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1 Classification

Here we discuss anisotropic fluids which, however, are uniform at least in one spatial dimension. Because
these type of fluids combine the (partial)spatial uniformity of a simple liquid with the orientational
anisotropy of a crystal, they are dubbed “Liquid Crystal”. It is an intermediate state of a matter which
exhibits typical properties of a liquid such as fluidity, inability to support shear, formation and coalescence
of droplets) as well as some crystalline properties such as anisotropy in optical, electrical, and magnetic
properties, or periodic arrangement of molecules in one or two spatial direction.

In general liquid crystals are composed of molecules (called “mesogens”) with the “non-spherical”
shape, for example rod- or disk-like one. A few typical mesogens are shown in Fig. (1). From a steric
point of view, molecules are rigid rods with the breadth to width ratio from 3:1 to 20:1.

The anisotropic properties of liquid crystals are caused by the existence of a preferred orientation
of mesogens with respect to each other. The axis which is parallel to this preferred orientation of the
mesogens is called the director n. Intuitively, n can be understood as the result of averaging over the
different orientations of the molecular axes w. Typically, orientations w and −w are equivalent which
means that also n and −n are equivalent, i.e. the director is not a vector.

It is possible to classify different liquid crystalline phases (mesophases) based on, e.g., the dimension
D of the spatially homogeneous directions, as is shown in Table 1:

1



Figure 1: Typical mesogens forming liquid crystalline phases (mesophases). (PAA) p-azoxyanisole. From

a rough steric point of view, this is a rigid rod of length ∼ 20Å and width ∼ 5Å. The nematic state

is found at high temperatures (between 1160C and 1350C at atmospheric pressure). (MMBA) N -(p-

methoxybenzylidene)-p-butylaniline. The nematic state is found at room temperatures (between 200C to

470C). Lacks chemical stability. (5CB) 4-pentyl-4’-cyanobiphenyl. The nematic state is found at room

temperatures (between 240C and 350C).

Homogeneity Isotropy Mesophase
D = 3 D = 3 Isotropic, I

D < 3 Nematic, N
D = 2 D = 2 Smectic-A, SmA

D < 2 Smectic-C, SmC

D = 1 Columnar
D = 0 D = 0 Crystal

Liquid crystals which are obtained by melting a crystalline solid are called thermotropic. Additionally
there are so-called lyotropic liquid crystals, where the phase transitions between mesophases are controlled
by concentration rather then by temperature. Lyotropic liquid crystals most often are build from self-
assembled surfactant molecules dissolved in water.

2 Anisotropic Susceptibility and Order Parameter Tensor

- One-particle angular distribution function -

We consider a system of N rod-like particles with positions ri and orientation wi, i = 1, .., N . Next we
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Figure 2: The arrangement of molecules in mesophases. In nematic phase the molecules tend to have

the same alignment but their positions are not correlated. In smectic-A phase the molecules tend to lie

in the planes with no configurational order within the planes and to be oriented perpendicular to the

planes. Disc-shaped molecules self-assembled into columnar phase with the columns being ordered into

2D hexagonal lattice.

introduce one particle distribution function

ρ(r,w) = 〈
N∑
i

δ(r− ri)δ(w −wi)〉, (1)

where 〈...〉 denote thermal averaging. Integration over all orientations w gives rise to the orientation-
independent one-particle distribution (density)

ρ(r) =

∫
S2

ρ(r,w)dΩ, (2)

where dΩ is the solid angle element, and S2 is the two-dimensional sphere. We also introduce one-particle
angular distribution function

f(r,w) := ρ(r,w)/ρ(r). (3)

We assume the molecules have cylindrical symmetry and that η|| and η⊥ are the molecular magnetic
susceptibilities along the molecular axis and the (degenerate) directions perpendicular to it. Then in an
arbitrary coordinates

ηij = η⊥δij + ηawiwj , (4)

where the subscripts i, j = 1, .., 3, ηa = η||−η⊥ is the anisotropy of the molecular magnetic susceptibility,
and δij is the Kronecker delta. For usual nematic mesogens η|| < 0 and η⊥ < 0, i.e. the material are
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diamagnetic.

