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Common nematics
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Orientational distribution
function

Let us consider the distribution of the molecular orientation. Let u be a
unit vector in the direction of the long axis of the molecule, In the
isotropic phase, u will be uniformly distributed on a unit sphere |u| = 1.

In the nematic phase, the distribution of u becomes non-uniform on the
sphere. Let Y(u) be the distribution function of u on the unit sphere. It is
normalized as

Jdug(u)=1

where du=sin8dBde stands for the surface element of the sphere |u]| =
1, and the integral is over the entire surface.

In the isotropic phase, Y(u) is constant, independent of u, and therefore
$(u) =1/4n

On the other hand, in the nematic phase, Y(u) will be oriented toward
the direction of the director n, and {(u) becomes anisotropic.
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U(u) = Y(—u).
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Order parameter
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Let us therefore consider the second moment (u,ug). In the isotropic
state,?

1
(uaup) = §5uﬂ (5-4)
On the other hand, if u is completely aligned along n,
(uqug) = nang (5.5)

Thus we consider the parameter

1
Qap = <ua“B - §5aﬁ> (5.6)

Qap represents the orientational order of the molecules in the nematic
phase and is called the order parameter. It is zero in the isotropic phase,
and becomes non-zero in the nematic phase.

If the distribution of  has a uniaxial symmetry around the axis of n,
Qup can be written as®

1
Qap = S("a"ﬁ - §5aﬂ) (5.7)

where S is a parameter representing how perfectly the molecules are
aligned along n. If the alignment is perfect, S is equal to 1. If there is
no alignment, S is equal to 0. Thus S also represents the degree of the
order in the nematic phase, and is called the scalar order parameter. To
avoid confusion with S, Q,g is often called the tensor order parameter.

Order parameter

The tensor order parameter ()3 includes two pieces of information.
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One is how strongly the molecules are aligned; this is represented by
the scalar order parameter S. The other is the direction in which the
molecules are aligned; this is represented by the director n. By eq. (5.6),

<(u -n)? - é> = nanpQap (5.8)

The right-hand side is equal to (2/3)S by eq. (5.7). Hence S is
expressed as

S:g<(u-n)2—%> (5.9)
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Textures

Birefringence: The colorful patterns arise
due to the birefringent nature of liquid
crystals, which split polarized light into two
rays traveling at different speeds. When
these rays recombine, they interfere,
producing characteristic colors  that
depend on the molecular orientation and
sample thickness.

Defects and Director Fields: The observed
textures provide insights into the director
field configurations and the presence of
defects. For instance, the number and
arrangement of brushes in schlieren
textures can help determine the type and
strength of disclinations.

Maier-Saupe

g
i

The basic assumption of the Maier-Saupe theory is that nematic form-
ing molecules have an interaction potential which forces them to align
in the same direction. Let w(u,u’) be the interaction potential acting
between two neighbouring molecules each pointing along the v and u’
directions.* The interaction potential w(u, ') has the property that it
decreases with decrease of the angle © between u and u’, and becomes
smallest when two molecules align in the same direction. For molecules
which do not have polarity (such as ellipsoidal or rod-like molecules),
the interaction potential should not change under the transformation
u — —u. The simplest form of such a potential is

w(u,w') = -U(u - u)? (5.10)

where U is a positive constant.

Now if the system consists of N such molecules, and if their orienta-
tional distribution is given by #(u), the average energy of the system is
given by

E[y] = %/du/du’ w(u, w')P(u)p(u') (5.11)

where z is the mean number of neighbouring molecules (i.e., the coordi-
nation number introduced in Section 2.3.2).




MS Free energy

F=E-TS

The interaction potential tends to align the molecules in the same dir-
ection, but this is opposed by thermal motion which tends to randomize
the molecular orientation. For a given orientational distribution v (u),
the orientational entropy is given by®

S[1/)] = —Nkp /du 1/;(u) lnz/;(u) (5.13)
and therefore the free energy of the system is given by
FIvl = B[y - TS
=N [k fau st - 5 [au an’ (o)
(5.14)

where U = 2U.

