
 
 
 

Gravitational Lensing 
 
 

 



Deflection of light 

The basis of gravitational lensing is the effect of deflection of light caused by gravity.	
  



In general, we define a source - lens - observer system 

 
source position in the source plane 
 
 
deflection angle 
 
 
impact parameter in the lens plane 
 
 
 
image position in the image plane 
 
optical axis 

	
  

Light from a point emitted at an angular position β is observed at a different angular 
position θ. 
 
It is deflected by a deflection vector α induced by gravity. 



The lens equation, relating source and lens planes can be found from the diagram 
above, by using simple trigonometry  (vector addition on the source plane): 

α  is determined by the properties of the lens : it contains the physical (gravitational 
field) information we want to find out.  
 
Measuring the change between θ and β we can find α  if we know the distances 
(there is a degeneracy with the distance). 



How does the deflection angle relate to the lens 
gravitational potential? 

Let us consider light propagation from source to observer in the Universe 
described by the Robertson-Walker metric with a small inhomogeneity representing 
the lensing potential:  
 
 
 
 

The deflection may be derived using the principle of Fermat:  light follows a path 
of extremal time. 
 
Light follows null geodesics, and setting ds2 = 0 we can immediately write the speed 
of light when travelling in the gravitational field of the lens.  
 
It is: 



In terms of properties of light propagation, the perturbed metric is like a medium 
where the speed of light is v < c à it bends the light with respect to the homogeneous 
spacetime where v = c. 

We can think of the gravitational field as a “change of medium” since it effectively 
changes the speed of light propagation.  
 
This medium is thus associated to an effective index of refraction, given by: 



Now, let x(l) be a light path crossing the medium. 
 
The light travel time is then proportional to:  
(since the refraction index is basically dt/dx) 
 
and we want to find the path of extremal (minimum) time, i.e., 
 
 
 
 
This is a standard variational problem, that as we know will lead to the Euler-
Lagrange equations. 
 
The extremal light path verifies: 
  

where λ is an arbitrary affine parameter, labeling the positions along the path,  
 
and we found out that  has the role of a Lagrangian.  



Having found the Lagrangian we can now describe the light path using the 
Euler-Lagrange equations: 
 
 
 
From our Lagrangian, we compute: 

(u is the normalised vector tangent to the path) 
 

This means that the Euler-Lagrange equation is an equation for the evolution of      , 
which is a vector tangent to the light path.   



and so the Euler-Lagrange equation is: 

= 0 

ó 

this is the gradient of n perpendicular to the light path 
 
 
 
 
and therefore, the gradient of the potential. 

ó 



Now, the derivative of the tangent vector is by definition the deflection.  
 
So we found that the deflection is the gradient of the lens potential in the plane 
orthogonal to the tangent to the path (i.e. on the lens plane). 
 
 
Notice the minus sign, meaning the gradient of the potential points away from the lens centre 
and the deflection angle points toward the lens (light is pulled towards the lens). 
 
 
The potential changes from point to point along the light path, so the total deflection 
is the integral over the ”pull” of the gravitational potential perpendicular to the light 
path: 
 
 



Note that: 
 
 
-  The integral should be made over the actual light path  
(a priori unknown before computing the deflection à so it is a recursive problem). 
 
However, given the smallness of the potential                     the deflection angle is 
usually small and in practice we can integrate over the unperturbed light path.  
(This is called the Born approximation, also used in scattering theory). 
 
 
- Since the speed of light is effectively slowed down in the gravitational field, the 
travel time to cross a given length is larger than it would be in the absence of a lens. 
This is called the Shapiro delay. 



fit to  
data points 

General Relativity 

Newtonian 

- The value of the deflection angle  computed in GR (that was we saw contains a 
factor of 2)  
 

 is twice the value predicted by Newtonian gravity, or by considering the 
equivalence principle (gravity - acceleration) in special relativity.  
 
The well-known Eddington eclipse expedition of 1919 measured the deflection 
angle produced at the edge of the Sun disk with the purpose of comparing the 
measurement with the two predictions. It was the first test of GR. 



Having found the relation between deflection angle and gravitational potential,  
we can compute the deflection of the light emitted by a point source when passing 
by a lens. 
 
Let us consider a point mass lens, with potential 

Light from the source travels along the z-axis towards the observer and crosses 
the lens plane (i.e., the plane x,y orthogonal to the z-axis), at a distance b from the 
point mass.  b is called the impact parameter. 



The potential on the lens plane is 
 
 
 
where 
 
 
and the resulting deflection vector is: 

From the x and y components of the deflection angle vector, we compute its norm, 
which is the well-known result: 



Note that the impact parameter is strongly constrained.  
 
The source emits in all directions, and various light paths reach the lens plane.  
But only one is deflected towards the observer.  
 
