AULA 19

Sumário. Funções de matrizes: o caso não-diagonalizável.

ightharpoonup Seja $f\colon X\to\mathbb{C},\ z\mapsto f(z)$, uma função definida nalgum subconjunto $X\subseteq\mathbb{C}$. Já vimos que, se $\mathbf{A}\in\mathbb{C}^{n\times n}$ for uma matriz diagonalizável e se $\mathbf{P}\in\mathbb{C}^{n\times n}$ for uma matriz invertível tal que

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = egin{bmatrix} \lambda_1\mathbf{I}_{m_1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \lambda_2\mathbf{I}_{m_2} & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \lambda_r\mathbf{I}_{m_r} \end{bmatrix},$$

onde $\sigma(\mathbf{A}) = \{\lambda_1, \dots, \lambda_r\}$ e $m_i = \text{m.a.}(\lambda_i), 1 \leq i \leq r$, então a matriz $f(\mathbf{A}) \in \mathbb{C}^{n \times n}$ estará definida se e só se $\lambda_1, \dots, \lambda_r \in \text{Dom}(f)$ (†) e, nesta situação

$$f(\mathbf{A}) = \mathbf{P}^{-1} = \begin{bmatrix} f(\lambda_1)\mathbf{I}_{m_1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & f(\lambda_2)\mathbf{I}_{m_2} & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & f(\lambda_r)\mathbf{I}_{m_r} \end{bmatrix};$$

de facto, se $\mathbf{G}_1, \dots, \mathbf{G}_r \in \mathbb{C}^{n \times n}$ forem os projectores espectrais de \mathbf{A} , de modo que

$$\mathbf{A} = \lambda_1 \mathbf{G}_1 + \cdots + \lambda_r \mathbf{G}_r.$$

e se a matriz $f(\mathbf{A})$ estiver definida, então

$$f(\mathbf{A}) = f(\lambda_1)\mathbf{G}_1 + \dots + f(\lambda_r)\mathbf{G}_r$$

(desde que $\lambda_1, \ldots, \lambda_r \in \text{Dom}(f)$).

A forma canónica de Jordan permite-nos definir a matriz $f(\mathbf{A})$ no caso geral (em que \mathbf{A} não tem de ser diagonalizável). Em primeiro lugar, consideramos um bloco de Jordan arbitrário.

Lema 19.1. Seja $\lambda \in \mathbb{C}$ e seja $\mathbf{J}_m(\lambda) \in \mathbb{C}^{m \times m}$ um bloco de Jordan de tipo $m \times m$. Seja $z \mapsto f(z)$ uma função complexa de variável complexa admite um desenvolvimento em série de potências

$$f(z) = \sum_{k \ge 0} \frac{f^{(k)}(\lambda)}{k!} (z - \lambda)^k, \qquad z \in \mathbb{C}, \ |z - \lambda| < r,$$

 $^{(\}dagger)$ Denotamos por Dom(f) o domínio de f.

para algum $r \in \mathbb{R}^{+}$ (*). Então, a matriz $f(\mathbf{J}_m(\lambda)) \in \mathbb{C}^{m \times m}$ está definida e

$$f(\mathbf{J}_{m}(\lambda)) = \begin{bmatrix} f(\lambda) & f'(\lambda) & \frac{f''(\lambda)}{2} & \cdots & \frac{f^{(m-2)}(\lambda)}{(m-2)!} & \frac{f^{(m-1)}(\lambda)}{(m-1)!} \\ 0 & f(\lambda) & f'(\lambda) & \cdots & \frac{f^{(m-3)}(\lambda)}{(m-3)!} & \frac{f^{(m-2)}(\lambda)}{(m-2)!} \\ 0 & 0 & f(\lambda) & \cdots & \frac{f^{(m-4)}(\lambda)}{(m-4)!} & \frac{f^{(m-3)}(\lambda)}{(m-3)!} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & f(\lambda) & f'(\lambda) \\ 0 & 0 & 0 & \cdots & 0 & f(\lambda) \end{bmatrix}.$$

Demonstração. Temos

$$\mathbf{J}_{m}(\lambda) - \lambda \mathbf{I}_{m} = \mathbf{J}_{m}(0) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix},$$

logo $(\mathbf{J}_m(\lambda) - \lambda \mathbf{I}_m)^m = \mathbf{J}_m(0)^m = \mathbf{0}$ e, portanto, a série $f(\mathbf{J}_m(\lambda)) = \sum_{k \geq 0} \frac{f^{(k)}(\lambda)}{k!} (\mathbf{J}_m(\lambda) - \lambda \mathbf{I}_m)^k$ é convergente e, de facto,

$$f(\mathbf{J}_{m}(\lambda)) = \sum_{k \geq 0} \frac{f^{(k)}(\lambda)}{k!} (\mathbf{J}_{m}(\lambda) - \lambda \mathbf{I}_{m})^{k} = \sum_{0 \leq k \leq m-1} \frac{f^{(k)}(\lambda)}{k!} (\mathbf{J}_{m}(\lambda) - \lambda \mathbf{I}_{m})^{k}$$
$$= f(\lambda)\mathbf{I}_{m} + f'(\lambda)\mathbf{J}_{m}(0) + \frac{f''(\lambda)}{2}\mathbf{J}_{m}(0)^{2} + \dots + \frac{f^{(m-1)}(\lambda)}{m-1!}\mathbf{J}_{m}(\lambda)^{m-1}$$

tem a forma desejada.