The orientational distribution at equilibrium is determined by the
condition that eq. (5.14) be a minimum with respect to ¥(u), ie., by
the condition

o [P - [ awsw] <o (5.15)

Boltzmann
distribution for ¢
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For F[] given by eq. (5.14), eq. (5.15) gives

kBT [Ine(u) + 1] — U/du’ (u-u)(u')—A=0 (5.16)

This gives
() = C exp[— By (u)] (5.17)
where 8 = 1/kgT, C is a normalization constant, and wy, f(u) is given by
s () = U [ an’ (- (518)

Equation (5.17) indicates that at equilibrium, the distribution of u is
given by the Boltzmann distribution in the mean field potential w, f(«).
Equations (5.17) and (5.18) form an integral equation for v (u). This
integral equation can be solved rigorously as we shall see in the next
section.
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Details of the SC
solution

Wins(u)=-USu?+C

The mean field potential in eq. (5.18) is written as
wmg(u) = ~Vuaug(uyup) = —Uuaup(uaus) (5.19)

where we have used the fact that the distribution of u’ is the same as
that of u. The average in eq. (5.19) can be expressed by the scalar order
parameter S. Let us take the z-axis in the direction of n. Then eq. (5.9)

is written as
3/, 1
S= 5 <uz - §> (5.20)

Since the distribution of » has uniaxial symmetry around the z-axis,
(uqup) is zero for a # f3, and the other components are calculated from
eq. (5.20) as

(uf) = §(2S+ 1) (5.21)
@) =(@@)=5 (- (@) =3(-5+1) 62

Hence the mean field potential (5.19) is calculated as
Wing(w) = =U [u (uZ) +uj () +u2 (u3)]

_ [%(75 1) (2 +2) + 525 + 1>u§]

=U [é(fer 1) (1—u?) + %(23+ 1)u3]

= —USu? + constant (5.23)

11
Therefore the equilibrium distribution function is given by
P(u) = CPUSY (5.24)
0s | ‘ ‘m:%}; Equations (5.20) and (5.24) give the following self-consistent equation
for S
3 1\ ,AUSu?
06 | 3'22 koT/A =024 i S = fduf(uf — §)€ﬂ - (5.25)
~ s O arasom [ duePUs=2
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Graphical solution

1(z)
T>T,

T=Ty T=T, T<T,

We introduce the parameter z = U S. Equation (5.25) is then written as

%z =I(z) (5.26)

where
Jo dt 3( = §)e™”

I(z) =
@) foldt ext?

(5.27)
Equation (5.26) can be solved by a graphical method: the solution is
given by the intersection between the line y = (kgT/U)z and the curve
y = I(z). This is done in Fig. 5.3(a). At high temperature, there is only
one solution at = 0 which corresponds to the isotropic phase (S = 0).
With decreasing temperature, two non-zero solutions appear below the
temperature T¢; defined in Fig. 5.3(a).

With decreasing the temperature further, one solution increases, while
the other solution decreases, crossing zero at the temperature T,o. Figure
5.3(b) summarizes this behaviour of the solution S plotted against the

temperature T'.
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Free energy
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In order to identify the transition temperature, we consider the free
energy F(S;T) of the system for a given value of the order parameter
S. F(S;T) represents the free energy of a system in which the order
parameter is hypothetically constrained at S. If the system consists of
N molecules each pointing the direction u; (: =1,2,...,N), F(S;T) is
defined as the free energy of the system under the constraint

1 3 1
725 (-5)=5 (5.28)

In general, the free energy under certain constraints is called the restric-
ted free energy. F(S;T) is an example of the restricted free energy. A
general discussion on the restricted free energy is given in Appendix B.

If the free energy F'(S;T) is known, the equilibrium value of S is
determined by the condition that F'(S;T) becomes a minimum at equi-
librium, i.e.,

OF
S

14
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F(S;T) @
(i) T=T,
Alternatively, if the temperature dependence of the solution of eq.
(5.29) is known, the qualitative form of F(S;T) can be inferred from (ii)
the fact that the solution corresponds to the extremum of the function
F(S;T). This is shown in Fig. 5.4. For example, since there is only one (V) T=T,
solution at S = 0 for T' > T, F(S;T) should have only one minimum
at S = 0 for T > T,y. This corresponds to the curve (i) in Fig. 5.4. W)
Below T;, the equation OF/9S = 0 has three solutions. This corres- Vi) T=T,
ponds to two local minima and one local maximum. The solution S =0 ‘
corresponds to the isotropic state, and the other solutions correspond to \ / Vi)
the nematic state. Therefore, below T, F(S;T) behaves as shown by \ /\/ S
curve (iii) in Fig. 5.4. At temperature T2, the local minimum at S =0
now becomes a local maximum, i.e., the isotropic state becomes an un-
stable state. Therefore F(S;T) behaves as shown by the curve (vii) in

Fig. 5.4. The free energy of the isotropic state becomes equal to that of

the nematic state at a certain temperature 7. between T¢; and T2. The

temperature T, corresponds to the equilibrium transition temperature.
Fig. 5.4 Temperature dependence of
the free energy curve F(S;T) which
gives the curve S(T) shown in Fig.
5.3(b).

