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Kinematics

Material derivative

A material derivative is the

E\: <> () 1 A 7 (.. ) time derivative of a property
Da' é—’f following a fluid.
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Steady state does not mean
necessarily a=0. Ex.:




Streamline: is a curve that is everywhere tangent to the instantaneous local
velocity vector.
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Streamline

])’ Point (x, y)

X NASCAR surface pressure
contours and streamlines

Other ways to visualize the flow:

A Pathline is the actual path traveled by an individual fluid particle over some
time period.

A Streakline is the locus of fluid particles that have passed sequentially through a
prescribed point in the flow.

For steady flow, streamlines, pathlines, and streaklines are identical.
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Continuity equation
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Vorticity
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Velocity profile
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Euler equation: for incompressible and inviscid fluids.
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Potential flow. For irrotational flows in Euler fluids.
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In this case, the pressure is given by the Bernoulli equation.

Kelvin circulation theorem: An ideal fluid that is vorticity free at a given instant is
vorticity free at all times.

Flow around a sphere: the drag and lift forces are zero for an ideal fluid.

My = 0O
Mo $€

r

57



Navier-Stokes: incompressible viscous fluids.

Newtonian fluids, defined as fluids for which the shear stress is linearly proportional to
the shear strain rate.
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Boundary conditions. 1) no-slip: at the surface, the velocity of the liquid and solid are
the same. 2) Interface BC: at the interface, the velocity and the shear-stress of the two
fluid are the same. 3) Frecsurface BC: at the free surface, the shear stress is zer8.
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Nondimensionalized Navier-Stokes:

—

d e’ St S

[St]

Since there are four dimensionless parameters, dynamic
similarity between a model and a prototype requires all four
of these to be the same for the model and the prototype

(Stmodel = Stprototype' Eumodel = Euprototype' I:rmodel = I:rprototypel and
Re = Re

model — prototype)'

Approximate Navier—Stokes equation for creeping flow:

e ¢ 1 —_— l "I
—+ (V-V)VW =—|EulV P + = + | —|V*V
at ( : [Eu] [Fr-‘g [Rc‘

Prototype

Stpeototype: Ellprototype Frprototype: Reprototype

Model
Slm]. Eum*]. Frmndd‘ RCMI

GP = “Vzv ?\cél.'_

Drag force on a sphere in creeping flow: Fp = 3muVD

Reversibility of the Stokes equation and the swimming at the microscale.
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Boundary layer. Separates viscous and inviscid flows close to a solid surface.
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Assumptions to obtain the BL equations

u v

+ =0
. ox ay
Boundary layer equations: r ,
C ou ou dU 0“u
U— +v—=U—+ v —
ox ay dx ay-

Boundary conditions in
the flat plate problem.

How to calculate the vorticity equation and its interpretation in simple cases

To find what difference viscosity makes, we need to repeat the above analysis
using the Navier-Stokes equation as our starting point, rather than the Euler
equation. The viscous term on the left-hand side of (6.25) is —»V /\ £2, and the

curl of this, since V-2 = 0, is )7\72.(2. Hence we now have

DO )
=L o0V + v,
D¢ p

(7.3) 60



Instabilities

How to find the critical conditions for the

t a) simulation b) experiment ‘
e ——— _ | instability (marginal instability) and which
o | mode grows faster.

| T ——
. Why does the instabilities happen in each
3.3 = case? Ex.: physical mechanism in the

ws - @ @ >0 o O-= Rayleigh-Taylor instability.
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Questao 1

Euler equation: for incompressible and inviscid fluids.
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Questao 2

Uniform (free) stream
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Velocity potential function for a uniform stream: db=Vx = (7- e = n -~ & @ b &= ¢ )
Stream functi - . ~ vy v
ream function for a uniform stream: b=Vy — ( 2 —7
Y= C2
Uniform stream: ¢ = Vrcos® = Vrsinf '—\//

. L. = V(xcos a + y sin «)
Uniform stream inclined at angle c: ¢ ( Y )
Y = V(ycosa — xsin @)
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Line source or sink at an arbitrary point
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Line source at point (a, b):
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Superposition of a source and sink of equal

strength

. i B V/LO . 0. y by P
Line source at (—a, 0): U, = ] where 1 = arctan =
Similarly for the sink, n
- r.)
—VIL y 7 r <
Line sink at (a, 0): L= , wh 0, = arctan — >0
ine sink at (a, 0) 1/ o 2 where ; = arctan ——— <] 7
6,
/‘ 0, _— )
_ , VIL . . X
Composite stream function: Y=y, +¢,=—-—00, -0) VIL -vIL T,
|= a - a -| -2
Vt S ()
—V/L 2ay

Final result, Cartesian coordinates: ¥ = arctan —;

27 x? + y? —a?