 \triangleright Dados quaisquer $\lambda \in \mathbb{C}$ e $m \in \mathbb{N}$, o lema anterior sugere a definição

$$f(\mathbf{J}_{m}(\lambda)) = \begin{bmatrix} f(\lambda) & f'(\lambda) & \frac{f''(\lambda)}{2} & \cdots & \frac{f^{(m-1)}(\lambda)}{(m-1)!} \\ 0 & f(\lambda) & f'(\lambda) & \cdots & \frac{f^{(m-2)}(\lambda)}{(m-2)!} \\ 0 & 0 & f(\lambda) & \cdots & \frac{f^{(m-3)}(\lambda)}{(m-3)!} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & f(\lambda) \end{bmatrix}$$

sempre que $z \mapsto f(z)$ for uma função complexa de variável complexa tal que $\lambda \in \text{Dom}(f)$ e existem as derivadas $f'(\lambda), f''(\lambda), \dots, f^{(m-1)}(\lambda)$.

^(*) Em particular, $\lambda \in \text{Dom}(f)$ e as derivadas $f'(\lambda), f''(\lambda), \cdots, f^{(m-1)}(\lambda)$ existem.

Sendo assim, se $\lambda_1, \ldots, \lambda_r \in \mathbb{C}, m_1, \ldots, m_r \in \mathbb{N}$ e

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_{m_1}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}_{m_2}(\lambda_2) & \cdots & \mathbf{0} \ dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}_{m_r}(\lambda_r) \end{bmatrix},$$

podemos definir

$$f(\mathbf{J}) = \begin{bmatrix} f(\mathbf{J}_{m_1}(\lambda_1)) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & f(\mathbf{J}_{m_2}(\lambda_2)) & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & f(\mathbf{J}_{m_r}(\lambda_r)) \end{bmatrix}$$

sempre que $z \mapsto f(z)$ for uma função complexa de variável complexa tal que $\lambda_1, \ldots, \lambda_r \in \text{Dom}(f)$ e, para qualquer $1 \le i \le r$, existem as derivadas $f'(\lambda_i), f''(\lambda_i), \ldots, f^{(m_i-1)}(\lambda_i)$.

Por conseguinte, se $\mathbf{A} \in \mathbb{C}^{n \times n}$ for qualquer e se $\mathbf{P} \in \mathbb{C}^{n \times n}$ for uma matriz invertível tal que $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J}$ está na forma canónica de Jordan, então podemos definir

$$f(\mathbf{A}) = \mathbf{P}f(\mathbf{J})\mathbf{P}^{-1}$$

sempre que $\sigma(\mathbf{A}) \subseteq \mathrm{Dom}(f)$ e, para qualquer $\lambda \in \sigma(\mathbf{A})$, existem as derivadas $f'(\lambda)$, $f''(\lambda)$, ..., $f^{(m-1)}(\lambda)$ onde $\mathbf{J}_m(\lambda)$ é o maior bloco de Jordan em \mathbf{J} que está associado a λ . Há que provar que a definição de $f(\mathbf{A})$ não depende da matriz invertível \mathbf{P} . Para verificarmos que isto acontece, associamos a cada valor próprio $\lambda \in \sigma(\mathbf{A})$ uma matriz $\mathbf{G} \in \mathbb{C}^{n \times n}$ a que chamamos o PROJECTOR ESPECTRAL de \mathbf{A} associado a λ que se define como segue.