The above argument can be made clearer if we go back to the definition
of the order parameter. The order parameter for the nematic phase is a
tensor @, while the free energy is a scalar. If the free energy is expressed
I_ a n d a u - d e G e n n e S as a power series of the tensor @, the coefficients have to satisfy certain
constraints. For example, one can immediately see that there is no linear
term in F(Q;T) since the only scalar constructed from a symmetric
tensor Q is Tr@, but TrQ is zero by the definition of eq. (5.6). By similar
reasoning, one can show that F'(Q;7) must have the following form

F(Q;T) = ax(T)Tx(Q?) + asTr(Q°) + aaTr(Q*) + - (5.33)

In this case, there is a third-order term in Q. If eq. (5.7) is used for Q,
eq. (5.33) becomes

2 2 2
F(Q;T) = gaz(T)s2 + §ags3 + 511454 4 (5.34)

The free energy depends on .S, but does not depend on n. This must be
so since the free energy should depend on how strongly the molecules
are aligned along n, but should not depend on the direction in which n
is pointing.

From eq. (5.34), F(Q;T) may be expressed as

g, kI/m®

1 1 1
F(Q:T) = 5A(T - T.)S* - 5353 + ch“ (5.35)
=10

where A, B, C are positive constants independent of temperature.” The
free energy of eq. (5.33) or (5.35) for nematic forming materials is called
_15 the Landau-de Gennes free energy. The Landau-de Gennes free energy
—04 -02 .%. 02 04 O;S.\-; 08 . represents the essential feature of the isotropic-nematic transition, and
is often used as a model free energy for the transition.
The coefficients A, B, C can be calculated using mean field theory, and
the result is (see Appendix B)

A~Nkp, B~NkpT., C~NkgT. (5.36)

T .7
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External magnetic
field

‘When a magnetic field H is applied to a nematic forming molecule,
a magnetic moment is induced in the molecule. The induced magnetic
moment m depends on the angle that the molecular axis v makes with
the magnetic field H (see Fig. 5.6). Let o) (and ) be the magnetic
susceptibility of the molecule when the magnetic field H is applied par-
allel (and perpendicular) to the molecular axis w. If a magnetic field H
is applied to a molecule pointing in the direction u, the molecule will
have a magnetic moment m| = o (H - u)u along u, and a magnetic
moment m; = a,[H — (H - u)u| in the direction normal to u (see

Fie. 5.6). Therefore the molecule feels a potential energy
_ NagH®
T2A(T-T.) 1
wiw) — —§a||(H cu)? — Eal[H — (H - u)u)?

1 1
_5a||(H cu)? 4 Eal(H -u)? + terms independent of u

1
= —Ead(H -u)? + terms independent of u (5.37)
where g = o — ay. If ag > 0, the magnetic field tends to align the
molecule in the direction of H, while if ag < 0, the magnetic field tends
to rotate the molecule to the direction perpendicular to H. In what
follows, we assume a4 > 0.

17

Discotic and rod
like particles
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If there are N molecules in the system, the total potential energy due
to the magnetic field is given by

Fi =~ au((H - u)?) (5.38)
Using the definition of @ (eq. (5.6)), this can be written as
Fy= —%adH- Q- -H= —%adS(H -n)? (5.39)
where we have used eq. (5.7) and ignored the terms which do not depend
on Q. Therefore the total free energy of the system is
F(Q;T) = %A(T —T.)S* - %BS3 + %cs4 - %OM(H -n)? (5.40)

The order parameter @ in the presence of the magnetic field is given by
S and n which minimize eq. (5.40). The response of @ to the magnetic
field is quite different in the disordered phase and in the ordered phase.

18
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Response in the
disordered phase

NadH2

§— T
2A(T —T.)

In the disordered phase, the order parameter .S is zero when there is no
magnetic field. When a magnetic field is applied, S becomes non-zero,
but is small. Therefore we may approximate eq. (5.40) as
1 SN
F(@Q;T) = SAT - T.)8% — TadH2 (5.41)
where we have used the fact that n is parallel to H. Minimization of
this with respect to S gives

NagH?