—VI/L 2ar sin 0

Final result, cylindrical coordinates: U= . arctan ——————
2T =

Using

T
arctan(u) + arctan(v) = arctan( luqz :v) (mod m), wv#1.
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Doublet: line source and sink close to origin

We have seen before that

, ) m sin 9
Composite stream function:

By Taylor expanding the arctan around zero:

J((‘vz)—]((@—ﬂJrjr/Q n <) +

M) o~
’ @(” =L s ﬁ(“‘a)
A /m/
SRICD RV R A

—a(V/L)r sin 0
o—& 4 v Stream function as a — 0: v — ( - ) -
w(r- — a)
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Doublet: line source and sink close to origin

‘-t

Let a tend to zero at constant doublet strength K, to find

—a(VIL) sin @ sin 6
¢ sinf __ sin

Doublet along the x-axis: g = —
™ r r ,
: cos 0
Doublet along the x-axis: é=K
r

Streamlines (solid) and equipotential
lines (dashed) for a doublet of strength K
located at the origin in the xy-plane
and aligned with the x-axis.
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Superposition of a uniform stream and a doublet:
Flow over a circular cylinder

Superposition: ¢ = V_rsinf — KSI:O =0
For convenience we set y = 0 when r = a
Doublet strength: K=V_ga
?—Q
. . @ ————
Alternate form of stream function: g =V _sinblr— — 1 / \
' //_ 5\\
"™ o :
y* =si 0<r* : ) X&J/
= sin —— |
e ]
Il .0....:....
o . U* = V(@*)? + 4sin’0 )
Nondimensional streamlines: r¢ =

2sin 0

10 2 d 2
u, = ——¢= V. cosO(l —_ a—,) Uy = ——¢= —szinB(l +07)

r a0 = re ar re



Questao 3

Flow in a round pipe: Poiseuille

1 The pipe is infinitely long in the x-direction. !
2 The flow is steady (all partial time derivatives are zero). &,,,?l e
3 This is a parallel flow (the r-component of velocity, u,, is zero).

4 The fluid is incompressible and Newtonian with constant properties, and the
flowis laminar. ¢,/ 1002

5 A constant pressure gradient is applied in the x-direction such that pressure
changes linearly with respect to x.

6 The velocity field is axisymmetric with no swirl, implying that ug = 0 and all
partial derivatives with respect to 6 are zero.

7 We ignore the effects of gravity.

8 The first boundary condition comes from imposing the no slip condition at
the pipe wall: (1) atr = R,V = 0.
9 The second boundary condition comes from ’%Lhe fact that the centerline of
the pipe is an axis of symmetry: (2) atr = 0, —= 0. Alternatively: the

o e e 0x
velocity is finite at the center.
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Integration of NS for u:

Axial velocity:

)

Continuity: 7 ’7@ ;}%‘L—:O 5 M

Result of continuity:
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rdr\ d M ox
aP
r-momentum: ;=0
Result ofr-m.omenm: P = P(x) only =7 P = D_[_D . 2 —L 109
D 2
du 1 dP 2 dp A =R) =
I'E—de C M=EE+C|IBT+C2 v Ugyg = )
SC\/‘/7(O>C‘£“‘W Umax
’)(A:O
~-D -
1 dP x
u=-12 2 _ g v
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Poiseuille’s law for the flow rate

Maximum axial velocity: u = ———

2r R R

. 29 dP wR* dP

V= [ J urdrdf = ——j (r? — R®rdr= ——
Jo=0 Jr=0 4}1. dx =0 8#, dx

(—mRY/8p) (@Pldx) R dP
wR? 8w dx

vV
Average axial velocity: V = e
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Viscous shear force

The stress tensor is :
Centerline
ou
0 0 pu—
Tr T T - ar
T =|Ter o0 Tax|=| O 0o o0
Txr Tlﬂ Tﬂ 0“
a 00 dP dx
or N P+—(T
/ FOP(J e~ £ &~
! L —
du R dP
Vi hear st t the pi all: = g— == -
ISCOUS snear Stress a pipe wa T( 1 dr ) dx Ir
Wonr amy [ Pipe wall

For flow from left to right, dP/dx is negative, so the viscous shear stress on the
bottom of the fluid element at the wall is in the direction opposite to that indicated
in the figure. (This agrees with our intuition since the pipe wall exerts a retarding
force on the fluid.) The shear force per unit area on the wall is equal and opposite to

this; hence,

dP -
!