- Magnetic susceptibility tensor -

A local magnetic field H at the position of a molecule induces in the molecule a dipole magnetic moment
m with the components

mi = µ0ηijHj , (5)

where µ0 is the magnetic permeability of vacuum, and summation over the repeated indexes is implied.
Because magnetic interactions between molecules are small, the local magnetic field is given mostly by
the external magnetic field. This implies that the macroscopic magnetic susceptibility tensor χ can be
obtained from the sum of the molecular susceptibilities with appropriate averaging over the distribution
function ρ(r,w). Consequently the local magnetization M(r) in a liquid crystal in a uniform field may
be calculated as

Mi(r) = µ0

∫
S2

ρ(r,w)ηijHjdΩ. (6)

This leads to the following expression for the magnetic susceptibility

χij(r) = µ0

∫
S2

ρ(r,w)ηijdΩ

= µ0ρ(r)
(
η⊥δij + ηa

∫
S2

f(r,w)wiwjdΩ
)
. (7)

Eq. (7) demonstrates that by measuring χij(r) one also get an information about the angular distribution
function f(r,w).

- Uniaxial nematic phase -

For uniaxial nematic phases, f(r,w) is rotationally symmetric with respect to n(r) and may be written
as f(r,w) = f̄(r, cos θ); θ is the angle between the director n(r) and the molecular axis w. We introduce
a local spherical coordinates with the polar axis parallel to n(r). Then the molecular axis

w =

 sin θ cosφ
sin θ sinφ

cos θ

 ,

and

∫
S2

f(r,w)wiwjdΩ =

∫ π

0

sin θf̄(r, cos θ)dθ

∫ 2π

0

wiwjdφ. (8)
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Because

wwT =

 sin2 θ cos2 φ sin2 θ cosφ sinφ sin θ cos θ cosφ
sin2 θ cosφ sinφ sin2 θ sin2 φ sin θ cos θ sinφ
sin θ cos θ cosφ sin θ cos θ sinφ cos2 θ

 , (9)

we obtain

∫ 2π

0

wwT dφ = π

1− cos2 θ 0 0
0 1− cos2 θ 0
0 0 2 cos2 θ

 . (10)

Now the expression for the magnetic susceptibility tensor in Eq. (7) takes the form

χ(r) = µ0ρ(r)

η⊥ + ηa
2 (1− 〈cos2 θ〉θ 0 0

0 η⊥ + ηa
2 (1− 〈cos2 θ〉θ 0

0 0 η⊥ + ηa〈cos2 θ〉θ

 . (11)

In Eq. (11) 〈...〉θ :=
∫
S2 f(r,w)...dΩ = 2π

∫ π
0

sin θf̄(r, cos θ)...dθ. From Eq. (11) we obtain for the
anisotropy χa(r) = χ||(r)− χ⊥(r) of the macroscopic magnetic susceptibility tensor

χa(r) = µ0ρ(r)ηa
1

2

(
3〈cos2 θ〉θ − 1

)
= µ0ρ(r)ηaS(r) (12)

where we have introduced a scalar orientational order parameter

S(r) =
1

2

(
3〈cos2 θ〉θ − 1

)
; (13)

and where χ|| and χ⊥ are the magnetic susceptibilities along the local nematic director n(r) (assumed here
to be along z−axis) and the two (degenerate) directions perpendicular to it. It is easy to check that in the
isotropic phase when f̄ = 1

4π , S = 0 and as the result also χa = 0, as supposed to be for an isotropic ma-

terial. χ⊥ may be expressed via S as χ⊥(r) = µ0ρ(r)
(
η||+2η⊥

3 − ηa
3 S(r)

)
. In arbitrary coordinate system

χij(r) = χ⊥(r)δij + χani(r)nj(r). (14)

- Order parameter tensor
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In order to describe the nematic orientational ordering we introduce a tensorial order parameter Q de-
fined as the deviatoric part of the susceptibility tensor χ

