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THINKING ABOUT NOTHING

The Vacuum and the Laws of Nature

R: But is wunderstanding of the vacuum important in

order to understand the lLaws of physics?

M: Indeed so. The surprising thing that we Fave learnt
in the last decade is that the vacuum is very important
in understanding the lLaws of physics and that it comes
in addition to the laws of physics. You may have the
same set of Laws of physics operating in a different
vacuum and they would describe very different

phenomena.



The SM potential and its minima

What you see in books

v > 2 ¢ 00/ \v

What you don't see in books

Now use the kinetic scalar term

+i : .
<Dg, > = (:l N z:2> to find the mass matrix of the gauge boson.
3 4

and you find the mass spectrum (for the gauge bosons)

g2V2
m12=m22= vi=vi4+ v+ i+
4
V2
2 _ 2 2y2
my = = (g"+g°Y?)

So U(1) survives and charge is always conserved.
cmi=0 : Is this obvious?

It's the photon!
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The SM potential and its minima

It is obvious because you can use the SU(2) freedom to perform the rotation

<Dy, > Vi <Dy, > <O>
= —_ =

Using a more general vacuum would just mean to redefine the charge operator.

For the same reason any phase in the vacuum can be rotated away. This means that no
spontaneous CP can occur. And the potential is also explicitly CP conserving.

The SM has no CB and no CP violation in the potential.

The result also holds for any extension with singlets with ¥Y=0 because they do not
contribute to the mass matrix of the gauge bosons (CP case later).

Explicit breaking - if the Lagrangian is not invariant under a given symmetry

Spontaneous breaking - if the Lagrangian is invariant under a given symmetry but the vacuum is not
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The 2HDM potential and its minima

Let us now extend the SM by adding a new complex doublet. The most general potential for the 2HDM
invariant under ®; - ®,; @, > — @, and softly broken by the m2;2 term is

V=m|® B +m222|CI)2|2 — m122(CI>ICI>2+h.c.)
p 2 p
5[0 + (@0, + L(@ONP[D) + A@]0)@]D) + = [(@{@2) +h.c. ]

explicitly CP-conserving because m?12 and A, are real.

The most general vacuum structure is
1
(D)) =—

0 Veb
V2 <v1> 2 (D) = % <v2 + ivcp)

. . 1 (0 . 1 (0
CP conserving (N) (@) = N < 1> ; (D) = N (V2>
. . 1 (0 . 1 [
Charge breaking (CB) (D) = NG <v1> s (D) = NG <v>
. d,) = 1 0 . ®.) = 1 0
- CP breaking (CP) (@) = a2 \vi+is) (@) = VAR
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Mass eigenstates - gauge bosons

Gauge bosons

D =g o1 aWi+g'B,  2gW o 1
) : 3o Wi =—(W, FiWy)
\/EgWM -gW, +g'B | V2
_ g .8 .83 :
< (I)l > = (EZ) < (I)2> = <v2i9> Dﬂ:aﬂ_lEYB/"_lEO.-]W/]l_l?/’l]G,{t

Find the mass matrix in this model
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The 2HDM potential and its minima

Let us understand why. Now we have 2 doublets and 8 possible VEVs

Vi + vk
<@ >=
vy + vy

We can use the SU(2) X U(1) freedom to write the most general form for the vacuum

2.2
v
m12=m22=g4 v2=v3+v§+vcz
1 , ; ; .
mi= = 3 [\/2(g2 +g°Y?) + \/124(g2 +g%Y?)? - l6g°g 2v§vczY2] Is it the photon?
. ................................................................ A
: 1 | / | : /7
Py = [vz(g2 +821) = vi(e> + g2 V2 - l6g%g ZVC?VEYz] :
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The 2HDM potential and its minima

Let us have a closer look at the photon mass

1 , , ,
mf = g [vz(g2 +g 2y?) — \/1/4(g2 +g 2Y?)? — 16g2g 2v§v62Y2]

There are two ways to recover a zero mass for the photon

=0 = <CI>1>=<‘;Z> <CI>2>=<8) |::> SM

0 0 :
=0 = <@>= <Vb> <0, > = <v eiG) I:> Vacua are aligned

OR ELSE CHARGE IS BROKEN - POSSIBLE IN THE 2HDM

SUPPOSE WE LIVE IN A 2HDM, ARE WE IN
DANGER?
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The 2HDM potential and its minima

1. Start by writing the potential, which for the 2HDM is just a function V(®,, ®,)
2. Find the stationary points (SP) of V

3. Classify the SP (minima, saddle points, maxima) - meaning: look at the values of the
squared masses

4. You will find three types of SP - the CP-conserving (aka normal), the charge breaking and
the CP breaking SP

5. You just have to write the potential at each of the SP and call it V,, V, and V,,
respectively
6. Compare the depths of the different V at each SP
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The 2HDM potential and its minima

2
My Difference of the values of the potential at the
Vep =V, = —— v,y = vv))? + via? P
CB D) [( V1~ V1%2) I ] CB SP and at the N SP

If N is a minimum (note that the charged Higgs mass is calculated at the N SP)

2
M+
_ _H / \2 2.2
Local minimum —CP
#O conservin
We get & :
V./V < VCB Global minimum — CB

It can also be shown that not only the N minimum is below the CB SP, but the CB SP is a saddle
point.

