

Deteção Remota e Processamento Imagem

Licenciatura em Engenharia GeoEspacial Licenciatura em Tecnologias da Informação João Catalão / Fernando Soares 2023 / 2024

Antes das aulas:

- 1. Instalação do software SNAP (Science Toolbox exploitation platform) http://step.esa.int/main/download/snap-download/
- Dowload dos dados de cada laboratório na plataforma CIRRUS Server address: cirrus.ciencias.ulisboa.pt (https://cirrus.ciencias.ulisboa.pt/owncloud/s/agoFAJAy3GzFt2L)

Laboratório 4: Determinação da área ardida com base numa imagem Multiespetral.

Sumário: Determinação da área ardida com base numa imagem Multiespetral. Estudo de caso: Incendio de Pedrogão (17 junho de 2017), Metodologia: Cálculo de índices de área ardida e índices de vegetação.

Bastarrika, A., Chuvieco, E., & Martín, M. P. (2011). Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sensing of Environment, 115(4), 1003-1012.

Índices	Designação	Referência	
NDVI	Normalized Difference Vegetation Index	Rouse et al., 1974	
GEMI	Global Environmental Monitoring Index	Pinty & Verstraete, 1992	
BAI	Burned Area Index	Martín et al., 1998	
BAIMS		Martín et al., 2005	
BAIML			
NBRS	Normalized Burn Ratio	Key & Benson, 1999	
NBRL			
MIRBI	Mid Infrared Burned Index	Trigg & Flasse, 2001	

Ciências | Engenharia Geográfica, ULisboa | Geofísica e Energia

Grupo	Índices	Equação
VIS+NIR	NDVI	$\frac{\rho_{NIR} - \rho_R}{\rho_{NIR} + \rho_R}$
	GEMI	$\frac{\eta(1\!-\!0.25\eta)\!-\!(\rho_{R}\!-\!0.125)}{(1\!-\!\rho_{R})}\eta = \frac{2\left(\rho_{N\!RR}^{2}\!-\!\rho_{R}^{2}\right)+1.5\rho_{N\!RR}+0.5\rho_{R}}{(\rho_{R}+\rho_{N\!RR}+0.5)}$
	BAI	$\frac{1}{\left(\rho_{\textit{NIR}}-\rho_{\textit{cNIR}}\right)^2+\left(\rho_{\textit{R}}-\rho_{\textit{cR}}\right)^2}$
VIS+NIR+1SWIR	NBRS	$\frac{\rho_{\textit{NIR}} - \rho_{\textit{SSWIR}}}{\rho_{\textit{NIR}} + \rho_{\textit{SSWIR}}}$
	BAIMS	$\frac{1}{(\rho_{NIR} - \rho_{cNIR})^2 + (\rho_{SSWIR} - \rho_{cSSWIR})^2}$
VIS+NIR+2SWIR	NBRL	$\frac{\rho_{\textit{NIR}} - \rho_{\textit{LSWIR}}}{\rho_{\textit{NIR}} + \rho_{\textit{LSWIR}}}$
	BAIML	$\frac{1}{\left(\rho_{\textit{NIR}}-\rho_{\textit{cNIR}}\right)^2+\left(\rho_{\textit{LSWIR}}-\rho_{\textit{cLSWIR}}\right)^2}$
	MIRBI	$10\rho_{LSWIR} - 9.8\rho_{SSWIR} + 2$

BAI: ρcNIR=0.06; ρCR=0.1; BAIMS: pcNIR=0.05; pcSWIR=0.2;

Grupo	Índice	Bandas
	NDVI	
VIS+NIR	GEMI	B4, B8
	BAI	
VIS+NIR+1SWIR	NBRS	B8, B11
	BAIMS	
	NBRL	
VIS+NIR+2SWIR	BAIML	B8, B12
	MIRBI	

É considerada área ardida se: Diff_BAIMS > 46.8143 AND Diff NDVI < -0.17767 AND Post_NBRS < -0.17079 AND Post_BAI > 188.88

Dados: Imagens do satélite Sentinel-2 do dia 14 junho 2017 e 4 de julho de 2017 (Level 1C)

subset_0_of_S2A_MSIL1C_20170614T112111_N0205_R037_T29TNE_20170614T112422.dim subset_0_of_S2A_MSIL1C_20170704T112111_N0205_R037_T29TNE_20170704T112431.dim

Processamento:

- > Extração das bandas necessárias ao cálculo dos índices (B4, B8, B11)
- > Calibração atmosféricas das imagens (Sentinel-2, são reflectâncias TOA)
- Cálculo do índice NDVI, NBRS, BAI e BAIMS
- > Cálculo da imagem binária com a área ardida
- 1. Abrir imagem no SNAP
- 2. Criar sub imagem com as bandas B2, B3, B4, B8, B11

\$ bands Extractor

3. A banda 11 tem de ser reamostrada com a mesma dimensão das outras bandas.

\$ resampling (By reference to B2)

- 4. Visualização da imagem (explorar o "stretch", 2sigma)
- 5. Rayleigh Correction (Optical Preprocessing) (OPCIONAL)
- 5. cálculo dos índices para cada imagem

\$ band math

- > NDVI, BAIMS, NBRS e BAI (analisar o resultado de cada índice)
- 6. Calculo das imagens diferença

\$ band math

> dif_BAIMS e Diff_NDVI

Após o cálculo fazer Convert band para guardar o resultado

7. Calculo da regra de classificação

\$ band math

(Diff_BAIMS > 46.8143) AND (Diff_NDVI < -0.17767) AND (Post_NBRS < -0.17079) AND (Post_BAI > 188.88) ? 1:0

8. Visualizar o resultado e comparar com a imagem falsa cor

9. Filtro mediana > integrar no ArcGIS

- \$ Filtered band > Median 3x 3
- \$ Save Product (Os cálculos ficam gravados na imagem após o incendio)

Laboratório 5. Desenvolvimento de um programa em python para automatização dos procedimentos do laboratório 2.

No SNAP, converter imagem para Tiff