PROPOSIÇÃO 19.2. Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$, seja $\lambda \in \sigma(\mathbf{A})$ e seja $k = \operatorname{ind}(\lambda)$ o índice de λ (*). Então, existe uma e uma só matriz $\mathbf{G} \in \mathbb{C}^{n \times n}$ tal que:

(a)
$$\mathcal{N}(\mathbf{G}) = \mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k) \ e \ \mathcal{R}(\mathbf{G}) = \mathcal{N}((\mathbf{A} - \lambda \mathbf{I}_n)^k).$$

- (b) $G^2 = G$.
- (c) $\mathbb{C}^{n\times 1} = \mathcal{N}(\mathbf{G}) \oplus \mathcal{R}(\mathbf{G})$ (†).

$$\mathbb{C}^{n\times 1} = \mathcal{N}(\mathbf{G}) + \mathcal{R}(\mathbf{G})$$
 e $\mathcal{N}(\mathbf{G}) \cap \mathcal{R}(\mathbf{G}) = \{\mathbf{0}\};$

equivalentemente, qualquer vector $\mathbf{u} \in \mathbb{C}^{n \times 1}$ escreve-se de maneira única como soma $\mathbf{u} = \mathbf{v} + \mathbf{w}$ em que $\mathbf{v} \in \mathcal{N}(\mathbf{G})$ e $\mathbf{w} \in \mathcal{R}(\mathbf{G})$ ou, ainda, que existem bases $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ de $\mathcal{N}(\mathbf{G})$ e $\{\mathbf{w}_1, \dots, \mathbf{w}_{n-r}\}$ de $\mathcal{R}(\mathbf{G})$ tais que $\{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{w}_1, \dots, \mathbf{w}_{n-r}\}$ é uma base de $\mathbb{C}^{n \times 1}$.

^(*) Isto é, o menor natural $k \in \mathbb{N}$ tal que $r((\mathbf{A} - \lambda \mathbf{I}_n)^k) = r((\mathbf{A} - \lambda \mathbf{I}_n)^{k+1})$.

 $^{^{(\}dagger)}$ Isto significa que $\mathcal{N}(\mathbf{G})$ e $\mathcal{R}(\mathbf{G})$ são SUBESPAÇOS VECTORIAIS COMPLEMENTARES de $\mathbb{C}^{n\times 1}$, ou seja, que

DEMONSTRAÇÃO. Unicidade. Suponhamos que G e G' são duas matrizes em $\mathbb{C}^{n\times n}$ que satisfazem (a)-(c). Por (a), temos $\mathcal{N}(G) = \mathcal{N}(G')$ e $\mathcal{R}(G) = \mathcal{R}(G')$. Em particular, obtemos

$$Gv = G'v = 0, \qquad v \in \mathcal{N}(G).$$

Por outro lado, para qualquer $\mathbf{w} \in \mathcal{R}(\mathbf{G})$, existe $\mathbf{w}' \in \mathbb{C}^{n \times 1}$ tal que $\mathbf{w} = \mathbf{G}\mathbf{w}'$; como $\mathbf{G}^2 = \mathbf{G}$ (por (b)), obtemos

$$\mathbf{w} = \mathbf{G}\mathbf{w}' = \mathbf{G}^2\mathbf{w}' = \mathbf{G}(\mathbf{G}\mathbf{w}') = \mathbf{G}\mathbf{w}.$$

Analogamente, $\mathbf{w} = \mathbf{G}'\mathbf{w}$ e, portanto,

$$Gw = G'w = w, \qquad w \in \mathcal{R}(G).$$

Finalmente, seja $u \in \mathbb{C}^{n \times 1}$ qualquer. Por (c), existem $\mathbf{v} \in \mathcal{N}(\mathbf{G})$ e $\mathbf{w} \in \mathcal{R}(\mathbf{G})$ tais que $\mathbf{u} = \mathbf{v} + \mathbf{w}$ e, portanto,

$$\mathbf{G}\mathbf{u} = \mathbf{G}(\mathbf{v} + \mathbf{w}) = \mathbf{G}\mathbf{v} + \mathbf{G}\mathbf{w} = \mathbf{G}'\mathbf{v} + \mathbf{G}'\mathbf{w} = \mathbf{G}'(\mathbf{v} + \mathbf{w}) = \mathbf{G}'\mathbf{u}.$$

Em particular, se $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ for a base canónica de $\mathbb{C}^{n \times 1}$, então

$$G = [Ge_1 Ge_2 \cdots Ge_n] = [G'e_1 G'e_2 \cdots G'e_n] = G',$$

como se queria.

Existência. Começamos por escolher uma matriz invertível $\mathbf{P} \in \mathbb{C}^{n \times n}$ tal que $\mathbf{J} = \mathbf{P}^{-1}\mathbf{AP}$ está na forma canónica de Jordan; sem perda de generalidade, podemos supor que

$$\mathbf{J} = egin{bmatrix} \mathbf{J}(\lambda) & \mathbf{0} \ \mathbf{0} & \mathbf{J}' \end{bmatrix}$$

onde em $\mathbf{J}(\lambda)$ ocorrem todos os blocos de Jordan associados a λ e em \mathbf{J}' ocorrem todos os blocos de Jordan associados aos valores próprios diferentes de λ (obviamente, permitimos a possibilidade $\mathbf{J} = \mathbf{J}(\lambda)$). É fácil justificar que