Valid for the most general 2HDM

A similar result holds for the simultaneous existence of a N and a CP breaking minima.

2
iy / N2 o 1,282
Ve =V = 22 [(V2V1 — V)T + Vo ]
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The 2HDM potential and its minima

1. 2HDM have at most two minima
2. Minima of different nature never coexist
3. Unlike Normal, CB and CP minima are uniquely determined

4. If a 2HDM has only one normal minimum, it is the absolute minimum - all other SP if they exist
are saddle points

5. If a 2HDM has a CP-breaking minimum, it is the absolute minimum - all other SP if they exist
are saddle points

But there is still the possibility of
having two CP-conserving minimal!
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The 2HDM potential and its minima

Two normal minima - potential with the soft breaking term

1 m%f_r m%f_r , )
~g/ L) e
2 1

Local minimum (N)

- m,, =80.4 GeV
v.= 246 GeV THE PANIC VACUUMI
V, -V, = -42x10° GeV o
- and this is one that can
GIoba(an;lr_umum m, =107.5 GeV C(CTLICl”y occur...
v = 329 GeV

However, two CP-conserving minima can coexist - we can force the potential to be
in the global one by using a simple condition.

D =mp, (m}, —k’m3,) (tanf—k) k= (ﬁ) Our vacuum is the global
A2 minimum of the potential
1 if and only if D > 0.

D (—a1 ;LQ + b1) (a2u2 — 2b2)

— —|8 )
8 S5 €3
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The 2HDM potential and its minima

The most general potential for an NHDM is
V= pz (D10 + 2y (OTD)(D D)) From 2 fo infinity

where the indices range from 1 to N and the parameters can be complex.

We have shown that a basis can be chosen such that the comparison between SP reduces to the case of 3
doublets for charge breaking and to the 2HDM case for CP breaking. So the main results are:

* In a NHDM CB minima can coexist with CP-conserving ones - the 2HDM is a very peculiar
model

* In a NHDM CP minima cannot coexist with CP-conserving ones - the 2HDM result holds for
an arbitrary number of doublets
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The N2HDM potential and its minima

What if we start adding singlets? The most general potential for the N2HDM invariant under
D, ->D; P> —-D,; Do D D, -D; DP,> Dy DOy — D
softly broken by the m2;2 term is

2
m
V=m121|c1>1|2+m222|c1>2|2—mfz(cbjcbﬁh.c.)+75c1>§

p p
+71(q>jc1>1)2 + ?Z(cbgcbz)2 + 13(@] D) (@I ®D,) + Ay(@]D,) (@] ®))

/15 /16 /17 /18
| @)+ hc. | + 205+ SH@[@)DF + DI

* The non-dark matter phase Ns, CPs, CBs (Dg) = vy

Three CP-even scalars instead of 2 as in the 2HDM

* The dark matter phase N, CP, CB (DY =0

2HDM spectrum plus a dark matter candidate

R. Santos, METFOG, 2023
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The N2HDM potential and its minima

Since the most general vacuum for the N2HDM is
o)=-—-(Y oy=-L( ) =
( 1>—$ v, ( 2)-% vy + v, (D) = Vs

with the usual definition of the charge operator.

P: How many different dark phases can this model have?

R. Santos, METFOG, 2023
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The N2HDM potential and its minima

The most general vacuum for the N2HDM is

1 0 _ 1 Veb —
@p=L(0)  @r=L(,40,) (@) =g

with the usual definition of the charge operator. Also, the potentials are all explicitly CP-conserving. Now,
the possible CP-conserving and non-charge breaking minima, are

(@) 4 = é (2) (@,) ) = é <\(,)2> (Pg)y =0

e R e R

and the extra possibilities where either vi=0 or v2=0 which lead to (Inert-like models)

VIZO;V2?£O or VI#O;VZZO = m122:()
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The N2HDM potential and its minima

So, for this particular scenario where we compare the two "dark-matter-like” phases, one CP-conserving

and the other CB, we get the exact same result as for the 2ZHDM

2
2 2] Difference of the values of the N2HDM

e [(vc —v,c2)? +vic
gp2 D201 12 potential at the CB SP and at the N SP

Veg—Vy =

Again, if N is a minimum (note that the charged Higgs mass is calculated at the N SP)

2
Mir+
_ H™ 2 2.2
Ve =V = a2 [(VZCI —V163)" + Vi Cz] >0
W m"{ = 0
We get ma0 /e
V./V < VCB Global minimum — CB

It can also be shown that that not only the N minimum is below the CB SP, but the CB SP is a
saddle point.

However, for the N2HDM we now have two CP-conserving SP (N and Ns) and two
charge breaking SP (CB and CBs). Will this hold for all?