Q := χ− 1

d
Trχ. (15)

Q is a symmetric traceless tensor. In general it has three different eigenvalues, which corresponds to
so-called biaxial nematic. For uniaxial susceptibility as in Eq. (14), the order tensor may be presented in
the form

Q = χa

(
ninj −

1

3
δij

)
. (16)

Eq. (16) shows, that the nematic director n is the eigenvector of Q which correspond to the maximal
eigenvalue

Qmax =
2

3
χa =

2

3
µ0ηaρS. (17)

3 Isotropic-Nematic Phase Transition in Onsager Model

In this part we discuss a “simple” model introduced by Onsager in [1] in order to discuss the nematic-to-
isotropic phase transition. Consider an ensemble of long cylindrical particles with the diameter D and
the length L interacting pairwise via the hard-core potential V(1,2) which depends on both positions and
orientations of the molecules: 1 = (r1,w1). Onsager has shown how the Mayer cluster theory may be used
to give an expansion for the equation of state of this system [1]. Onsager’s expression for the Helmholtz
free energy is written in terms of the single-particle distribution function, ρ(1) ≡ ρ(r1)f(r1,w1)

βF [ρ] =

∫
ρ(1)

(
ln(ρ(1)Λ3)− 1− βµ+ βU(1)

)
d(1)− 1

2

∫
f∗(1,2)ρ(1)ρ(2)d(1)d(2). (18)

Here d(i) = d3ridΩi, β = 1/kBT , Λ =
√

2π~2β/m is the thermal de Broglie wavelength, µ is the chemical
potential, U(1) is the external potential energy. The Mayer f -function

f∗(1,2) = e−βV(1,2) − 1 =

{
−1, particles intersect

0, otherwise.
(19)

Below we assume that U(1) = 0, and ρ(r) = ρ̄ = const. Then
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βF [ρ] = V ρ̄

(∫
S2

f(w)
(
ln(ρ̄Λ3)− 1− βµ+ ln f(w)

)
dΩ + (20)

ρ̄

2

∫
S2

∫
S2

E(w1,w2))f(w1)f(w2)dΩ1dΩ2

)
. (21)

w
1

w
2

γ
L

L

Figure 3: The excluded volume E of two hard rods depends on the angle γ between their axes w1 and

w2. E is minimum for the parallel alignment, γ = 0, and maximum for perpendicular alignment γ = π/2.

For D � L we can neglect the ends effects leading to E(w1,w2)) ≈ 2DL2| sin γ|.

with the excluded volume (see Fig. 3)

E(w1,w2)) = −
∫
V

f∗(r,w1,w2)d3 ≈ 2DL2| sin γ| (22)

of one particle oriented at w1 with another particle oriented at w2. Because
∫
S2 f(w)dΩ = 1, the

f(w)−dependent part of the functional in Eq. (21) has the form

F [f ] =

∫
S2

f(w) ln f(w)dΩ + ρ̄DL2

∫
S2

∫
S2

√
1−w1w2f(w1)f(w2)dΩ1dΩ2. (23)

Now the objective is to minimize the functional (23) with respect to the angular distribution function
f(w). The normalization condition for f(w) can be directly introduced in Eq. (23) by adding the term

λ

(∫
S2

f(w)dΩ− 1

)
, (24)
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where λ is a Lagrange multiplier. The equilibrium f(w) that minimizes the free energy functional (23)
is a solution of the following Euler–Lagrange equation

ln f(w) = λ− 1− 2ρ̄DL2

∫
S2

√
1−ww1f(w1)dΩ1. (25)

Figure 4: Onsager’s trial function Eq. (26) with α as an variational parameter. For α → 0, fOns →

1/(4π), i.e. isotropic distribution of molecular axes. For α 6= 0, fOns exhibits two picks at θ = 0, π, which

become sharper as α grows.