S= AT -1y

(5.42)
Equation (5.42) indicates that as we approach T, the order parameter
S increases, and diverges at T' = T..

The divergence of S at T is due to the appearance of some locally
ordered region in the disordered phase. In the disordered phase, there
is no macroscopic order, but the tendency that neighbouring molecules
align in the same direction increases as T approaches T.. Accordingly,
near T, the system is divided into regions within which the molecules
align in the same direction. The size of such ordered regions increases as
T approaches T, and therefore S diverges at 7.

19

Response in the
ordered phase

In the ordered phase, S has a non-zero value S,, in the absence of a mag-
netic field. If a magnetic field is applied, S changes slightly from S.,, but
the deviation S — S., is very small (being of the order of agH?/kgT.).
Therefore the magnetic field has little effect on the scalar order para-
meter S. On the other hand, the magnetic field has a crucial effect on
the tensor order parameter @ since the director n is strongly affected
by the magnetic field.

In the disordered phase, the rotation of molecules is essentially inde-
pendent of each other. Therefore if one wants to align the molecules, one
needs to apply a very large magnetic field which satisfies aqgH? > kpT.
On the other hand, in the ordered phase, N molecules move together as
a single entity. Therefore if one applies a magnetic field which satisfies
SegNagH? > kpT, one can rotate all molecules in the system. Since
N is a macroscopic number (N = 10%°), the necessary magnetic field is
very small. This is another example of the principle discussed in Section
1.5 that molecular collectivity produces a very large response to external
fields.

20
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Elastic energy

If there are no external fields, and no boundaries, the equilibrium
state should be the uniform state in which the order parameter Q(r) is
independent of position 7. If the order parameter varies with position,
the free energy of the system must be larger than that of the uniform
state. Therefore F},;[Q(r)] should be written as follows

Fiot = / drlf(Q(r) + £(Q, VQ) (5.43)

The first term f(Q) is the free energy density for a uniform system, and
is essentially the same as that given by (5.40). (A small letter f is used
to emphasize that it is a free energy per unit volume.) The second term
fel(Q, VQ) is the excess free energy due to the spatial gradient of Q. If
V@ is small, f.; can be expanded as a power series of V@Q. Since the
free energy is a minimum in the uniform state (the state of VQ = 0),
the lowest term must be written as

1
fa@,VQ) = 5 Kapy.apy 2@y Var Qpry (5.44)

Since this is an expansion with respect to V@, the coefficient K, o5+
does not depend on V@, but can depend on Q. It represents the com-
ponent of a positive definite symmetric tensor. We shall now discuss the
explicit form of f.(Q, V@) for the isotropic and nematic states.

21

|sotropic state
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In the isotropic state, we may assume that K,gy,a’34 is independent
of @ since @ is small in the isotropic state. Hence f.; is a scalar con-
structed by a quadratic form of V@Q. Using the properties Q.3 = Qga,
and Qno = 0, we can show that f.; is written in the following form:®

1 1
fa = 5K1VaQp, VaQoy + 5K2VaQar VsQsy (5.45)

where K; and K> are positive constants. Thus the free energy functional
in the isotropic state is written as

1 1 1
F:az=/d7’ |:5A(T —T.)S% + §K1VQQB‘YV¢1QB'1 + iszanVBQﬁv

(5.46)
where we have ignored higher order terms in Q.

As an application of eq. (5.46), let us consider the local ordering in-
duced by a wall of solid substrate. The molecules near the wall feel the
potential of the wall, and their orientational distribution is not isotropic
even in the isotropic state. Consider the situation shown in Fig. 5.7(a),
where the molecules tend to align in the direction normal to the wall.
If we take the z,y, 2z coordinates as in Fig. 5.7(a), the order parameter
Qap(z) can be written as follows
2

Que =3

S, Qu=Qu=-35 Qu=Qu=0Qu.=0 (547

22
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Correlation length

2(3K; +2K>)

£= 9A(T —T.)

Substituting this for Q,s(z) in eq. (5.46), we have

1 o, 1 (ds\® 2 (ds\?
Fmt—/d(t EA(TfTC)S +§K1 <E> +§K2 (E)
_1 s o [dS\?
= QA(Tch)/daﬂ 57+¢ (dz) (5.48)

where ¢ is defined by

2(3K, + 2K5)

= 5.49
¢ 9A(T - T.) (549)

For eq. (5.48), the condition 0F},:/0S = 0 gives

d’s
27 = =
£o==5 (5.50)
Therefore

S = Spe~/¢ (5.51)

where S, is the value of S at the wall.