$$\mathbf{P}^{-1}(\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{P} = (\mathbf{P}^{-1}(\mathbf{A} - \lambda \mathbf{I}_n)\mathbf{P})^k = (\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - \lambda \mathbf{I}_n)^k = \begin{bmatrix} \mathbf{J}(\lambda) - \lambda \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{J}' - \lambda \mathbf{I}_{n-r} \end{bmatrix}^k$$
$$= \begin{bmatrix} (\mathbf{J}(\lambda) - \lambda \mathbf{I}_r)^k & \mathbf{0} \\ \mathbf{0} & (\mathbf{J}' - \lambda \mathbf{I}_{n-r})^k \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & (\mathbf{J}' - \lambda \mathbf{I}_{n-r})^k \end{bmatrix}$$

onde $r \in \mathbb{N}$ é tal que $\mathbf{J}(\lambda) \in \mathbb{C}^{r \times r}$. Para simplificar, ponhamos $\mathbf{B} = (\mathbf{J}' - \lambda \mathbf{I}_{n-r})^k \in \mathbb{C}^{(n-r) \times (n-r)}$ e notemos que

$$\sigma(\mathbf{B}) = \{(\mu - \lambda)^k : \mu \in \sigma(\mathbf{A}), \ \mu \neq \lambda\};$$

sendo assim, $0 \notin \sigma(\mathbf{B})$ e, portanto, \mathbf{B} é uma matriz invertível.

Agora, sejam $\mathbf{X} \in \mathbb{C}^{n \times r}$ e $\mathbf{Y} \in \mathbb{C}^{n \times r}$ tais que $\mathbf{P} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}$; analogamente, sejam $\mathbf{X}' \in \mathbb{C}^{r \times n}$ e $\mathbf{Y}' \in \mathbb{C}^{(n-r) \times n}$ tais que $\mathbf{P}^{-1} = \begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix}$. Provemos que a matriz $\mathbf{G} = \mathbf{X}\mathbf{X}' \in \mathbb{C}^{n \times n}$ satisfaz as condições (a)-(b). Em primeiro lugar, temos

$$\begin{bmatrix} (\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{X} & (\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{Y} \end{bmatrix} = (\mathbf{A} - \lambda \mathbf{I}_n)^k \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{Y} \mathbf{B} \end{bmatrix}$$

e, portanto,

$$(\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{X} = \mathbf{0}$$
 e $(\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{Y} = \mathbf{B} \mathbf{Y}$.

Por conseguinte, se $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{C}^{n \times 1}$ forem as colunas de \mathbf{X} , temos

$$\mathbf{v}_1,\ldots,\mathbf{v}_r\in\mathcal{N}((\mathbf{A}-\lambda\mathbf{I}_n)^k);$$

por outro lado, temos

$$\mathbf{Y} = \mathbf{B}^{-1}(\mathbf{A} - \lambda \mathbf{I}_n)^k \mathbf{Y}$$

e, portanto, se $\mathbf{w}_1, \dots, \mathbf{w}_{n-r} \in \mathbb{C}^{n \times 1}$ forem as colunas de Y, temos

$$\mathbf{w}_1, \dots, \mathbf{w}_{n-r} \in \mathcal{R}(\mathbf{B}^{-1}(\mathbf{A} - \lambda \mathbf{I}_n)^k) = \mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k)$$

(usando o Exercício ??). Como $\{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{w}_1, \dots, \mathbf{w}_{n-r}\}$ é uma base de $\mathbb{C}^{n \times 1}$ (porque são as colunas de uma matriz invertível), é fácil justificar que

$$\mathbb{C}^{n\times 1} = \mathcal{N}((\mathbf{A} - \lambda \mathbf{I}_n)^k) \oplus \mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k)$$

e que $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ e que $\{\mathbf{w}_1, \dots, \mathbf{w}_{n-r}\}$ são bases de $\mathcal{N}((\mathbf{A} - \lambda \mathbf{I}_n)^k)$ e $\mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k)$, respectivamente.

Agora, temos

$$\mathbf{I}_n = \mathbf{P}^{-1}\mathbf{P} = \begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Y} \\ \mathbf{Y}'\mathbf{X} & \mathbf{Y}'\mathbf{Y} \end{bmatrix}.$$

Em particular, temos X'Y = 0, logo

$$GY = XX'Y = 0$$

e, portanto, $\mathbf{w}_1, \dots, \mathbf{w}_{n-r} \in \mathcal{N}(\mathbf{G})$, ou seja,

$$\mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k) = \langle \mathbf{w}_1, \dots, \mathbf{w}_{n-r} \rangle \subseteq \mathcal{N}(\mathbf{G});$$

além disso, temos $X'X = I_r$, logo

$$X = XI_r = XX'X = GX$$

e, portanto, $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathcal{R}(\mathbf{G})$, ou seja,

$$\mathcal{N}((\mathbf{A} - \lambda \mathbf{I}_n)^k) = \langle \mathbf{v}_1, \dots, \mathbf{v}_r \rangle \subseteq \mathcal{R}(\mathbf{G}).$$