R. Santos, METFOG, 2023
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The N2HDM potential and its minima

2
Mg+ p—
_ _H 2 2.2
Vep =V = A2 [(Vzcl —Vi63)" + Vi 6'2]
1 | m?s
— H* ’ N2 2 12 2 12 —
Veps— V= 2) 2 [(V2cl —V163)" + V(¢ ] T mpcy
1
m12) = mg + 5(/171/12 + /18\/22) calculated in the N stationary point (DM mass)
M
— ~ N ’ N2 12 12 p—
Veps =V, = ) [(Vzcl — VG + VTG ]
N
2
M+ 1
_ H=* ’ ’ 2 12 2.2
Vep =V, = 102 [(Vzcl —V63)” + v C22] R X
N

N

msz1 = ms2 + /176'12 /12 + /18(C22 + 632)/ 2 calculated at the CB SP (positive if CB is a minimum)

If N is a minimum both the CB and CBs SP are above it (same as for the 2ZHDM).

However for the Ns minimum, a charge breaking minimum can be below the CP-conserving onel

R. Santos, METFOG, 2023 19



The N2HDM potential and its minima

2

my —
_ 2 42
Vepr—= V= 12 ((vac; = vie3)® +vics]
1 mj
_ 2 2 —
Veps =V =— [(V201 — Vi)’ + Vi ] + mpc,
1
mg = m§ + 5(/17\/12 + /18\/22) calculated in the N stationary point (DM mass)
2
o
- 2 72 —
Vers = Vi, = 2 [(V2cl viey)® + v’ ]
N
2
m 1
_ A ’ / 2 12 2.2
Ver=Vy =\ 73 [(Vzcl —Vi63)" v 022] — 8Ty X
4y 4
N

msz1 = m + /1761 /12 + /18(62 + 3 2)/2  calculated at the CP SP (positive if CP is a minimum)

If N is a minimum both the CP and CPs SP are above it (same as for the 2HDM).

However for the Ns minimum, a CP-breaking minimum can be below the CP-conserving one!
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The N2HDM potential and its minima

Finally the CP-conserving minima (should we keep on panicking?). Here we can have coexisting N
minima, coexisting Ns minima and also N with Ns, such that

2

2

_ My« My«
mvin3 () - (2
] N
v v 1 M. M.
SRR B WVCRY B i
i N
v v 1 M. ms.
M I T g I\ a2 B 42

),
),

N

(vyvs = vpvp)?

),

s

1
+ Zmlz)s2

(vivy — vzv{)2

(vivy — vzv{)2

Besides the frivial minimum at the origin there is still a CP conserving possibility - the case where only the
singlet acquires a VEV. This would lead to massless electroweak gauge bosons and massless fermions and

would require

(q)S)z =

mg

6

=V

mg

S__2_/16

Not a single SP of this type was found in the scan.

R. Santos, METFOG, 2023
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The N2HDM potential and its minima

Extrema N Ns CB CBs CP CPs S
N X X Stability Stability Stability Stability x
Ns X X X Stability X Stability = x

Stability here means absolute stability at tree-level. Are there meta-stable minima?

Scan of the N2ZHDM parameter space using ScannerS. We generated parameter points where the EW
vacuum is of type Ns - most interesting case for vacuum stability. All parameter points fulfil the applied
theoretical constraints and are compatible with the applied current experimental constraints at the 20
level.

Theoretical constraints: tree-level unitarity, boundedness from below.

Experimental constraints: bounds from flavour physics, electroweak precision, collider physics with
HiggsBounds and HiggsSignals. Branching ratios and total widths with N2HDECAY and production with
SusHi. One of the CP-even, neutral Higgs masses is fixed to 125.09 GeV.

We do not impose absolute stability of the EW vacuum as a theoretical constraint since we want to study the vacuum
structure in detail and take into account that metastable regions of the parameter space are allowed.
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The N2HDM potential and its minima

In imposing vacuum stability constraints we distinguish the following cases:

- parameter points where the EW vacuum is the only vacuum,

- absolutely stable parameter points where secondary minima exist but are never deeper,
* long-lived parameter points where secondary vacua are deeper but never dangerous,

« short-lived parameter points that have dangerous secondary minima.

The value of the scalar potential at each of these stationary points is compared to the depth of the EW vacuum.

If there is no stationary point deeper than the EW vacuum we consider the EW vacuum at this parameter point
as absolutely stable.

If stationary points deeper than the EW vacuum exist we calculate the tunnelling time to each of these deeper
extrema.

Ns' N CB CP
exists 0.05% 23.3% 4.49% 2.80%
deep 0.0015% 20.9% 4.11% 2.55%
dangerous 0%  6.89% 1.12% 0.678%
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The N2HDM potential and its minima

Coexistence of minima

e all
® (B exists
e (P exists

1400 -

1200 A

1000 -

800 A

My= [GeV]

600 -

400 A

200

200 400 600 800 1000 1200 1400 -75 -5.0 -25 00 25 50 7.5 10.0
my [GeV] Ay

The distribution of secondary charge and CP breaking minima. Left: plane of the CP-odd Higgs mass
mA and charged Higgs mass m4+. Right: A4 vs. A5. In grey points fulfilling all theoretical and

experimental constraints; in dark green (light green) a secondary minimum of type CB (CP) exists.

R. Santos, METFOG, 2023 24



Vs — Vy [GeV?]