Equation (25) always has an “isotropic” solution f(w) = 1/(4π). However for large enough values of
the dimensional parameter ρ̄L/D Eq. (25) also admits anisotropic solution describing the nematic phase.
The exact solution is not known, and approximate one can be obtained numerically. Onsager employed
a one-parameter variational Ansatz

fOns(w;α) =
α

4π sinhα
cosh(α cos θ). (26)

The prefactor is chosen to fulfill the normalization condition, and α is the variational parameter. We
recall that θ is the angle between the molecular axis and the nematic director. Substituting Eq. (26)
into the expression for the free energy functional in Eq. (23) and minimizing the resulting function with
respect to α one may calculate the phase boundary between the nematic and isotropic phases. In this
case the parameter controlling the phase behavior is the rods’ volume fraction φ = ρ̄πD2L/4.

In the isotropic phase α = 0, and α is large in the nematic phase αnem ' 19. Larger values of α
make the Ansatz function more peaked at θ = 0, π as is shown in Fig. 4. Onsager found that at the
coexistence the volume fractions of the nematic and isotropic phases φnem = 4.5D/L and φiso = 3.3D/L,
respectively. This values demonstrate that the transition occurs for rather large aspect rations L/D.
The free energy functional in Eq. (18) is based on the second-order virial expansion, therefore Onsager’s
results are applicable only for small volume fractions φ� 1.

8



The physical mechanism responsible for the emergence of the nematic phase is related to the competi-
tion between translational and orientational entropies. Thus, the ideal-gas part in the Onsager functional,
the first integral in the rhs. of Eq. (23), is independent on the density ρ̄ and prefers the isotropic orienta-
tion of the rods. Contrary, the excluded volume part of Eq. (23) grows with ρ̄ and prefers orientational
configurations with as small volume per particle as possible, i.e. nematic phase. At sufficiently large
densities, the entropy loss caused by the restriction of the orientational degrees of freedom can be com-
pensated by the entropy gain due to the decrease of the excluded volume. In other words, in the isotropic
phase the orientational entropy dominates, while in the nematic phase – the translational one.

4 Landau-de Gennes Theory

- Phenomenological free energy functional -

the following we will consider purely phenomenological approach to the orientational ordering which is
based solely on the tensor order parameter Q(r). We employ here such a scaling that the scalar order
parameter S(r) is the eigenvalue of Q(r) corresponding to the nematic director n(r):

Qij(r) =
S(r)

2
(3ni(r)nj(r)− δij) . (27)

In the spirit of phenomenological Landau approach to the phase transitions of second order, a free energy
functional of a liquid crystalline system is postulated in the form

F [Q] =

∫
V

[
fLdG

(
Q(r)

)
+ fel

(
∇Q(r)

)
+ fH

(
r,Q(r)

)]
d3r, (28)

where fLdG(Q(r)) (with LdG standing for Landau-de-Gennes) is a local and fel(∇Q(r)) an elastic contri-
butions, and fH(r,Q(r)) is a contribution due to the presence of an external magnetic (or electric) field.
The equilibrium Q(r) minimizes F [Q], and the corresponding minimum of F equals to the free energy of
the system.

- The Landau-de Gennes free energy density, and nematic-isotropic phase transition -

fLdG(Q(r)) in Eq. (28) describes the nematic-isotropic phase transition in a spatially uniform system
without external fields. According to the Landau phenomenological approach fLdG is presented as a
Taylor expansion in the scalar order parameter S. The series is truncated to the 4th power in S without
losing the physics of the phase transition, but in general, there are higher order terms present. Because
fLdG is a scalar quantity, and Q is a second rank tensor with TrQ = 0, fLdG must contain only scalar
combinations of the order tensor: TrQ2 ∼ S2 and TrQ3 ∼ S3. The general form of fLdG is then given
by

fLdg = f0 + a(T )TrQ2 − bTrQ3 + c
(
TrQ2

)2
, (29)
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where f0 is the free energy density of the isotropic phase. The presence of the term ∼ S3 reflects the
fact that the nematic states described by S and −S are distinct, and therefore the free energy is not
symmetric with respect to the transformation S → −S. In general, the coefficients a, b, and c in the
Landau-de Gennes expansion (29) are temperature, T , dependent. To simplify the model, we assume
that b and c are temperature independent positive constants. For spatially uniform systems Eq. (29)
describes the coexistance between the nematic and isotropic phases. To this end we substitute (27) into
expansion (29) and obtain

fLdG = f0 +
3

2
a(T )S2 − 3

4
bS3 +

9

4
S4, (30)

which should be minimized with respect to S. It is convenient to define the dimensionless temperature
τ = 24a(T )c/b2. The equation ∂fLdG/∂S = 0 has three solutions:

SI = 0, (the isotropic phase) (31)

SN =
b

8c

(
1 +

√
1− 8τ

9

)
> 0, (the nematic phase). (32)

The third solution

S3 =
b

8c

(
1−

√
1− 8τ

9

)
(33)

should be disregarded as it corresponds either to a free energy maximum, with S3 > 0, or to a metastable
minimum (fLdG(S3) > fLdG(SN )) with S3 < 0, see Fig. 5. The transition temperature TNI and the cor-
responding value SNI of the order parameter are defined from the condition that the free energy densities
of the two phases are equal fLdG(SNI) = f0 which gives

τNI = 1,

SNI =
b

6c
. (34)

The isotropic phase is unstable for τ < 0, while the nematic becomes unstable for τ > 9/8.

- Elastic free fnergy density -

The order tensor Q can depend on the spatial coordinates, which means that either the director n or the
order parameter S (or all together) vary from place to place. This variation can be due to external forces
imposed on the system, thermal fluctuations, or boundary conditions. Assuming these deformations
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Figure 5: Landau-de Gennes free energy density (30) for uniaxial system as a function of scalar order

parameter S for several values of reduced temperature τ = 24a(T )c/b2. At τ = τNI = 1 (black cure) the

isotropic S = 0 and the nematic S > 0 phases coexist. For 1 < τ < 9/8 (red curve) the nematic phase is

metastable, while for τ > 9/8 (blue curve) the nematic phase is unstable. For 0 < τ < 1 (green curve)

the isotropic phase is metastable, while for τ < 0 the isotropic phase is unstable.

to vary slowly in space relative to the molecular distance scale, it is possible to describe the response
of the liquid crystal using continuum elastic theory. Then the elastic free energy density can be written as

fel = L1
∂Qij
∂xk

∂Qij
∂xk

+ L2
∂Qij
∂xj

∂Qik
∂xk

+ L3
∂Qij
∂xk

∂Qik
∂xj

, (35)

where L1, L2, and L3 are the phenomenological constant parameters and the summation convention
is assumed. In the case where the scalar order parameter S is constant, an expansion in terms of the
director n is normally used to calculate elastic free energy density. Substituting Eq. (27) into (35) and
using the condition nini = 1, fel may be written in the form (modulo full divergences):

fel =
9S2

8

(
(2L1 + L2 + L3) (∇ · n)

2
+ 2L1 (n · [∇× n])

2
+ (2L1 + L2 + L3) [n× [∇× n]]

2

)
=

1

2

(
K1 (∇ · n)

2
+K2 (n · [∇× n])

2
+K3 [n× [∇× n]]

2
)
. (36)

The second line represents the famous Frank-Oseen elastic free energy density for nematics with the splay
K1, twist K2 and bend K3 elastic constants:
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K1 = K3 =
9S2

4
(2L1 + L2 + L3),K2 =

9S2

4
2L1. (37)

Examples of director configurations featuring these elastic modes are illustrated schematically in Fig. 6.
For the purpose of qualitative calculations it is sometimes useful to assume that K1 = K2 = K3 = K
(one elastic constant approximation). The elastic free energy density for this case reduces to

fel =
1

2
K
(
(∇ · n)2 + (∇× n)2

)
. (38)

Figure 6: The three distinct elastic modes of a nematic liquid crystal: (a) splay with the contribution to

the elastic free energy K1 (∇ · n)
2
, (b) twist: K2 (n · [∇× n])

2
, and (c) bend K3 [n× [∇× n]]

2
. Typical

values of Ki ∼ 10pN.