From the lens equation (from the source-lens-observer diagram), we can see it is 
the one that passes at b = Dd Dds / Ds  
 
Dd = distance from observer to lens (deflector) 
Dds = distance from lens to source 
Ds  = distance from observer to source 
 
 
For this reason, all lensing systems have a fundamental degeneracy between 
distances and lens properties.  
 
We can only compute the mass of the lens if we know the distances involved in the 
system.  
 
Conversely, lensing can be used as a geometric probe of the Universe (i.e., it can be 
used to measure cosmological distance and use them to infer the density 
parameters) if the mass of the lens is known. 
 



Let us consider that the lens is not a point mass but it is an extended object 
(extended lens) 
 
Since the deflection angle depends linearly on the mass M, the effect from a finite 
lens in a plane is just the sum of the deflection angles created from all points in the 
lens. If we discretize the lens as a set of N point lenses of masses Mi at positions ξi 
on the lens plane, then the deflection angle of a light ray crossing the plane at ξ will 
be:  
 
 
 
 
We can also consider a lens in 3D with mass density ρ. The z extension of the lens is 
always just a small segment of the full source-observer light path, and it can be 
considered that it is in a plane - the thin-screen approximation. In this approximation, 
the lensing matter distribution is completely described by its surface mass density: 
 
 
 
and the total deflection is given by: 



Gravitational Lensing 

Gravitational lensing, in a strict sense, refers to the case of extended sources, 
which give rise to differential effects. 
 
Indeed, neighbouring points in the source suffer slightly different deflections in the 
lens plane: it is a differential effect that makes the image of an extended source 
(i.e. non point-like) to become distorted. 
 
This is easily seen if we Taylor-expand the lens equation. Remember the lens 
equation is a mapping from image positions to source positions (it is usually written 
in that order, and not as a mapping from source to image). So a given point θ  in the 
image plane corresponds to an original position β(θ) in the source plane, related by 
the deflection angle:  

(here the vectors have absorbed the distance factors present in the original 
lens equation)  
 
 
The Taylor expansion of β(θ) to linear order is 



Now, remember that a general matrix can be decomposed in 3 parts: 
 

 (traceless) symmetric + (traceless) antisymmetric + diagonal 

where A is the amplification matrix (the Jacobian) and describes the lensing 
transformation between source and image planes to first order: 

it is a 2D matrix, since β (position 
in the source plane and θ (position 
in the lens plane) are 2D vectors. 

γ1 γ2 
γ2 -γ1 k 

k 0 
0 

Applying a diagonal matrix to an image will expand it (or contract it) radially in an 
isotropic way à k is called convergence. 
 
 Applying an antisymmetric matrix to an image will rotate it à ω is called rotation.  
 
Applying an symmetric matrix to an image will distort it in an anisotropic way, 
contracting in one dimension and expanding in the other à γ is called shear.  



This means that any linear distortion of an image is a combination of 
convergence/expansion, rotation and shear 

A =  The amplification matrix is then written as 
 
 
Note that usually actual lensing distortions do not includes rotation because the 
gravitational field is a gradient field (completely defined by a potential), 
and so its rotational is zero (it is a so-called E field) and the deflection vector field 
does not produces rotations.  
 
The presence of rotations in a lensed image (due to so-called B-modes) is an 
indication of systematic effects, i.e., distortion effects with non-lensing origin. 



isotropic distortion (k, convergence) à a 
circle expands/contracts (full rotational 
symmetry) 
 
anisotropic distortion (γ, shear) à a circle 
transforms into a π-rotational symmetric 
shape (an ellipse) 
 

These are the fundamental distortions (also called the optical scalars) and 
contain the dependence on α à which contains the information on gravity 

The determinant of the amplification matrix 
defines the magnification: 

The distortions applied to a circular image result in: 

second-order distortions (by continuing the Taylor expansion) (F, G, flexion) à a 
circle transforms into a 120º-rotational symmetric shape (a banana-shape F or a 
“Mercedes logo” G)  



The magnification, and the amplitude of the optical scalars - which are fields in the 
2D sky - define the gravitational lensing regime that occur in the positions of the 
sky.  
 
There are two general regimes - weak lensing and strong lensing - that occur in 
regions of the image plane where the values of the k(θ) and γ (θ) fields are small 
(<<1) (weak lensing) or large (strong lensing). 

The observable effects are very different in the two regimes.  

SL 

WL 



Weak Lensing  occurs at larger separations from the source-lens-observer line (the 
line-of-sight), or with lenses of low density contrast.  

The effects are: small increase of ellipticity of the source galaxy (shear), alignment of 
images. 
 
Weak lensing is a very useful probe in a cosmological system where the lens is the 
large-scale structure of dark matter distribution. In this case the shear is so small that 
it cannot be detected in individual galaxies. What can be detected is a correlation of 
those ellipticities because their orientations get some degree of alignment and cease 
being randomly oriented à this effect is used to probe the structure formation of the 
Universe. 

