AULA 18

Sumário. Matriz companheira de um polinómio. Matrizes não-derrogatórias.

Dado um polinómio mónico arbitrário

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n \in \mathbb{C}[x],$$

definimos a MATRIZ COMPANHEIRA de p(x) como sendo

$$\mathbf{C} = \mathbf{C}_{p(x)} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \in \mathbb{C}^{n \times n}.$$

Proposição 18.1. Se $\mathbf{C} \in \mathbb{C}^{n \times n}$ for a matriz companheira de um polinómio mónico $p(x) \in \mathbb{C}[x]$, então $m_{\mathbf{C}}(x) = p_{\mathbf{C}}(x) = p(x)$.

DEMONSTRAÇÃO. Seja $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ a base canónica de $\mathbb{C}^{n\times 1}$ e notemos que

$$\mathbf{e}_{2} = \mathbf{C}\mathbf{e}_{1},$$
 $\mathbf{e}_{3} = \mathbf{C}\mathbf{e}_{2} = \mathbf{C}^{2}\mathbf{e}_{1}$
 \vdots
 $\mathbf{e}_{n} = \mathbf{C}\mathbf{e}_{n-1} = \mathbf{C}^{n-1}\mathbf{e}_{1}.$

Além disso, se $a_0 + a_1x + \cdots + a_nx^n$ em que $a_n = 1$, então

$$\mathbf{C}\mathbf{e}_{n} = -a_{0}\mathbf{e}_{1} - a_{1}\mathbf{e}_{2} - \dots - a_{n-2}\mathbf{e}_{n-1} - a_{n-1}\mathbf{e}_{n}$$

$$= -a_{0}\mathbf{e}_{1} - a_{1}\mathbf{C}\mathbf{e}_{1} - \dots - a_{n-2}\mathbf{C}^{n-2}\mathbf{e}_{1} - a_{n-1}\mathbf{C}^{n-1}\mathbf{e}_{1}$$

$$= \left(-a_{0}\mathbf{I}_{n} - a_{1}\mathbf{C} - \dots - a_{n-2}\mathbf{C}^{n-2} - a_{n-1}\mathbf{C}^{n-1}\right)\mathbf{e}_{1}$$

$$= \left(\mathbf{C}^{n} - p(\mathbf{C})\right)\mathbf{e}_{1} = \mathbf{C}^{n}\mathbf{e}_{1} - p(\mathbf{C})\mathbf{e}_{1}$$

e, portanto,

$$p(\mathbf{C})\mathbf{e}_1 = \mathbf{C}^n\mathbf{e}_1 - \mathbf{C}\mathbf{e}_n = \mathbf{C}^n\mathbf{e}_1 - \mathbf{C}(\mathbf{C}^{n-1}\mathbf{e}_1) = \mathbf{0}.$$

Por outro lado, para qualquer $2 \le i \le n$, temos

$$p(\mathbf{C})e_i = p(\mathbf{C})\mathbf{C}^{i-1}\mathbf{e}_1 = \mathbf{C}^{i-1}p(\mathbf{C})\mathbf{e}_1 = \mathbf{0}.$$

Aula 18 T18-2

Por conseguinte, $\mathbf{e}_1, \dots, \mathbf{e}_n \in \mathcal{N}(p(\mathbf{C}))$ e, portanto,

$$\mathcal{N}(p(\mathbf{C})) = \mathbb{C}^{n \times 1},$$

o que obriga a que $p(\mathbf{C}) = \mathbf{0}$. Pelo Teorema 21.1, existe um polinómio $q(x) \in \mathbb{C}[x]$ tal que

$$p(x) = m_{\mathbf{C}}(x)q(x);$$

em particular, gr $m_{\mathbf{C}}(x) \leq \operatorname{gr} p(x)$. Pondo $m_{\mathbf{C}}(x) = b_0 + b_1 x + \cdots + b_r x^r$, em que $b_r = 1$, e supondo que r < n, obtemos

$$\mathbf{0} = m_{\mathbf{C}}(\mathbf{C})\mathbf{e}_1 = b_0\mathbf{e}_1 + b_1\mathbf{C}\mathbf{e}_1 + \cdots + b_r\mathbf{C}^r\mathbf{e}_1 = b_0\mathbf{e}_1 + b_1\mathbf{e}_2 + \cdots + b_r\mathbf{e}_{r+1},$$

de onde resulta que $b_0 = b_1 = \cdots = b_r = 0$ (porque $\mathbf{e}_1, \ldots, \mathbf{e}_{r+1}$ são linearmente independentes), uma contradição (porque $b_r = 1$). Sendo assim, tem de ser r = n, logo $p(x) = m_{\mathbf{C}}(x)$ (porque p(x) e $m_{\mathbf{C}}(x)$ são mónicos).