- Response to external fields -

The director field is easily distorted and can be aligned by magnetic and electric fields, and by surfaces
which have been properly prepared. We remind that the magnetic susceptibility tensor of a uniaxial
liquid crystal has the form

χij = χ⊥δij + χaninj , (39)

where χa = χ‖ − χ⊥ is the anisotropy of the magnetic susceptibility, and is generally positive. It is thus
possible to exert torques on the liquid crystal by applying a field. The presence of a magnetic field H
contributes to the free energy density the following term

fH = −µ0

2
HiχijHj = −µ0

2
χ⊥H

2 − µ0

2
χa(n ·H)2. (40)

The first term in the rhs of Eq. (40) can be omitted as it is independent of the orientation of the director.
The last term gives rise to a torque on the liquid crystal - if χa is positive the molecules will align parallel
to the field.
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The dielectric permittivity tensor of a liquid crystal is also anisotropic and has similar form as the
magnetic susceptibility. Thus, in principle, we can achieve the same effect with an electric field as with
a magnetic field. In an electric field E there will be an additional free energy contribution

fE = −ε0
2
ε⊥E

2 − ε0
2
εa(n ·E)2, (41)

where ε⊥ is the component of the relative dielectric permittivity tensor in the directions (degenerate)
perpendicular to the director, εa = ε||−ε⊥ is the dielectric anisotropy, and ε0 is the vacuum permittivity.
In practice the alignment of a liquid crystal by an electric field is complicated by the presence of conducting
impurities which make it necessary to use alternating electric fields.

5 Fréedericksz Transition

Consider a nematic liquid crystal between two glass slides. The interaction between the nematic and the
glass is such that the director is constrained to lie perpendicular to the glass at the boundaries. When
a magnetic field, applied perpendicular to the director, exceeds a certain critical value Hc, the optical
properties of the system change abruptly. The reason is that both the magnetic field and the boundaries
exert torques on the molecules and when the field exceeds Hc it becomes energetically favorable for the
molecules in the bulk of the sample to turn in the direction of the field. This effect first observed by
Fréedericksz and Zolina and can be used to measure some of the elastic constants.

Figure 7: Fréedericksz transition. The liquid crystal is constrained to be perpendicular to the boundary

surfaces and a magnetic field is applied in the x-direction. (a) Below a certain critical field Hc, the

alignment is not affected. (b) Slightly above Hc, deviation of the alignment sets in. (c) Field is increased

further, the deviation increases.

Let the z axis be perpendicular to the glass surfaces and the field H lie along the x−direction (see
Fig. (7)). We parametrize the director as
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Figure 8: Schematic presentation of the setups for measuring K1 in (a), and K2 in (b) by using the

magnetic Fréedericksz transition. (a) At the boundaries the liquid crystal is constrained to be parallel

to the x−direction and a magnetic field is applied in the z-direction. (b) At the boundaries the liquid

crystal is constrained to be parallel to the x−direction and a magnetic field is applied in the y-direction.

H1 < H2 < H3.

n =

sin θ(z)
0

cos θ(z)

 ,

so that θ(z) is the angle between the director and the z axis. The elastic energy per unit area now takes
the form

Fel =
1

2

∫ L

0

dz

((
K1 sin2 θ +K3 cos2 θ

)(∂θ
∂z

)2

− µ0χaH
2 sin2 θ

)
, (42)

L is the thickness of the sample. In the undistorted structure, θ = 0, the field does not exert a torque on
the molecules - they are in metastable equilibrium. Near the threshold Hc, distortions are weak, θ � 1,
and Eq. (42) writes in a simplified form

Fel '
K3

2

∫ L

0

dz

((
∂θ

∂z

)2

− 1

ξ2
θ2

)
, (43)

where we define the length ξ = 1
Hc

√
K3

µ0χa
. ξ can be interpreted as the distance which a disturbance can

propagate into the liquid crystal in the presence of an ordering field. The length ξ is called the magnetic
coherence length and arises in many problems involving the distortion produced by a magnetic field.
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In order to estimate the threshold value of the field we use a variational Ansatz

