  (It is the variance of a variance) 



Let us consider the estimator for ξ+ 

(assuming all external biases are accounted for) 
 
ξ+ combines the two components (t,X) of the ellipticity.  
 
The weights are needed to distinguish the quality of the measurements of  
different galaxies.  
 
So the correlation for each separation ϑ  is the sum of all contributions  
(ei ej) from the Np galaxy pairs in the bin ϑ : 

= 0 otherwise 

and is divided by the number of contributing pairs (i.e., it is an average). 



The number of pairs increases with separation and depends on the survey area 
and density: 

This approximate expression comes from considering that the survey is a single 
connected field of area A with N galaxies  (density n) à the galaxies on a circular 
shell of radius ϑ around a central galaxy, form pairs of separation ϑ. Then, consider 
shells around all galaxies to get the total number of pairs for that separation. 

Npairs 
 
dashed : formula 
 
solid: measured 
 
The measured number of pairs on 
large scales is smaller due to the 
edge of the field-of-view. 



Assuming no intrinsic alignments, this estimator is unbiased: 
 
 
 
using e = es + γ we can write: 

(where σe
2 is the shot noise term, i.e., the auto-correlation term) 

Now, let us compute the variance of the unbiased estimator: 

To compute it, we need to compute the cross-correlation between the 
correlation function at two separations: 



Notice that, since the correlation function separations are not independent  
(contrary to linear power spectrum scales), we have to consider all cases 
ei ej and cannot simplify them to ei

2 

The calculation is involved because of this, and also due to the presence of the 
extra term of es, and also because the ellipticity and shear fields have two 
components. 
 
 
Inserting e = es + γ, the quantities <(ei ej) (ek el)> become, 

(greek indexes account for the 2 components 1,2) 



Notice that even though none of the correlation functions ξ(θ1) and ξ(θ2) are 
computed at separation zero, their variance depends on the shot noise, because it 
includes terms θ1 = θ2 à the covariance of a quantity that is itself a pure 
covariance, also depends on the variance of the covariance (and not just on 
the covariance of the covariance). 
 
(in other words, a 2-pt signal at non-zero separations is not affected by shot noise, 
but its covariance is). 
 
Now, using Wick’s theorem and assuming Gaussianity (no connected 4-pt), we 
can write all 4-pt quantities as products of 2-pt quantities. In this Gaussian 
approximation, we get: 



The third term is diagonal, it only affects the diagonal of the covariance matrix.  
 
 
 
 
It is the shot noise contribution to the error budget.  
It depends only on the intrinsic ellipticity dispersion, i.e., on the shape noise.  

The second term contains only shear correlations. It is a purely cosmological term, 
coming from the shear 4-pt function.  
 
 
 
 
 
 
 
It is the only source of noise remaining in the absence of shape noise. 
It is the cosmic variance contribution to the error budget. 

X 

X 

Inserting this in the variance of the estimator, we obtain 3 different 
contributions for the error budget. 



The first term correlates shot noise with cosmic variance: 

The variance is larger on small scales and: 
 
- Shot noise dominates on small scales 
- Cosmic variance dominates on large scales 

It is a mixed term. 
 
The error bars are the square root of the diagonal of the covariance matrix 
(or noise matrix). Their relative contribution to the error budget is: 

Notice that the amplitude of the error bars 
depends essentially on the number of pairs, 
(divides all error terms) i.e., the uncertainty of 
cosmic shear surveys depends mainly on: 
 
- Area of the survey 
- Density of source galaxies 



This analytical result is valid in the Gaussian fields approximation. 
 
To compute the covariance matrix without this approximation we need to consider 
the trispectrum, or measure the dispersion of the correlation function on the 
data or on numerical simulations of the shear field. 
 
The observed shear field follows a non-Gaussian distribution, not only due to the 
non-linear regime of structure formation, but also because in practice a complex 
survey geometry introduces couplings in the measured modes and modifies the 
distribution à non-Gaussian covariance matrix is really needed. 
 
Numerical simulations of the lensing field consist on N-body simulations + 
Ray-tracing. They are anyway needed in cosmic shear analysis for various 
reasons, besides computing the non-Gaussian covariance matrix: 
 
- To compute the theoretical non-linear power spectrum (analytical extensions of 
the linear theory are only valid up to k ~ 0.5h/Mpc) 
 
- To include baryonic physics, which further modify dark-matter halo properties à 
hydrodynamic simulations needed. 



- To model systematic effects that correlate to astrophysics or the LSS, like 
intrinsic alignments that may also be included in the N-body simulation.  
 
- To test the mathematical approximations made : Born approximation, neglecting 
of lens-lens coupling (second-order terms in the light-propagation equation), 
replacement of reduced shear by shear.  
 
 
Numerical shear maps are produced by ray-tracing through N-body output 
snapshot boxes:  light-rays are sent to every direction from the observer to a 
source at high redshift à they travel on straight lines between lens planes à N-
body particles are projected onto lens planes and their surface mass density and 
gravitational potential computed à the induced deflection angle α is computed à 
the ray changes direction à this is repeated until reaching a source galaxy. 
 
From multiple rays, the shear at each observing direction of the image is obtained. 