The N2HDM potential and its minima

1016

1012

108 -

104 4

-104

—108 -

-10%2

124,

1.1

0.9

0.8

The difference in the value of the scalar potential between

the EW Ns vacuum and a secondary N minimum as a function
of tan p at the EW vacuum. Only parameter points where a
secondary N vacuum exists are shown.

® N exists
deep N
dangerous N

Green: parameter points have a secondary N minimum but
tunnelling from the EW vacuum is not possible.

Blue: points tunnelling is possible but slow

Red: short-lived ftunnelling to the N minimum.

dangerous N
dangerous CB
dangerous CP
long-lived

absolutely stable
only EW vacuum

The signal strength p.; of hizs — 71 as a function of the second
lightest neutral scalar mass my,. The parameter points
without any secondary minima (grey) are plotted on top,
followed by the absolutely stable (green), and long-lived (blue)
parameter points.

Below these, the points with dangerous secondary minima are
shown in different shades of red denoting the type of
dangerous minimum present (N - light red, CB - red, CP - dark
red).

200 400

1400

1200

800 1000

my, [GeV]

600
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The N2HDM potential and its minima

1.204-
1.15
1.10 JREas

1.05

Hyy

1.00

0.95

0.90

0.85 ¢

dangerous N
dangerous CB
dangerous CP
long-lived
absolutely stable
only EW vacuum

The signal strength p,, of hizs — yy as a function of the
charged Higgs mass. The parameter points without any
secondary minima (grey) are plotted on top, followed
by the absolutely stable (green), and long-lived (blue)
parameter points. Below these, the points with
dangerous secondary minima are shown in different
shades of red denoting the type of dangerous minimum
present (N - light red, CB - red, CP - dark red).

800
my= [GeV]

200 400 600

1000

1200 1400

N

\4

OhyosH*H -
125 mE,:

dangerous N
dangerous CB
dangerous CP
long-lived
absolutely stable
only EW vacuum

Excluded regions in the coupling to the charged
Higgs and in the rate. And this was the only
observable where a clear difference was found.

-

o(pp — h125)BR(h125 — 77)
o(pp — hsm)BR(hsm — 77)

Hyy =

The normalised coupling g,,..++as a function of the
charged Higgs mass.

800
my= [GeV]

600

400

1000

1200 1400
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The one-loop zero temperature
potential - aka Coleman-Weinberg potential




The 1-loop effective potential

We would like to have the potential at all orders in perturbation theory. With the full potential the
minima can again shift and new stationary points can appear. We start (again) with the simple example of

a scalar theory with a Z, symmetry.

L =10 b V) V) =~ + g
2 “ 0 0 2 41

The 1-loop corrections to the tree-level potential are computed as the sum of all 1PT diagrams with a
single loop and zero external momentum

Figure 1: 1PI diagrams contributing to the one-loop effective potential of (22).

The diagram of order n has n propagators and 2n external legs. The n propagators contribute with a
factor i"(p? — m? + i€)™", the external lines contribute a factor (,bf” and each vertex contributes with

—iA/2. There is also a global 1/(2n). Finally there is an integration over the loop momentum and an extra
factor i.
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The 1-loop effective potential

The effective potential is written as

Voir(de) = Vo(d) + Vi(d,)

C_(dp 1 a2\ —if d'p 2212
Vl((p‘f)_l;[(znﬁ n (pz—m2+ie> 9 J(2;:)4 log{ 1~

with

p?—m?+ie

After a Wick rotation p® = ipp, pr = (—ip®, p), p* = (p°)* — p* = — pz we can write

V) 1[ d*p el 14 Ap212
=— 0
)= o 8 P2+ m?

and using the shifted masses

1 d*Vy(,)
2 — 2 2 _ o\¥c
m=(¢.) =m +§/1¢c =g
we can finally write, dropping the index E and neglecting the field independent term (more later)
4

p 2 2
2 log (p* + m*(¢,))

1
Vl(ébc) = E[

R. Santos, METFOG, 2023
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The 1-loop effective potential

The result can be generalised for N scalar complex fields

1
¥ = Eaﬂ(paaﬂ(ﬁ; — Vo(@)(@“, p))

The one-loop contribution to the effective potential is

a4
0p,0

v —lT d4p ] ( 2+M2(¢a gb‘r) (M2)a_ V4
1_2r(2ﬂ)40gp s » Py s’b = "b

with Tr(M?) = 2V¢, where the factor 2 comes from the fact that each complex field contains two
degrees of freedom. Similarly 7r(1) = 2N.

The one-loop contribution to the effective potential in the case of Nf fermions and Ng gauge bosons is

1 d'p 2 2 :
Vi = —2>\§T7“/ (2r)1 log |p* + M7 (o) Fermions
1 dp 9 5
Vi= TT(A)§T"“/ ) log [p* + (Mgp)* (¢e)] Gauge bosons
Tr(A)=3
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The 1-loop effective potential

The results for the one-loop potentials all have UV infinities. So we need to renormalise them. Let us do
this with a simple example of a massless scalar theory

A+ 0A

a7

L= 5(1+02)(0u0) — 5oms* -

Before we start let us write again the general renormalisation conditions. There are two free
parameters in the theory and therefore we have two renormalisation conditions (where we will hide the
infinities)

2
m% =T (p=0) = d ‘2/ Condition for the mass

L P

dV
Ap = —TW(p—0) = 4ot |, Condition for the coupling
Z(0)=1 Condition for the field - which we don't really need

Now we have to put the potential in a usable form.
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The 1-loop effective potential

Let us start by using an energy cut-off A and use the following result from integrating in the angular

variables
n/2
/ 1 (p) / (o™ dp

where p = |p |2. Show that
Vi(oe) =

A2
T 2/ ploglp + m?(¢c)]dp.