θ(z) = θ0 sin
(πz
L

)
. (44)

Substituting (44) into (43) and performing integration we obtain

Fel '
π2K3

4L

(
1−

(
L

πξ

)2
)
θ20. (45)

For ξ > L/π the free energy in Eq. (45) is minimized at θ0 = 0, i.e., undistorted director configuration.
We conclude that for weak fields

H < Hc ≡
π

L

√
K3

µ0χa
, (46)

the orienting strengths of the bounding surfaces “beats” the external field. For ξ > L/π, the prefactor
in front of θ20 in Eq. (45) is negative, signalling the instability of the undistorted θ = 0 solution. This
phenomena is named the Fréedericksz Transition. By measuring the threshold field Hc it is possible to
calculate the bend elastic constant

K3 = µ0χa

(
HcL

π

)2

. (47)

In the similar way it is possible to measure the splay K1 and the twist K2 elastic constants. The
corresponding experimental setups are shown in Figs. (8)a, and b, respectively.

6 Optical Properties

It has already been mentioned above that the dielectric permittivity of a nematic is anisotropic and in a
uniaxial state is a second-rank tensor

εij = ε⊥δij + εaninj . (48)

Correspondingly, we can introduce ordinary and extraordinary refractive indexes

ne =
√
ε‖, no =

√
ε⊥, ∆n = ne − no. (49)

For typical nematic liquid crystals, no is approximately 1.5 and the maximum difference, ∆n, may range
between 0.05 and 0.5.

Thus, when light enters a birefringent material, such as a nematic liquid crystal sample, the process
is modeled in terms of the light being broken up into the fast (called the ordinary ray) and slow (called
the extraordinary ray) components. The plane of polarization of the e-wave always contains the director

15



n, and the o-wave is always polarized normally to n. Because the two components travel at different
velocities, the waves get out of phase. When the rays are recombined as they exit the birefringent
material, the polarization state has changed because of this phase difference.

The length of the sample is another important parameter because the phase shift accumulates as long
as the light propagates in the birefringent material. Any polarization state can be produced with the
right combination of the birefringence and length parameters.

Figure 9: Schematic drawing of a light propagation trough a nematic film, placed between crossed

polarizers.

Consider the case where a liquid crystal film is placed between crossed polarizers, see Fig. 9. The
director n(x, y) is constrained to be in the (x, y) plane (the plane of the film). We assume that the
incident light beam is along z−axis. A polarizer placed in front of the sample makes the incoming light
linearly polarized. Upon entering in the nematic the wave splits into the ordinary wave

Eo(z = 0) = E0

(
0

sinβ

)
, (50)

and the extraordinary one

Ee(z = 0) = E0

(
cosβ

0

)
, (51)
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Figure 10: Schlieren texture of a nematic film with surface point defects. Dark brushes correspond to

the regions where the director is parallel β = 0) or perpendicular (β = ±π/2) to the polarizer. Points

where four brushes meet correspond to the centers (cores) of topological point defects.

where β(x, y) is the angle between n(x, y) and the polarization of the incoming wave. At the point of
entry z = 0 into the nematic both waves are in phase. As was mentioned above, the two phase will need
times nod/c and ned/c in order to pass through the film. At the exit point at z = d

Eo(z = d) = E0 sinβe−iωt
(

0
eikod

)
, Ee(z = d) = E0 cosβe−iωt

(
eiked

0

)
, (52)

where ki = 2πni/λ0 are wave numbers of the ordinary i = o and extraordinary i = e waves, and λ0 is
the wave length in vacuum. Eq. (52) shows that at the exit point the two waves will gain a phase shift
δφ = (ke − ko)d. Projecting the two waves onto the polarization direction of the analyzer and adding
them we obtain the wave amplitude behind the analyzer

Eout = Eo(z = d) +Ee(z = d) = E0 exp−iωt sinβ cosβ

(
−eiked

eikod

)
. (53)