Como $\mathcal{R}(\mathbf{G}) = \mathcal{R}(\mathbf{X}\mathbf{X}') \subseteq \mathcal{R}(\mathbf{X}) = \langle \mathbf{v}_1, \dots, \mathbf{v}_r \rangle$, concluímos que

$$\mathcal{R}(\mathbf{G}) = \mathcal{N}((\mathbf{A} - \lambda \mathbf{I}_n)^k);$$

calculando dimensões, obtemos também que

$$\mathcal{N}(\mathbf{G}) = \mathcal{R}((\mathbf{A} - \lambda \mathbf{I}_n)^k).$$

Assim, provámos que a matriz G = XX' satisfaz a condição da alínea (a) e, também, a condição da alínea (c). Para a alínea (b), basta observar que

$$\mathbf{G}^2 = (\mathbf{X}\mathbf{X}')^2 = \mathbf{X}(\mathbf{X}'\mathbf{X})\mathbf{X}' = \mathbf{X}\mathbf{I}_r\mathbf{X}' = \mathbf{X}\mathbf{X}' = \mathbf{G},$$

como se quer.

A demonstração está completa.

ightharpoonup Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$, sejam $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ tais que $\sigma(\mathbf{A}) = \{\lambda_1, \ldots, \lambda_r\}$ e suponhamos que $\lambda_1, \ldots, \lambda_r$ são distintos dois-a-dois. Além disso, seja $\mathbf{P} \in \mathbb{C}^{n \times n}$ uma matriz invertível tal que $\mathbf{J} = \mathbf{P}^{-1}\mathbf{AP}$ está na forma canónica de Jordan e suponhamos que

$$\mathbf{J} = egin{bmatrix} \mathbf{J}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}(\lambda_2) & \cdots & \mathbf{0} \ dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}(\lambda_r) \end{bmatrix}$$

onde, para cada $1 \leq i \leq r$, na matriz $\mathbf{J}(\lambda_i) \in \mathbb{C}^{m_i \times m_i}$, para $m_i = \text{m.a.}(\lambda_i)$, ocorrem todos os blocos de Jordan associados a λ_i . Para cada $1 \leq i \leq r$, sejam $\mathbf{X}_i \in \mathbb{C}^{n \times m_i}$ e $\mathbf{Y}_i \in \mathbb{C}^{m_i \times n}$ tais que

$$\mathbf{P} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_r \end{bmatrix}$$
 e $\mathbf{P}^{-1} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_r \end{bmatrix}$.

Então, pela proposição anterior (e pela sua demonstração), as matrizes

$$\mathbf{G}_i = \mathbf{X}_i \mathbf{Y}_i \in \mathbb{C}^{n \times n}, \qquad 1 \leqslant i \leqslant r,$$

são os PROJECTORES ESPECTRAIS de **A** associados a $\lambda_1, \ldots, \lambda_r$, respectivamente; além disso, estas matrizes são independentes da escolha da matriz **P**.

TEOREMA 19.3. Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$, sejam $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ tais que $\sigma(\mathbf{A}) = \{\lambda_1, \ldots, \lambda_r\}$ e sejam $\mathbf{G}_1, \ldots, \mathbf{G}_r \in \mathbb{C}^{n \times n}$ os projectores espectrais de \mathbf{A} associados a $\lambda_1, \ldots, \lambda_r$, respectivamente. Se $z \mapsto f(z)$ for uma função complexa de variável complexa tal que a matriz $f(\mathbf{A}) \in \mathbb{C}^{n \times n}$ está definida, então

$$f(\mathbf{A}) = \sum_{1 \le i \le r} \left(\sum_{0 \le k \le k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (\mathbf{A} - \lambda_i \mathbf{I}_n)^k \right) \mathbf{G}_i$$

onde, para qualquer $1 \le i \le r$, $k_i = \operatorname{ind}(\lambda_i)$ é o índice de λ_i .