Neglecting field independent terms and terms that vanish in the limit A — oo show that

1
3272

1
6472

m?(ge) 1]

Vi(be) = mogm? (60D + ——5m*(d.) [log AT 3

Meaning the full one-loop potential is

2 14 2

A1 — %t 6ar2 ™t T ongn2 (198982 T 3

R. Santos, METFOG, 2023
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The 1-loop effective potential

The renormalisation conditions for this particular model are chosen such that

d*V o
152 =0 Condition for the mass
¢ ¢c:0
d*'v " ,
A= — Condition for the coupling
dgbc Pec=p

Show that the counterterms are

A
2 _ 2
omt =g

11A2 302 ap2

S _ 1
ON= =353 ~ 33,2 98350

Which leads to the potential

A
Ve = zfé—i—

Noe (P 25
25672 2\ 12 6

R. Santos, METFOG, 2023
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The 1-loop effective potential

Using dimensional reqularisation the result is

Mgt (A2 3
Vg = _¢4 55c 5 log (—2 - —)
2 21 2

1 M7 (¢e) 3 -
Vi(oe) = —)\WM?@C) {log 2—2 — —} Fermions

1 Mg (o) 5
Vi(de) =3¢ Mg, (¢e) {10% QZ—g - 5} Gauge bosons

The results for the SM are

V(¢C) — VO((bC) +

1 2 c Cw =0Cy
12 Z nim; (¢c) llog mzlu(;b ) _ Ci]

i=W,Z,h,x,t Cn =C, =C;

nw =6, nz =3, n,=1, n, =3, ny = —12

DO L S|

R. Santos, METFOG, 2023
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The temperature dependent potential




The T dependent potential

We start with the partition function and will first take care of the boson case

= —T'lnhz, Free energy
Z(T) = Tr | e—PH _OF
) ' {e } S = 9T Entropy
O0ln 7
E = - 85 Energy
Starting with the harmonic oscillator
> 1 e Pw/2

A 1 Zpho(T,w) = Y exp | —fw (n + 5) =1 _.—6=> Partition function

H|n)=w (n + 5) n) n=0 ¢

Fono(Tyw) = %w + T In (1 — e‘ﬂ“’) , Free energy

And for the free Klein-Gordon field

3 - -
o0 = [ G 2;; (age %7 + alei®?)
Vo g is the energy density of the zero-temperature
the free energy density is ground state, which is divergent. The same divergence is
iy Br ) encountered in QF T at zero temperature. The standard
Jp=~; =Vos+ T/ e In (1 —e 5“’3) renormalisation convention takes the zero-temperature

ground state free energy to be zero.
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The T dependent potential

Due to the integration over all momenta, fg can only depend on T and m, where m only appears as m/T.
From dimensional analysis we infer that the free energy density hence takes the form

4 m

fB(T\m)=T"Jp | =

T

0.00 |
—0.02 ]
-0.04 | ]
VN | b
g & _ :
— _006 ]
N ' :
-0.08 | ]
—0.10[ ]
_0“]2- L — L — L i L — . —
0.01 0.10 1 10 100 1000

Figure 1: This figure shows the dimensionless function Jp that is propor-
tional to the free energy of bosons as defined in Eq. (2.19), as a function
of mass-to-temperature ratio (thick line). Also the expansions for large T’

(dashed), Eq. (2.21) and small 7" (dotted), Eq. (2.20) are shown. The large-T
expansion is performed up to order four in m /7T, being a good approximation

up to m/T ~ 1.1.

Low temperature
(7)) = () (o ()
High temperature

3
7 <m> _ 7T2+1<m>2 RS <m>2 :
B\T) = “90 " 2a\T 127 \\ T

R. Santos, METFOG, 2023
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The T dependent potential

And for fermions

fo =145 ()

0.00 femvenenn .
-0.02 } i
-0.04 } i
A~
g |~
\‘: ~0.06 | ]
~
-0.08 |- i
-0.10 | _
-0.12 L IR | L IR | | L —
0.01 0.10 100 1000

m/T

Figure 2: This figure shows the dimensionless function Jr that is propor-
tional to the free energy of fermions as defined in Eq. (2.27) as a function of
mass-to-temperature ratio (thick line). Additionally, the expansion for large
T (dashed), Eq. (2.28) and small T (dotted) , in analogy to Eq. (2.20) are
shown. Note that in the small 71" limit, both the fermionic and the bosonic
expansions agree. The large T" expansion is performed up to order four in
m/T, working well up to m/T ~ 0.5, hence being sligthly worse than the
bosonic high-T expansion, depicted in Fig. 1.
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The T dependent potential