. . F
Viscous shear force per unit area acting on the wall: : d_
' X

| =
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Viscosity and Poiseuille's Law:
— https://www.youtube.com/watch?v=wTnl_kfPBhQ

Asthma Attack
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If airway radius reduced by 25%, by how much is airway resistance affected?
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Force balance

Navier-Stokes equation

Q/,f’ b MV g = =Y +§+Vﬁzj
S p r

Y
— O

In most of the previous examples, the acceleration of the fluid elements is zero. It
means that the viscous force balance the external force (e.g., gravity) or pressure
gradients in such a way that the sum of forces acting on a fluid element is zero.



Sec. 8.4, Cengel

Alternative
derivation for flow in
. . Tr+dr
a circular pipe i
P, r==m=m1 P,
Obtain the momentum equation : _____}

by applying a momentum
balance to a differential volume
element, and we obtain the
velocity profile by solving it.

Free-body diagram of a ring-
shaped differential fluid
element of radius r, thickness dr,
and length dx oriented coaxially
with a horizontal pipe in fully
developed laminar flow.
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In fully developed laminar flow the axial velocity is, u= u(r). There is no motion
in the radial direction. There is no acceleration (check: calculate the
acceleration and verify that it is zero).

* Consider a ring-shaped differential volume element of
radius r, thickness dr, and length dx oriented coaxially
with the pipe.

* The volume element involves only pressure and
viscous effects and thus the pressure and shear forces
must balance each other. The pressure force acting on
a submerged plane surface is the product of the
pressure at the centroid of the surface and the surface

area. A force balance on the volume element in the
flow direction (x) gives

2@wrdrP), — QardrP), .4 + Qardx7), — ardx7),,,, =0

d k
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Force balance implies

2a@rdrP), — QurdrP),, 4 + Qardx7), — Qardx7),, 4 =0

_:_ (zﬁcé(% d(n/\ >

/\‘/;’_ﬂ
Px+dx - Px + (rT)r+dr - (rT)r —
dx dr

d
dP N (r7) — 0
dx dr

r

and substituting the stress (component rz): 7 = —plduidr) We find
2

Same equation obtained with NS: 7;(';) = i 78



Recall

Deviatoric stress tensor

T T (T2)

Ti = | Tor Too Tog
Ty Tw Tz
ou a [uy 1 ou, ou,  du,
v i) e
( " or HLmar\r rag) * 9z ar
a [ uy 1 au,] (1 ou, u,) (au,, 1 auz)
- ——=)+=-=| 2ul-—+-—F — + ——
"[rar(r) r o0 Mra " r Moz 7 r a8
ou, Ouz) (au, 1 auz) ou,
—+ — —+ —— 2u—
\ “( az ar K az r a0 N 9z /

Stress tensor

L » youx
75 = ?g]z] + )
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Different fluid element (r from O to R)

27Rdx 7,
-
L
TRP | |
: : TRYP + dP)
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H
o
Force balance:
7 R2P —wRAP + dP) - 2wR dx Te=0
Simplifying:
dP 2,

dx R
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27,

Separation of variables implies that the pressure gradient is constant ’;—f i

The velocity profile is obtained by integration and use of the boundary conditions:

2 (dP (“')M[l/‘: 74 \ - O
um:@(E) +%1r+/

“=o (,u(\,\z @) e flml”Lo )

=50 -5))
The average velocity is

14 (= T )
™~ g2 L unrdr =g L A\ dx )Y T T8u\ax
In terms of which the profile becomes

’-Z
u(r) = 2""3\-3(1 - F)




Questao 4

Nondimensionalized Navier—Stokes:

—

) v’
[St] o
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Since there are four dimensionless parameters, dynamic
similarity between a model and a prototype requires all four

Model

of these to be the same for the model and the prototype Tmbt-metaeat
(Stmodel = Stprototype' Eumodel = Euprototypel I:rmodel = I:rprototypei and . l Jm : |P0--
Remodel = Reprototype)' l L, |

Approximate Navier-Stokes equation for creeping flow: VP = p,VZV

Drag force on a sphere in creeping flow: Fp = 3muVD
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