Increased	
  ellip-ci-es:	
  	
  
weak	
  lensing	
  of	
  galaxies	
  by	
  
the	
  large	
  scale	
  structure	
  of	
  
the	
  Universe	
  	
  



The effects are: very strong distortions (giant arcs), multiple images, flux 
magnification.  They occur near lines where det A = 0 (infinite magnification), which 
are called critical lines of the image plane (the observed sky), and map back to the 
source plane to lines known as caustic lines. 

Strong Lensing  occurs near the line of sight, with lenses of high density contrast.  

point	
  	
  source	
  image	
   image	
   extended	
  source	
  

Example:	
  
Spherical	
  lens	
  

Example:	
  
Ellip1cal	
  lens	
  

image	
   extended	
  source	
  image	
  extended	
  source	
  



Actual observations of strong lensing: 

Giant	
  Arcs:	
  Strong	
  lensing	
  of	
  galaxies	
  by	
  a	
  cluster	
  
Giant	
  Arcs:	
  Strong	
  lensing	
  and	
  Einstein	
  ring	
  
of	
  galaxies	
  by	
  a	
  group	
  that	
  includes	
  two	
  
massive	
  ellip-cals	
  (The	
  Cheshire	
  Cat)	
  

Einstein	
  ring:	
  Strong	
  lensing	
  of	
  a	
  galaxy	
  by	
  a	
  galaxy,	
  
an	
  infinite	
  number	
  of	
  mul-ple	
  images	
  forms	
  on	
  a	
  
circle	
  

Einstein	
  cross:	
  	
  
Strong	
  lensing	
  
of	
  a	
  quasar	
  by	
  a	
  
galaxy,	
  forming	
  
a	
  quadruple	
  
image	
  of	
  the	
  
quasar	
  



When the angular scale of the strong lensing effects is small  
(ex: multiple images have small angular separation and are not 
resolved):  
 
the strong lensing is called microlensing. 

Increase	
  of	
  flux:	
  à	
  Microlensing	
  of	
  a	
  star	
  by	
  
a	
  planet	
  (used	
  to	
  detect	
  exoplanets).	
  



In summary, gravitational Lensing has a number of 
fundamental properties: 
 
- it depends on the projected 2d mass density distribution of 
the lens 
- it is independent of the luminosity of the lens 
- it does not have a focal point 
- it is achromatic, there is no frequency shift from source to 
image  
- it involves no emission or absorption of photons 
- it conserves the surface brightness  
 
that lead to a number of observable features: 

- change of apparent positions 
- magnification (increase of size), which combined to the 
conservation of brightness implies an increase of flux à 
natural telescope 
- distortion of extended sources (ellipticities, tangential giant 
arcs, radial arclets) 
- multiple images 
- time-delay between multiple images 



These observables (positions, fluxes, distortions) can be used to estimate the 
total mass and mass distribution of the lens. For example: 
 
- in (strong or weak) cluster lensing à mass distribution of the cluster 
- in LSS weak lensing (cosmic shear) à dark matter power spectrum  
 
In all systems, the general recipe to estimate the physical properties (or 
cosmological parameters) is: 
 
i) (theoretical) define a lens model and derive its gravitational potential. 
 

 For example the potential of a mass distribution, or the potential of a 
cosmological model 
 
 
ii) (theoretical) derive the deflection and optical scalar fields from the 
gravitational potential  
 
From the definitions in the amplification matrix, it is clear that shear and 
convergence are derivatives of the deflection field, and second-order derivatives of 
the potential: 



shear 
 
convergence 

where ψ is the gravitational potential projected on the lens plane (i.e. integrated 
along z) and dimensionless (with the distance factors included), i.e.,  

this is called the lensing potential.  

Note that indeed: 



Note also that the convergence is the Laplacian of the lensing potential. 
This means, from Poisson equation, that the convergence is a (projected) mass.  
In particular, it is the (dimensionless) surface density: 

with 

iii) (theoretical) predict the observables from the optical scalars fields 
(shear, image positions, fluxes)  
 
 
iv) (observational) measure the observables in astrophysical images 
 
 
v) (statistical) estimate the lens model parameters by fitting the theoretical 
predictions to the data  



Example: estimate the mass of a galaxy cluster (lens) 
 

 We need to build a complex model that takes into account different 
components of mass distribution: dark matter halo, gas, galaxy distribution,  
 

 and need to define a spatial distribution of background galaxies (sources) 
 

 and then predict the distortions, positions and fluxes on the image plane of 
source background galaxies.  

Let us consider that the cluster only has one matter component: the dark matter 
halo  (a NFW density profile): 

(with 2 free parameters) 



The 2D surface mass density can be computed from the 3D density profile, 
 and it is: 

and so the convergence is 

with 

from which we can obtain the mass, 



with 

We can also compute the lensing potential, which is, 

and the deflection angle, which is  

From this, we can for example predict the image positions of source 
galaxies, fit to the observed positions and constrain the two parameters rs 
and ρs needed to determine the value of the cluster mass. 