Por outro lado, como $m_{\mathbf{C}}(x)$ é um divisor de $p_{\mathbf{C}}(x)$ e $p_{\mathbf{C}}(x)$ é mónico com grau $n = \operatorname{gr} m_{\mathbf{C}}(x)$, concluímos que $p_{\mathbf{C}}(x) = m_{\mathbf{C}}(x) = p(x)$.

Dizemos que $\mathbf{A} \in \mathbb{C}^{n \times n}$ é uma MATRIZ NÃO-DERROGATÓRIA se m.g. $(\lambda) = 1$ para qualquer $\lambda \in \sigma(\mathbf{A})$; no caso contrário, dizemos que \mathbf{A} é uma MATRIZ DERROGATÓRIA.

Teorema 18.2. Para qualquer matriz $\mathbf{A} \in \mathbb{C}^{n \times n}$, as afirmações sequintes são equivalentes:

- (a) gr $m_{\bf A}(x) = n$.
- (b) $p_{\mathbf{A}}(x) = m_{\mathbf{A}}(x)$.
- (c) A é não-derrogatória.
- (d) A é semelhante à matriz companheira do polinómio $p_{\mathbf{A}}(x)$.

DEMONSTRAÇÃO. Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$ arbitrária. Como $m_{\mathbf{A}}(x)$ é um divisor de $p_{\mathbf{A}}(x)$ e $p_{\mathbf{A}}(x)$ é mónico com grau n é claro que (a) \Rightarrow (b).

Por outro lado, sejam $\lambda_1, \ldots, \lambda_t \in \mathbb{C}$ os valores próprios de **A** e suponhamos que $\lambda_i \neq \lambda_j$ para quaisquer $1 \leq i \neq j \leq t$. Então,

$$p_{\mathbf{A}}(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_t)^{m_t}$$

onde $m_i = \text{m.a.}(\lambda_i)$ para qualquer $1 \leq i \leq t$.

Suponhamos que $p_{\mathbf{A}}(x) = m_{\mathbf{A}}(x)$. Então, o Teorema 21.4 garante que, para qualquer $1 \le i \le t$, $\mathbf{J}_{m_i}(\lambda_i)$ é o maior bloco de Jordan de \mathbf{A} associado a λ_i . Como $m_1 + \cdots + m_t = n$, concluímos

Aula 18 T18–3

que

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_{m_1}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}_{m_2}(\lambda_2) & \cdots & \mathbf{0} \ dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}_{m_t}(\lambda_t) \end{bmatrix}$$

é a forma canónica de Jordan de **A** e, portanto, m.g. $(\lambda_i) = 1$ para qualquer $1 \le i \le t$, provando que (b) \Rightarrow (c).

Suponhamos que A é não-derrogatória. Então,

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_{m_1}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}_{m_2}(\lambda_2) & \cdots & \mathbf{0} \ dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}_{m_t}(\lambda_t) \end{bmatrix}$$

é a forma canónica de Jordan de **A** (porque m.g.(λ) é o número de blocos de Jordan associados a $\lambda \in \sigma(\mathbf{A})$). Por outro lado, seja **C** a matriz companheira de $p_{\mathbf{A}}(x)$. Pelo teorema anterior, sabemos que

$$m_{\mathbf{C}}(x) = p_{\mathbf{C}}(x) = p_{\mathbf{A}}(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_t)^{m_t}$$

e, portanto, $\sigma(\mathbf{C}) = \{\lambda_1, \dots, \lambda_t\} = \sigma(\mathbf{A})$. Tal como no parágrafo anterior, concluímos que \mathbf{J} é a forma canónica de Jordan de \mathbf{C} . Deste modo, \mathbf{A} e \mathbf{C} são semelhantes a \mathbf{J} , logo \mathbf{A} e \mathbf{C} também são semelhantes, provando que (c) \Rightarrow (d).

Finalmente, se **A** for semelhante a **C**, então $m_{\mathbf{A}}(x) = m_{\mathbf{C}}(x)$ e $p_{\mathbf{A}}(x) = p_{\mathbf{C}}(x)$. Como $m_{\mathbf{C}}(x) = p_{\mathbf{C}}(x)$ (pelo teorema anterior), concluímos que $m_{\mathbf{A}}(x) = p_{\mathbf{A}}(x)$ e, portanto,

$$\operatorname{gr} m_{\mathbf{A}}(x) = \operatorname{gr} p_{\mathbf{A}}(x) = n.$$

Assim, provámos que (d) \Rightarrow (a), o que termina a demonstração.