AULA 24

Sumário. Matrizes redutíveis e irredutíveis. Grafo associado a uma matriz não-negativa. Teorema de Perron-Frobenius para matrizes não-negativas irredutíveis.

 \triangleright O teorema de Perron pode ser generalizado para algumas matrizes não-negativas, mas não para todas. Por exemplo, não vale (na sua totalidadade) para a matriz $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$; também não vale para as matrizes $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ ou $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. No entanto, é verdadeiro para $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

Dizemos que $\mathbf{A} \in \mathbb{R}^{n \times n}$ é uma MATRIZ REDUTÍVEL se existir uma matriz de permutação $(\mathbf{P}) \in \mathbb{R}^{n \times n}$ tal que

$$\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P} = \begin{bmatrix} \mathbf{X} & \mathbf{Z} \\ \mathbf{0} & \mathbf{Y} \end{bmatrix}$$

onde $\mathbf{X} \in \mathbb{R}^{s \times s}$, $\mathbf{Y} \in \mathbb{R}^{(n-s) \times (n-s)}$ e $\mathbf{Z} \in \mathbb{R}^{s \times (n-s)}$ para algum $s \in \mathbb{N}$; no caso contrário, dizemos que \mathbf{A} é uma MATRIZ IRREDUTÍVEL.

Dada qualquer matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$, definimos o GRAFO (ORIENTADO) DE \mathbf{A} , e denotamo-lo por $\mathcal{G}(\mathbf{A})$, como sendo o grafo com n vértices P_1, \ldots, P_n e em que, para quaisquer $1 \leq i, j \leq n$, existirá uma aresta orientada $P_i \to P_j$ se e só se $a_{i,j} \neq 0$. É claro $\mathcal{G}(\mathbf{A}) = \mathcal{G}(\mathbf{P}^T \mathbf{A} \mathbf{P})$ para qualquer matriz de permutação $\mathbf{P} \in \mathbb{R}^{n \times n}$ (trata-se apenas de reordenar os vértices).

 \triangleright Dizemos que um grafo \mathcal{G} é FORTEMENTE CONEXO se, para quaisquer dois vértices P e P', existir uma sequência de arestas (orientadas) que ligue P para P'.

LEMA 24.1. Uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ será irredutível se e só se $\mathcal{G}(\mathbf{A})$ for um grafo fortemente conexo.

DEMONSTRAÇÃO. Seja $\mathbf{A} \in \mathbb{R}^{n \times n}$. Provamos que \mathbf{A} será redutível se e só se $\mathcal{G}(\mathbf{A})$ não for fortemente conexo. Como $\mathcal{G}(\mathbf{A}) = \mathcal{G}(\mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P})$ para qualquer matriz de permutação $\mathbf{P} \in \mathbb{R}^{n \times n}$, podemos admitir que

$$\mathbf{A} = \begin{bmatrix} \mathbf{X} & \mathbf{Z} \\ \mathbf{0} & \mathbf{Y} \end{bmatrix}$$

^(†) Uma MATRIZ DE PERMUTAÇÃO é uma matriz que tem exactac
tamente uma entrada igual a 1 em cada linha e em cada coluna, sendo todas as outras entradas igua
is a 0. A inversa de uma matriz de permutação é a sua transposta.

Aula 24 T24-2

onde $\mathbf{X} \in \mathbb{R}^{s \times s}$, $\mathbf{Y} \in \mathbb{R}^{(n-s) \times (n-s)}$ e $\mathbf{Z} \in \mathbb{R}^{s \times (n-s)}$ para algum $s \in \mathbb{N}$.

