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Exercise Sheet 4 
 
1. Recall the Riccati equation derived in classroom for weakly interactive massive 

particles (WIMPs) written as (𝑌 ≡ 𝑁!): 

	
𝑑𝑌
𝑑𝑥 = −

𝜆
𝑥" [𝑌

" − 𝑌#$" ] 
 

       where 𝑥 = 𝑀!/𝑇,  𝑀! is the mass of the WIMP particles, 𝑇 is the photon temperature 
       and 𝜆 can be treated as a constant. Let 𝛥 ≡ 𝑌 − 𝑌#$ be the variable that measures the 
       deviation of 𝑌 from its equilibrium value. 
 

1.1. Prove that: 
𝑑𝛥
𝑑𝑥

= −
𝑑𝑌!"
𝑑𝑥

−
𝜆
𝑥#
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1.2. Simplify this equation using the approximation 𝑌 ≃ 𝑌#$ ⇒ 𝛥 ≃ 0 and 𝑑𝛥/𝑑𝑥 ≃ 0, 
valid for the temperature range 1 < 𝑥 < 𝑥%, where 𝑥% = 𝑀!/𝑇%  is the freeze-out 
temperature. [Hint: note that under these approximations, the first term inside 
the square brackets is smaller than the second term] 
 

1.3. Derive an expression for 𝛥 assuming 𝑌#$ ≈ 𝑒&'. How does it depend on 𝑥 and 𝜆? 
 

1.4. Re-derive 𝛥, now using  𝑌#$ = 𝑁!
#$ = 𝑛!

#$/𝑠 [Hint: assume that the WIMP particles 
are already non-relativistic and write their equilibrium density, 𝑛!

#$, and the 
specific entropy of the fluid, 𝑠, as a function of 𝑥].  

 
 

2. Considering the equilibrium number density of protons, neutrons and a nuclear 
species with 𝑍 protons and 𝐴 − 𝑍 neutrons (where 𝐴 is the nuclear atomic mass and 𝑍 
the charge of the nucleus) can be written as: 
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where 𝑖 = 	 {𝑝, 𝑛, 𝐴}, show that the number density of the nucleus 𝐴 is given by: 
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where 𝐵+ = 𝑍𝑚0 + (𝐴 − 𝑍)𝑚2 −𝑚+ is the biding energy of the nucleon 𝐴. [Hint: Note 
that the chemical potential of the nucleus, 𝜇+, is related with the chemical potentials 
of the protons, 𝜇0, and neutrons, 𝜇2, by 𝜇+ = 𝑍𝜇0 + (𝐴 − 𝑍)𝜇2. Use also the 
approximations 𝑚+ = 𝐴𝑚,, with 𝑚, = 𝑚0 ≈ 𝑚2]. 

 
 
3. The Lagrangian for a scalar field in a curved spacetime is 

 

                                               𝐿 = Q−𝑔	[."𝑔
34𝜕3𝜙𝜕4𝜙 − 𝑉(𝜙)]   

 

where 𝑔 ≡ det	(𝑔34) is the determinant of the metric tensor. 



3.1. Evaluate the scalar field Lagrangian for a homogeneous field 𝜙 = 𝜙(𝑡) in a flat 
FLRW spacetime. 
 

3.2. Use the Euler-Lagrange equation to derive the equation of motion for the scalar 
field (the Klein-Gordon equation). 

 

3.3. Use the Friedmann and the acceleration equations with 𝜌5 = 𝜙̇"/2 + 𝑉(𝜙) and 
𝑝5 = 𝜙̇"/2 − 𝑉(𝜙) to prove that 𝐻̇ = −𝜙̇"/2𝑀67. Determine the equation of state 
(EoS) parameter, 𝑤 = 𝑝5/𝜌5, and the scale factor, 𝑎(𝑡),  assuming that the 
inflationary field is slow-rolling, 𝜙̇ ∼ 0.   

 
 

4. The discovery of a Higgs like scalar particle at the LHC raises questions about the 
feasibility of having the Higgs scalar field driving cosmological inflation. To investigate 
this hypothesis, consider that the Higgs potential is given by 𝑉(𝜙) = 𝜆	(𝜙" − 𝑣")"  
where 𝜆	is a constant proportional to the field’s mass and 𝑣 = 246 GeV.  
 

4.1. Sketch the potential and compute the slow-roll parameters, 𝜖8 = 𝑀67
" (𝑉9/𝑉)"/2 , 

and 𝜂8 = 𝑀67
" 𝑉9′/𝑉.  

 

4.2. Discuss if the slow-roll conditions can be satisfied simultaneously inside the field 
range 0 < 𝜙 < 𝑣. Is slow-roll inflation possible inside this range? 

 

4.3. Now look at the regime, 𝜙 ≫ 𝑣 . Show that 𝜖8(𝜙) and 𝜂8(𝜙) become 
independent of 𝑣. For what field values does inflation occur? Determine the field 
values at the end of inflation, 𝜙:, and at a number of e-foldings 𝑁∗ = 60 before,  
𝜙∗ (assume that 𝜙∗ ≫ 𝜙:).  

 

4.4. Knowing that the power spectrum of scalar perturbations generated by slow-roll 
inflation is given by  
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compute the amplitude of the power spectrum of scalar fluctuations, Δ<" , at 𝜙∗. 
Express your answer in terms of  𝑁∗ and the mass of the Higgs boson defined as 
𝑚@
" = 𝑉99(𝜙 = 𝑣).  

 

4.5. Estimate the value of 𝑚@	required to match the observed scalar power amplitude 
Δ∗" = 2 × 10&A. Is this consistent with the LHC measurement of 𝑚@ = 125 GeV? 

 