The intensity of light I = |Eout|2 passed through the system of crossed polarizers and the nematic films is

I = |E0|2 sin2 2β sin2

(
πd

λ0
(ne − no)

)
. (54)

Eq. (54) shows that for films of uniform thickness d the intensity pattern I(x, y) of the transmitted light
is determined by β(x, y), i.e., by the in-plane configuration of the director field. In other words, the
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system of crossed polarizers maps the director field n(x, y) onto the transmitted light intensity I(x, y).
If the transmission axis of the first polarizer is parallel (β = 0) or perpendicular (β = ±π/2) to the
nematic director n, the light is not broken up into components, and the corresponding region of the
texture appears dark, see Fig. 10, where a texture with dark “brushes of extinction” is clearly visible.
This type of textures is called the Schlieren texture. Points where four dark brushes meet are centers of
topological defects. We note, that point topological defects can only exist in pairs. One can distinguish
two types of defects with “opposite sign of the topological charge”; one type with yellow and red brushes,
the other kind not that colorful. The difference in appearance is due to different core structures for these
defects of different “charge”. We note, that I also depends on the wavelength λ0 and, therefore, for white
light, the transmitted intensity will exhibit colorful textures, as shown in Fig. 10.

7 Topological Defects

Figure 11: Examples of axial disclinations in a nematic: (a) m = +1, (b) the parabolic disclination,

m = +1/2, (c) the hyperbolic disclination (topologically equivalent to the parabolic one), m = −1/2.

Liquid crystals are ideal materials for studying topological defects. Distortions yielding defects are
easily produced through control of boundary conditions, surface geometries, and external fields. The
resulting defects are easily imaged optically. The simplest, nematic liquid crystalline phase owes its name
to the typical threadlike defect which can be seen under a microscope in a nematic or cholesteric phase
[2].

First explanations were given by Friedel [3] who suggested that these threads are lines on which the
director changes its direction discontinuously. In analogy with dislocations in crystals, Frank proposed
to call them disclinations [4]. To classify topological defects the homotopy theory can be employed to
study the order parameter space [5]. For the case of nematics, there are two kinds of stable topolog-
ical defects in three dimensions: point defects, called hedgehogs and line defects, called disclinations.
Hedgehogs are characterized by an integer topological charge q specifying the number of times the unit
sphere is wrapped by the director on any surface enclosing the defect core. An analytical expression for q is

q =
1

8π

∫
dSiεijkn · (∂jn× ∂kn) , (55)

where ∂α denotes differentiation with respect to xα, εijk is the Levi-Civita symbol, and the integral is
over any surface enclosing the defect core. For an order parameter with O3, or vector symmetry, the
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order-parameter space is S2, and hedgehogs can have positive or negative charges. Nematic inversion
symmetry makes positive and negative charges equivalent, and we may, as a result, take all charges to
be positive.

The axial director configurations representing disclination lines can be described in terms of the angle

θ = mφ+ θ0, (56)

where nx = cos θ, ny = sin θ, φ is the azimuthal angle, x = r cosφ, y = r sinφ, m is a positive or negative
integer or half-integer [6]. Examples of disclinations for several m are given in Fig. (11). The elastic
energy per unit length associated with a disclination is πKm2 ln(R/r0), where R is the size of the sample
and r0 is a lower cutoff radius (the core size) [6]. Since the elastic energy increases as m2, the formation
of disclinations with large Frank indices m is energetically unfavorable.

As has already been mentioned, within the continuum Frank theory, disclinations are singular lines
where the gradient in the director becomes infinite; this signals a breakdown in the Frank theory. The
region near the singularity where the Frank theory fails is called the disclination core. The phenomeno-
logical elastic theory predicts that a uniaxial nematic either melts or exhibits a complex biaxial structure
in the core region [7].

Therefore, the core of the defect cannot be represented by the director field only, because of the
possible biaxiality and variation of the order parameter. For this reason, a more general theory based on
the alignment tensor should be applied to provide the correct description of the core region [8, 9, 10].
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