The complete expression for the temperature dependent potential of the SM is

AV (e, T) = 55 | D nidp[mi(@e) /T + midrlmi (6c) /T

Which mean that we can write the complete potential as

AMT) 4
V(¢e, T) = D(I° = T5)¢; = ET¢; + == ¢
with
D 2m%, + m% + 2m?
- Q12 logAB = logab‘— 3/2 and log Ap = logar — 3/2,
2m3, +m’ 2
E— W A ay = mexp(3/2 — 2yg) (logay = 2.6351)
473
T _ m3 — 8 Bv? a, = 1672 exp(3/2 — 2v5) (loga, = 5.4076)
° 4D
3 4 4 4
B = m (2mW +mZ —4mt)

3 4 m%v 4 m2z 4 m;
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Daisy resummations

As for T = 0, the mass term receives higher-order corrections as (scalar theory again)
M? = m? + Yo(@;T),
where 2, is the temperature dependent self-energy. The leading contribution is

A, on o A[T> Tm
El(m)_erzllz an T ]

The most important corrections come from Daisy diagrams and are of the order of

, A2T8 /AT2\ "2

Therefore, for a scalar theory not only we need to have A < 1 but also AT?/m? < 1 in order that the
perturbative expansion makes sense (the diagrams are summed).

The final result for the scalar mass correction is (introduced by redefining the masses - Debye masses)

_ A AT?
2 =2 -2 A
M* = +21<m+24>
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Phase transitions




1st and 2nd order phase transitions

Let us first consider the potential
AT) 4

V(6.T) = DT = T2)¢* + =0
The potential stationary points are

o(T) = 0 o(T) = \/ MT)

And the second derivative is
m?(¢,T) = 3\¢* + 2D(T* — T2)

At T > T, - only the solution ¢p = 0 exists and m?(0,T) > 0 which means the solution is a

minimum.

At T =T, - both solutions collapse at ¢ = 0 and m*(0,T) = 0.

At T < T - both solutions exist. Show that there is one minimum and one maximum.

When the broken phase is formed, the origin (symmetric phase) becomes a maximum. The phase transition
may be achieved by a thermal fluctuation for a field located at the origin. There is no energy barrier to

overcome - second order phase transition.
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1st and 2nd order phase transitions

Let us consider now the complete potential (note that all the terms are present)

V(o) = DI ~ 1) ~ 516" + 2
The potential stationary points are
o(T) = 0 ou(T)= 23)\‘?;1) — 2>\1T) VIE2T2 — 8A\(T)D(T?2 — T2) ¢n(T) = 23;(7; + ZAET) VIE2T?2 — 8S\(T)D(T2 — T2)

There is a temperature T' = T, for which only the solution ¢p = 0 exists. Show that this femperature in
given by
8A\(T,)DT?

T? =
L7 8\(T)D — 9E?

There is a femperature (which we call the critical temperature) 7' =T for which we have two minima at
the same height. Show that this is indeed the case and show that:

. AT,)DT? ~ _ 2ET,
=smp_m I =3 mlle) = )

At T =T, for the barrier disappears and the origin becomes a maximum. Show that

_ 3ET,

¢M (TO) = O ¢m (TO) A(To)

R. Santos, METFOG, 2023 43



1st and 2nd order phase transitions

The phase transition starts at T = T, by tunnelling. The chronology of the phase transition is
At T > T, - only the solution ¢ = 0 exists.
At T =T, - alocal inflection point appears for at ¢ = 3ET|/(2A(T))).

At T<T, (T > T,) - both solutions exist and there is a minimum and a maximum away from the
origin.

At T' =T, - we have two minima one at the origin and another one at a value ¢ = 2ET./A(T,) .
There is also a maximum.

At T =1, - the barrier disappears and and the origin becomes a maximum.

In this case a barrier is formed and the phase transition proceeds via funnelling. There is an energy
barrier to overcome - first order phase transition.
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Phase transitions
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Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > T, T = Tc and T < T [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.
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Phase transitions

Sakharov conditions for baryogenesis ask for a SFOPT (EW) in the course of the thermal evolution of
the Universe to prevent dilution of the generated baryon asymmetry.

In a SFOPT the universe changes from a symmetric (metastable high energy) phase to a broken phase
through the nucleation of bubbles of the broken phase.

B (it For a vacuum transition the bubbles nucleate

through quantum tunnelling, and during expansion
the bubble wall travels at close o the speed of
o ght.
” The bubble collisions are an extremely violent
R o 5 process that may give rise to gravitational waves.
~ —
GW may be detectable by future space based
gravitational wave observatories such as LISA,
s < s and if so would be able to tell us about the
4 conditions in the early universe.
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Thermal tunnelling

Transition from the false to the true vacuum proceeds via thermal tunnelling at finite temperature. We
describe it as the formation of bubbles of the broken phase in the sea of the symmetric phase. After
that the bubbles spread throughout the universe converting false vacuum into true one. It happens after
the critical femperature (meaning at a lower temperature).