DEMONSTRAÇÃO. Mantemos a notação anterior. Em particular, escolhemos $\mathbf{P} \in \mathbb{C}^{n \times n}$ uma matriz invertível tal que $\mathbf{J} = \mathbf{P}^{-1}\mathbf{AP}$ está na forma canónica de Jordan e supomos que

$$\mathbf{J} = egin{bmatrix} \mathbf{J}(\lambda_1) & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{J}(\lambda_2) & \cdots & \mathbf{0} \ dots & dots & dots \ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{J}(\lambda_r) \ \end{pmatrix}.$$

Pela definição, temos

$$f(\mathbf{A}) = \mathbf{P}f(\mathbf{J})\mathbf{P}^{-1} = \mathbf{P} \begin{bmatrix} f(\mathbf{J}(\lambda_1)) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & f(\mathbf{J}(\lambda_2)) & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & f(\mathbf{J}(\lambda_r)) \end{bmatrix} \mathbf{P}^{-1}.$$

Além disso, se $m_i = \text{m.a.}(\lambda_i)$, então $\mathbf{J}(\lambda_i) \in \mathbb{C}^{m_i \times m_i}$ e (pela definição)

$$f(\mathbf{J}(\lambda_i)) = \sum_{0 \le k \le k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (\mathbf{J}(\lambda_i) - \lambda_i \mathbf{I}_{m_i})^k, \qquad 1 \le i \le r.$$

Pondo

$$\mathbf{P} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_r \end{bmatrix}$$
 e $\mathbf{P}^{-1} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_r \end{bmatrix}$,

onde $\mathbf{X}_i \in \mathbb{C}^{n \times m_i}$ e $\mathbf{Y}_i \in \mathbb{C}^{m_i \times n}$, para $1 \leqslant i \leqslant r$, obtemos

$$f(\mathbf{A}) = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_r \end{bmatrix} \begin{bmatrix} f(\mathbf{J}(\lambda_1)) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & f(\mathbf{J}(\lambda_2)) & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & f(\mathbf{J}(\lambda_r)) \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_r \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{X}_1 f(\mathbf{J}(\lambda_1)) & \mathbf{X}_2 f(\mathbf{J}(\lambda_2)) & \mathbf{X}_r f(\mathbf{J}(\lambda_r)) \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_r \end{bmatrix}$$

$$= \sum_{1 \leq i \leq r} \mathbf{X}_i f(\mathbf{J}(\lambda_i)) \mathbf{Y}_i = \sum_{1 \leq i \leq r} \mathbf{X}_i \left(\sum_{0 \leq k \leq k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (\mathbf{J}(\lambda_i) - \lambda_i \mathbf{I}_{m_i})^k \right) \mathbf{Y}_i$$

$$= \sum_{1 \leq i \leq r} \sum_{0 \leq k \leq k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} \mathbf{X}_i (\mathbf{J}(\lambda_i) - \lambda_i \mathbf{I}_{m_i})^k \mathbf{Y}_i.$$

Para terminar, temos

$$(\mathbf{A} - \lambda_i \mathbf{I}_n)^k \mathbf{G}_i = (\mathbf{P} \mathbf{J} \mathbf{P}^{-1} - \lambda_i \mathbf{I}_n)^k \mathbf{G}_i = \mathbf{P} (\mathbf{J} - \lambda_i \mathbf{I}_n)^k \mathbf{P}^{-1} \mathbf{G}_i$$

$$= \mathbf{P} \begin{bmatrix} (\mathbf{J}(\lambda_1) - \lambda_i \mathbf{I}_{m_1})^k & \cdots & \mathbf{0} \\ \vdots & & \vdots \\ \mathbf{0} & \cdots & (\mathbf{J}(\lambda_r) - \lambda_i \mathbf{I}_{m_r})^k \end{bmatrix} \mathbf{P}^{-1} \mathbf{G}_i$$

$$= \begin{bmatrix} \mathbf{X}_1 (\mathbf{J}(\lambda_1) - \lambda_i \mathbf{I}_{m_1})^k & \cdots & \mathbf{X}_r (\mathbf{J}(\lambda_r) - \lambda_i \mathbf{I}_{m_r})^k \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \mathbf{G}_i \\ \mathbf{Y}_2 \mathbf{G}_i \\ \vdots \\ \mathbf{Y}_r \mathbf{G}_i \end{bmatrix}$$

$$= \mathbf{X}_1 (\mathbf{J}(\lambda_1) - \lambda_i \mathbf{I}_{m_1})^k \mathbf{Y}_1 \mathbf{G}_i + \cdots + \mathbf{X}_r (\mathbf{J}(\lambda_r) - \lambda_i \mathbf{I}_{m_r})^k \mathbf{Y}_r \mathbf{G}_i.$$

Como

$$\mathbf{I}_n = \mathbf{P}^{-1}\mathbf{P} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_r \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \cdots & \mathbf{X}_r \end{bmatrix} = \begin{bmatrix} \mathbf{Y}_1\mathbf{X}_1 & \cdots & \mathbf{Y}_1\mathbf{X}_r \\ \vdots & & \vdots \\ \mathbf{Y}_r\mathbf{X}_1 & \cdots & \mathbf{Y}_y\mathbf{X}_r \end{bmatrix},$$

temos

$$\mathbf{Y}_{i}\mathbf{X}_{j} = \begin{cases} \mathbf{I}_{m_{i}}, & \text{se } i = j, \\ \mathbf{0}, & \text{se } i \neq j, \end{cases} \qquad 1 \leqslant i, j \leqslant r,$$

e, portanto,

$$\mathbf{Y}_{i}\mathbf{G}_{j} = \mathbf{Y}_{i}\mathbf{X}_{j}\mathbf{Y}_{j} = \begin{cases} \mathbf{Y}_{i}, & \text{se } i = j, \\ \mathbf{0}, & \text{se } i \neq j, \end{cases}$$
 $1 \leq i, j \leq r.$