23

Frank elastic
energy
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As discussed in Section 5.3.2, when an external field is applied to the
ordered phase, the scalar order parameter S changes little, while the dir-
ector n changes drastically. Therefore we may assume that in the ordered
phase the tensor order parameter Q can be written as

Qr) = 5. [n(ryn(r) - 31 (5:52)

where S, is the equilibrium value of S in the absence of an external
field.

If eq. (5.52) is used for @ in eq. (5.43), f(Q) becomes constant, and
may be dropped in the subsequent calculation. On the other hand, f.;

can be written as a quadratic form of Vn. The coefficient K,g, o/g'4
may depend on n. Repeating the same argument as in the previous
section, we can show that f,; can be written in the following form

fa= %Kl(Vln)2+ %K2('Il -V x n)? +%K3(n x V xn)? (553)

where K7, K, K3 are constants having dimension of [J/m], and are
called the Frank elastic constants. Each constant represents the resist-
ance of the nematics to the spatial variation of n shown in Fig. 5.8.
The constants K, K, and K3 are called the splay, twist, and bend
constants, respectively.

24

12



29/03/25

Splay, Twist and Bend
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Onsager predicted that a solution of rod-like particles forms a nematic
phase above a certain concentration.'® Let L and D be the length and
diameter of the particle. The aspect ratio L/D is assumed to be very
large. In the limit of L/D — oo, Onsager’s theory for the phase transition
becomes rigorous.

Now consider two rod-like particles 1 and 2, each pointing in direc-
tions u and u’, respectively. These particles cannot overlap each other.
Therefore if the position of rod 1 is fixed, the centre of mass of rod 2
cannot enter into a certain region shown in Fig. 5.10. The volume of this
region is called the excluded volume. The excluded volume is a function
of the angle © that u’ makes with u. As indicated in Fig. 5.10, this
volume is given by

Vea(u, u') = 2DL?sin© = 2DL?|u x u/| (5.63)
where we have ignored the smaller terms which are of the order of D/L
less than that in eq. (5.63). Equation (5.63) indicates that the excluded
volume decreases with decrease of ©. Therefore if rod 2 moves around
rod 1 keeping its direction u’ constant, the region allowed for rod 2
increases as © decreases. Therefore the pair with small © is entropically
more favourable than the pair with large ©, and the rod-like particles
tend to align in the same direction. This is why rod-like particles form
a nematic phase at high concentration.

25
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Let us consider a solution consisting of /V rod-like particles in volume
V. Let us consider the probability (u) that a particular particle, say
particle 1, is pointing in the direction «. Due to the principle of equal
weight, ¥(u) is proportional to the probability that all other particles
2,3,...,N do not overlap particle 1. Since the probability that particle
j does not overlap with particle 1 is equal to 1 — vez(u, u;)/V, ¢(u) is
given by

N
N Vea(u, u5) ] Vea(U, ;)
P(u) o I, [1 - *] =exp |- Zz = (5.64)
j=
The summation in the exponent can be written as
Now (u, uj)
Z % = n/du'vgz(u. u')p(u') (5.65)

=2
where n = N/V is the number density of the particles, and we have used
the fact that the orientational distribution of other particles is also given
by v (u). Equations (5.64) and (5.65) give the following self-consistent
equation for ¢ (u):

Y(u) = Cexp Pn/du'vex(u,u’)w(u')]

Equation (5.66) has the same structure as eq. (5.17). The interaction
potential w(w, u’) is now replaced by

(5.66)

weg(w, u') = nkpTve(u,w') = 2nDL*kpT|u x u/| (5.67)

27

The potential w.g(u, u’) takes a minimum when u and u’ are parallel (or

antiparallel) to each other. The strength of the interaction is now char-

acterized by nDL?. Therefore if nDL? exceeds a certain critical value,

the isotropic state becomes unstable, and the nematic state appears.

Numerical solution of eq. (5.66) indicates that the isotropic state be-

comes unstable when nDL? > 5.1. The volume fraction at this density
is given by

5.1t D D

b= T T

Above this concentration, the isotropic state cannot be stable, and the
system turns into the nematic state.

(5.68)

28
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