The rate of bubble nucleation (more later) is given by

I(T) = A(T)e=5/T

Where A(T) is roughly proportional to 7% and §3/T is the O(3) symmetric Euclidian action,
AN 2
- r° 2{ 1 (d¢> A }
3. T)=4r| drrrd = =) + V@ T} .
0 2\ dr
With ¢ being the field VEVs that follow the classical path

2 A A
M + 3 d¢ — Verr with the boundary conditions d_. =0, —| =0
drr  rdr 4
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Thermal tunnelling

The rate of bubble nucleation depends on the 3-action below. We take ¢ = 0 outside the bubble

- RO 1<d($>2 )
S3(¢,T)=4EJ dr? >\ = ) V@Dt

0 dr

There are two contributions: a surface term FS , coming from the derivative ferm, and a volume term Fv
coming from the second term. They scale like

N Wait until friction negligible

=== Thin wall o

=== Thick wall . 1 =

) = ® 9% % E

A ~ a (%

A o 5¢ 47RP <V > = E ],

S3(¢, T) ~ 2R S OR + g g 2 g

OR : :
W) = %,
3
o/ N—

¢;f (Z;t 0
Field, ¢ Time, p
For the scalar potential an analytic formula has been obtained without assuming the thin wall
approximation. It is given by,

Sy 13.72 T2\1** [MT)D T2 x 2.4 0.26
7w P(-8)] TE(n)] e g
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Bubble nucleation

Now we have the critical radius of a bubble large enough to grow after formation. If the phase transition
is completed or not, depends on the ratio of the rate of production of bubbles of true vacuum, over the
expansion rate of the universe.

The phase transition will start at some femperature 7, (the nucleation temperature) by bubble nucleation.
The probability of bubble formation per unit time and per unit volume is given by

I
— ~ A(T)e™>/T A(T) % wT*

where w is taken to be of order 1.

A homogeneous and isotropic (flat) universe is described by a Robertson-Walker metric where a(t) is the
scale factor of the universe. The universe expansion is governed by the equation

a 2 8T
a 3M%,

where Mp is the Planck mass, and p is the energy density. For temperatures T ~ 10?2 GeV the universe is
radiation dominated, and its energy density is given by

= —g(T)T*
p=559(T)

where where g(T) is the effective degrees of freedom.
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Bubble nucleation

The onset of nucleation happens at a temperature T, such that the probability for a single bubble to be
nucleated within one horizon volume is

*dT (2(Mpi\* _ 1[5 i
/Tt T( k )exp{—s?,(T)/T}—ou) (= gy =~ x10

And this implies numerically that

102 E2 el 100 GeV
\D 6T,

Giving the nucleation femperature.
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Relevant temperatures

Critical Temperature - 7. - The potential has two degenerate minima and, consequently, the transition
from the false vacuum to the true vacuum begins via quantum tunnelling.

Nucleation Temperature - 7, - The temperature at which the tunnelling decay rate matches the Hubble
rate.

0T _
HYT,)

Percolation Temperature - 7. - Temperature at which at least 34% of the false vacuum has tunnelled into
the true vacuum or, equivalently, the probability of finding a point still in the false vacuum is 70%.

3
3 TC / 7 T/ ~
P(T) = e, (1) = 27 J [(T")dT < [ T >

3 ), T*H(T) \ J; H(T)

To find the percolation temperature one needs to solve I(T:) = 0.34. Note that

T.<T,<T,
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Strong 1st order phase transitions in the SM

We already discussed the T-dependent potential for the SM written as

V(6,T) = DI? — T2)¢? — BT + 20 g1 g My +my
4 43

We also know that the minimum is at

_ 2ET.,
- AT)

¢m (Te)

The relation between the Higgs mass, the VEV, and the quartic coupling is m}% = 21v2. For the
1st order phase transition to be strong we need that

—¢gc) >1.3

Now write a bound on the Higgs mass and comment.
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Phase transitions in the scalar extension

- Scenario 1 - SM + Complex singlet - only the doublet acquires a VEV, 9(T = 0) = 0. At finite
temperatures though, the real part may fluctuate around a non-zero ¢,(T). Two possible dark
matter (DM) candidates. One was always a DM particle since the beginning of the Universe while
the other, for certain none zero temperatures, featured a temperature dependent mixing with
the neutral component from the doublet, vanishing as T — 0. Interaction between the dark
sector and the SM only via the quartic portal coupling.

- Scenario 2 - SM + Complex singlet - both the doublet and the real component of the gauge
singlet acquire VEVs at T = 0O, that is, ¢, (T = 0) = v, ;. One of the CP-even scalar states is

identified with the SM-like Higgs boson with a mass of 125 GeV. The second scalar, that mixes
with the SM-like Higgs boson, can be either heavier or lighter than the 125 GeV Higgs boson
candidate in this case. The soft breaking term in the potential explicitly breaks U(1), — Z,

providing a pseudo-Goldstone mass to the imaginary part of the field or.
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Phase transitions in the scalar extension

» Scenario 1 and 2 - the tree-level Higgs potential is the same for all 3 scenarios

1
V (@, 0) = pg® @ + Ap(® @) + p26'6 + 1,(670)* + Ay, ® @ 'o + (5/4,9202 +h.c. ) ,
with

1 G +iG’ 1 .
(D__<¢h+h+i17>’ 6 =—(¢,+or+io),

V2 V2
In scenario 1 at zero temperature the mass spectrum is

Ay V2
mj, = 2X\eVj, mpy = pa + pp + ‘I>2h’ My = pig — pt +

and the 6 free parameters are chosen as the 125 GeV Higgs mass, the doublet VEV, the 2 DM
particle masses and the two quartic couplings from the dark sector.