Por conseguinte, concluímos que

$$(\mathbf{A} - \lambda_i \mathbf{I}_n)^k \mathbf{G}_i = \sum_{1 \leq j \leq r} \mathbf{X}_j (\mathbf{J}(\lambda_1) - \lambda_i \mathbf{I}_{m_1})^k \mathbf{Y}_j \mathbf{G}_i = \mathbf{X}_i (\mathbf{J}(\lambda_1) - \lambda_i \mathbf{I}_{m_1})^k \mathbf{Y}_i$$

e, portanto,

$$f(\mathbf{A}) = \sum_{1 \le i \le r} \sum_{0 \le k \le k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} \mathbf{X}_i (\mathbf{J}(\lambda_i) - \lambda_i \mathbf{I}_{m_i})^k \mathbf{Y}_i$$
$$= \sum_{1 \le i \le r} \sum_{0 \le k \le k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (\mathbf{A} - \lambda_i \mathbf{I}_n)^k \mathbf{G}_i,$$

como se queria.

COROLÁRIO 19.4. Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$, sejam $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ tais que $\sigma(\mathbf{A}) = \{\lambda_1, \ldots, \lambda_r\}$ e sejam $\mathbf{G}_1, \ldots, \mathbf{G}_r \in \mathbb{C}^{n \times n}$ os projectores espectrais de \mathbf{A} associados a $\lambda_1, \ldots, \lambda_r$, respectivamente. Então, $\mathbf{I}_n = \mathbf{G}_1 + \mathbf{G}_2 + \cdots + \mathbf{G}_r$.

Demonstração. Para a função constante f(z) = 1, temos $f(\mathbf{A}) = \mathbf{I}_n$ e, portanto,

$$\mathbf{I}_n = f(\mathbf{A}) = \sum_{1 \leqslant i \leqslant r} \left(\sum_{0 \leqslant k \leqslant k_i - 1} \frac{f^{(k)}(\lambda_i)}{k!} (\mathbf{A} - \lambda_i \mathbf{I}_n)^k \right) \mathbf{G}_i = \sum_{1 \leqslant i \leqslant r} \mathbf{G}_i.$$

[O resultado pode ser demonstrado usando a igualdade $\mathbf{PP}^{-1} = \mathbf{I}_n$.]

TEOREMA 19.5. Seja $\mathbf{A} \in \mathbb{C}^{n \times n}$, sejam $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ tais que $\sigma(\mathbf{A}) = \{\lambda_1, \ldots, \lambda_r\}$ e sejam $\mathbf{G}_1, \ldots, \mathbf{G}_r \in \mathbb{C}^{n \times n}$ os projectores espectrais de \mathbf{A} associados a $\lambda_1, \ldots, \lambda_r$, respectivamente. Se $z \mapsto f(z)$ for uma função complexa de variável complexa tal que a matriz $f(\mathbf{A}) \in \mathbb{C}^{n \times n}$ está definida, então existe um polinómio $p(z) \in \mathbb{C}[z]$ tal que $f(\mathbf{A}) = p(\mathbf{A})$; além disso, p(z) pode escolher-se com grau $\leq k-1$ onde $k = \sum_{1 \leq i \leq r} \operatorname{ind}(\lambda_i)$ e, de facto, p(z) é o único polinómio com grau $\leq k$ nas condições pretendidas^(*).

DEMONSTRAÇÃO. Provamos que existe um polinómio

$$p(z) = a_0 + a_1 z + \dots + a_{k-1} z^{k-1} \in \mathbb{C}[z]$$

tal que

$$p^{(j)}(\lambda_i) = f^{(j)}(\lambda_i), \qquad 1 \le j < \operatorname{ind}(\lambda_i), \ 1 \le i \le r.$$

Ora, estas igualdades podem escrever-se na forma matricial

$$\begin{bmatrix} \mathbf{H}_0 \\ \mathbf{H}_1 \\ \vdots \\ \mathbf{H}_{k-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 \\ \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_{k-1} \end{bmatrix}$$

onde, para cada $0 \le j \le k-1$, o sistema $\mathbf{H}_j \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} = \mathbf{b}_j$ corresponde às equações $p^{(j)}(\lambda_i) = \mathbf{b}_j$