Suponhamos que $\mathbf{A} = \begin{bmatrix} \mathbf{X} & \mathbf{Z} \\ \mathbf{0} & \mathbf{Y} \end{bmatrix}$ onde $\mathbf{X} \in \mathbb{R}^{s \times s}$, $\mathbf{Y} \in \mathbb{R}^{(n-s) \times (n-s)}$ e $\mathbf{Z} \in \mathbb{R}^{s \times (n-s)}$ para algum $s \in \mathbb{N}$. Então, os vértices P_1, \dots, P_s não são acessíveis a partir dos vértices P_{s+1}, \dots, P_n e, portanto $\mathcal{G}(\mathbf{A})$ não é fortemente conexo (não existe nenhuma sequência de arestas ligando P_{s+1} a P_1 .

Rexiprocamente, suponhamos que $\mathcal{G}(\mathbf{A})$ não é fortemente conexo, de modo que existem dois vértices P_i e P_j , para $1 \leq i, j \leq n$, tais que P_j não é acessível a partir de P_i . Reordenando os vértices, podemos admitir, sem perda de generalidade, que P_1 não é acessível a partir de P_n . Sejam P_1, \ldots, P_s todos os vértices de $\mathcal{G}(\mathbf{A})$ que não são acessíveis a partir de \mathbf{P}_n (com a possível excepção de P_n), de modo que os vértices P_{s+1}, \ldots, P_{n-1} são acessíveis a partir de P_n . Com estas escolhas, nenhum dos vértices P_1, \ldots, P_s são acessíveis a partir de algum dos vértices P_{s+1}, \ldots, P_{n-1} e, portanto, \mathbf{A} tem a forma $\begin{bmatrix} \mathbf{X} & \mathbf{Z} \\ \mathbf{0} & \mathbf{Y} \end{bmatrix}$ onde $\mathbf{X} \in \mathbb{R}^{s \times s}$, $\mathbf{Y} \in \mathbb{R}^{(n-s) \times (n-s)}$ e $\mathbf{Z} \in \mathbb{R}^{s \times (n-s)}$ para algum $s \in \mathbb{N}$.

PROPOSIÇÃO 24.2. Se $\mathbf{A} \in \mathbb{R}^{n \times n}$ for uma matriz não-negativa irredutível, então $(\mathbf{I}_n + \mathbf{A})^{n-1}$ será uma matriz positiva.

DEMONSTRAÇÃO. Seja $\mathbf{A} \in \mathbb{R}^{n \times n}$ uma matriz não-negativa irredutível e, para $1 \leqslant k \leqslant n-1$, ponhamos $\mathbf{A}^k = \left[a_{i,j}^{(k)}\right]$. Notemos que, para quaisquer $1 \leqslant i, j \leqslant n$,

$$a_{i,j}^{(k)} = \sum_{1 \leqslant j_1, \dots, j_{k-1} \leqslant n} a_{i,j_1} a_{j_1, j_2} \cdots a_{j_{k-1}, j_k}$$

e, portanto, $a_{i,j}^{(k)} \in \mathbb{R}^+$ se e só se existirem índices $1 \leq j_1, \ldots, j_{k-1} \leq n$ tais que $a_{i,j_1}, a_{j_1,j_2}, \ldots, a_{j_{k-1}} \in \mathbb{R}^+$, ou seja, se e só se existir um caminho

$$P_i \to P_{j_1} \to P_{j_2} \to \cdots \to P_{j_{k-1}} \to P_j$$

em $\mathcal{G}(\mathbf{A})$. Como \mathbf{A} é irredutível, o grafo $\mathcal{G}(\mathbf{A})$ é fortemente conexo e, portanto, existe um caminho deste tipo ligando qualquer para de vértices P_i e P_j . Por conseguinte, para quaisquer $1 \leq i, j \leq n$, existe $1 \leq k \leq n-1$ tal que $a_{i,j}^{(k)} > 0$, o que garante que a (i, j)-ésima entrada de

$$(\mathbf{I}_n + \mathbf{A})^{n-1} = \sum_{0 \leqslant k \leqslant n-1} {n-1 \choose k} \mathbf{A}^k$$

é positiva. Como se quer.