In scenario 2 there is mixing between the two Higgs

)\Uvg — )\@U}QL
cos 260

my =m2 = —2u?, gy <0,

o1

2 2 2
mh17h2 = )\vah + >\O'Uo- F

and the 6 free parameters are the 125 GeV Higgs, the doublet VEV, the mass of the new scalar, the
mass of the DM particle, the singlet VEV and the mixing angle.
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Phase transitions in the scalar extension

The 1-loop finite temperature potential is given by

Vyd(T) = Vo + VO + V, + AV

The counterterm potential is given by

1
V= Sp20T® + g (D@ + 82670 + 64, (076)” + 51y, ® D0 + <55,ub202+ h.c. >

The CT potential is introduced so that by applying the following renormalization conditions, the
tadpole equations and mass terms are unchanged at 1-loop

oV \ oVEY Ve \ 0*VEY
on;, | on, [’ ohoh; [ ohoh; [

The temperature corrections are

AV(T) = — { >yl [m (e )] 2 neJy [ iy )] } : JB/F<y2>=Lwdxleog<1:exp[— x2+y2]>

where n,(n;) are the bosonic (fermionic) d.o.f. for each particle b (f) in the summation, and m;are the

field dependent masses. J,, functions are the bosonic (fermionic) thermal integrals.
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Phase transitions in the scalar extension

The T? terms in the thermal expansion are modified by the inclusion of an all-order resummation
procedure (so-called daisy diagrams). In practice, this is done by a correction to the tree-level
potential mass terms given by

H(T) = g + c,T?

In scenarios 1 and 2 this means the addition of

3 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
= —8*+—g" " +=Apt+—Ap, + =+ Y7 + Y+ y:+ 2+ y) +—OZ+ > +y7),
= 1e8 g8 totet 5 4(yt Yp T Yo+ Y5 i+ ) 12(» Vi +Ye)
lﬂ+1/1
C, = — — ,
c 3 (] 6@0

Plus in scenario 3

6

1 2
Co _>Ca+ﬂ;yw
1=

and plus the following additions for the longitudinal modes of the gauge bosons

11
miy, (9n: T) = miy (én) + 59°T"
1 11 2 1 11 2 11 11
my, a, (90 T) = §m2Z(gbh) + E(g2 +¢T*+D, D?2= (§m2z(¢h) 4 E(g2 4 g’2)T2) _ 24T (qb,% n §T2>
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Phase transitions in the scalar extension

The strength of the phase transitions is related to the Latent Heat and given by

T (0Vl 0Vf)]

1
a=—[v,.—vf— _
4 \or T

Py
where p, is the radiation density outside the bubble.

The inverse time scale of the transitions if given by (time of phase transition is ')

p o (S,
——=T.— | =
H o'\ T

T

The order parameter of the phase transition is given by

Av, Ivg;—vé,,l

= R = h, 0]
T T ¢
The spectrum of the GW is given by 7
7 3 )
4\ 2 3
thGW — h29[()}6\2}( <_) f 1+= f
7 fpeak 4 fpeak

where fi.«is proportional to the inverse of the mean bubble separation.
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Gravitational waves




Gravitational waves and LISA

GWs are decoupled from the rest of matter and radiation components in the universe. GWs
propagate freely in the early universe, immediately after they are generated.

They carry information about the processes that produced them. We can access the state of the
Universe at epochs and energy scales unreachable by any other means.

Complementarity with the LHC or future particle colliders.
From NASA LISA site

"LISA consists of three spacecraft that are separated
by millions of miles. These spacecraft relay laser beams
back and forth between the different spacecraft and the
signals are combined to search for gravitational wave
signatures that come from distortions of spacetime.”

"A bit like the objects moving on the surface of a pond produce ripples and waves, massive
objects moving in space distort the fabric of spacetime and produce gravitational waves. Some
of these gravitational wave events will cause the three LISA spacecraft to shift slightly with
respect to each other, as they "ride the gravitational waves", to produce a characteristic
pattern in the combined laser beam signal that depends on the location and physical properties
of the source.” 59



Relevant quantities

The strength of the phase transitions is related to the Latent Heat and given by

1 T. 0V, 9V,
=5 (G 5]
4 \or oT

where p, is the radiation density outside the bubble.

The inverse time scale of the transitions if given by (time of phase transition is ')

B _ 0 (5
H “or\T

The order parameter of the phase transition is given by

T

Avd,_ Ivg;—v;,,l B
- ) ¢—h,0-
T T

The spectrum of the GW is given by

7
7 3 -

—— 2
4\ 2 3
h?Qey = h*QPs <—> / s
7 fpeak 4 fpeak

where f..is proportional to the inverse of the mean bubble separation. 60
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