 $f^{(j)}(\lambda_i)$ para $1 \leq i \leq r$. Por exemplo,

$$\mathbf{H}_{0} = \begin{bmatrix} \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_{i} & \lambda_{i}^{2} & \cdots & \lambda_{i}^{k-1} \\ \vdots & \vdots & \vdots & & \vdots \end{bmatrix}, \quad \mathbf{H}_{1} = \begin{bmatrix} \vdots & \vdots & \vdots & & \vdots \\ 0 & 1 & 2\lambda_{i} & \cdots & (k-1)\lambda_{i}^{k-2} \\ \vdots & \vdots & \vdots & & \vdots \end{bmatrix},$$

$$\mathbf{H}_{2} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 2 & 6\lambda_{i} & \cdots & (k-1)(k-2)\lambda_{i}^{k-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}, \dots;$$

observemos que \mathbf{H}_0 tem r linhas, mas que, para $2 \leq j \leq k-1$, a matriz \mathbf{H}_j pode ter menos do que r linhas, o que acontece se $p^{(j)}(\lambda_i) \neq 0$ para algum $1 \leq i \leq r$ (isto é, se algum dos valores próprios de \mathbf{A} são for uma raíz do polinómio $p^{(j)}(z)$).

^(*)A este polinómio chamamos o POLINÓMIO INTERPOLADOR DE HERMITE.

Prova-se que a matriz $\mathbf{H}=\begin{bmatrix}\mathbf{H}_0\\\mathbf{H}_1\\\vdots\\\mathbf{H}_{k-1}\end{bmatrix}$ é invertível (é fácil justificar que \mathbf{H} é de tipo $k\times k$). De

facto, para $1 \le i \ne i' < k$, não existe qualquer dependência linear entre as linhas de \mathbf{H}_i e $\mathbf{H}_{i'}$, o que significa que

$$r(\mathbf{H}) = r(\mathbf{H}_0) + r(\mathbf{H}_1) + \dots + r(\mathbf{H}_{k-1}).$$

Comecemos por justificar que $r(\mathbf{H}_0) = r$. De facto, como $r \leq k$, podemos escolher $\lambda_{r+1}, \ldots, \lambda_k \in \mathbb{C}$ tais que $\lambda_1, \ldots, \lambda_k$ são distintos dois-a-dois, de modo que \mathbf{H}_0 é uma submatriz da matriz de Vandermonde

$$\mathbf{V} = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{k-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{k-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_r & \lambda_r^2 & \cdots & \lambda_r^{k-1} \\ 1 & \lambda_{r+1} & \lambda_{r+1}^2 & \cdots & \lambda_{r+1}^{k-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \lambda_k & \lambda_k^2 & \cdots & \lambda_k^{k-1} \end{bmatrix} \in \mathbb{C}^{k \times k}.$$

É conhecido que

$$\det(\mathbf{V}) = \prod_{1 \le i < i' \le r} (\lambda_{i'} - \lambda_i)$$

e, portanto, \mathbf{V} é uma matriz invertível (porque $\lambda_1, \ldots, \lambda_k$ são distintos dois-a-dois). Em particular, as linhas de \mathbf{V} são linearmente independentes e, portanto, também as linhas de \mathbf{H}_0 são linearmente independentes (logo $r(\mathbf{H}_0) = r$). Por outro lado, é claro que $\mathbf{H}_1 = \begin{bmatrix} \mathbf{0} & \mathbf{H}'_1 \end{bmatrix}$ onde

$$\mathbf{H}'_{1} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ 1 & 2\lambda_{i} & \cdots & (k-1)\lambda_{i}^{k-2} \\ \vdots & \vdots & & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ 1 & \lambda_{i} & \cdots & \lambda_{i}^{k-2} \\ \vdots & \vdots & & \vdots \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & k-1 \end{bmatrix};$$

como a matriz diagonal é invertível, concluímos que

$$r(\mathbf{H}_1) = r(\mathbf{H}'_1) = r \left(\begin{bmatrix} \vdots & \vdots & & \vdots \\ 1 & \lambda_i & \cdots & \lambda_i^{k-2} \\ \vdots & \vdots & & \vdots \end{bmatrix} \right)$$

e, portanto, as linhas de \mathbf{H}_1 são linearmente independentes (pelo mesmo argumento que acima). Repetindo o argumento para as matrizes $\mathbf{H}'_2, \dots, \mathbf{H}'_{k-1}$, concluímos que todas as linhas de \mathbf{H} são linearmente independentes, logo $r(\mathbf{H}) = k$ e, portanto, \mathbf{H} é invertível. Segue-se que o sistema dado tem uma e uma só solução, o que garante que os coeficientes a_0, a_1, \dots, a_k do polinómio p(z) existem e são únicos.