
A conformal map acting on a
rectangular grid. Note that the
orthogonality of the curved grid is
retained.

Orthogonal coordinates
In mathematics, orthogonal coordinates are defined as a set of d coordinates  in which the
coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface
for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-
dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x =
constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular.
Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.

While vector operations and physical laws are normally easiest to derive in
Cartesian coordinates, non-Cartesian orthogonal coordinates are often used
instead for the solution of various problems, especially boundary value problems,
such as those arising in field theories of quantum mechanics, fluid flow,
electrodynamics, plasma physics and the diffusion of chemical species or heat.

The chief advantage of non-Cartesian coordinates is that they can be chosen to
match the symmetry of the problem. For example, the pressure wave due to an
explosion far from the ground (or other barriers) depends on 3D space in
Cartesian coordinates, however the pressure predominantly moves away from the
center, so that in spherical coordinates the problem becomes very nearly one-
dimensional (since the pressure wave dominantly depends only on time and the
distance from the center). Another example is (slow) fluid in a straight circular
pipe: in Cartesian coordinates, one has to solve a (difficult) two dimensional
boundary value problem involving a partial differential equation, but in
cylindrical coordinates the problem becomes one-dimensional with an ordinary
differential equation instead of a partial differential equation.

The reason to prefer orthogonal coordinates instead of general curvilinear
coordinates is simplicity: many complications arise when coordinates are not
orthogonal. For example, in orthogonal coordinates many problems may be
solved by separation of variables. Separation of variables is a mathematical
technique that converts a complex d-dimensional problem into d one-dimensional
problems that can be solved in terms of known functions. Many equations can be
reduced to Laplace's equation or the Helmholtz equation. Laplace's equation is
separable in 13 orthogonal coordinate systems (the 14 listed in the table below
with the exception of toroidal), and the Helmholtz equation is separable in 11 orthogonal coordinate systems.[1][2]

Orthogonal coordinates never have off-diagonal terms in their metric tensor. In other words, the infinitesimal squared
distance ds2 can always be written as a scaled sum of the squared infinitesimal coordinate displacements

where d is the dimension and the scaling functions (or scale factors)

equal the square roots of the diagonal components of the metric tensor, or the lengths of the local basis vectors 
described below. These scaling functions hi are used to calculate differential operators in the new coordinates, e.g., the
gradient, the Laplacian, the divergence and the curl.

Motivation
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Visualization of 2D orthogonal coordinates.
Curves obtained by holding all but one coordinate
constant are shown, along with basis vectors.
Note that the basis vectors aren't of equal length:
they need not be, they only need to be
orthogonal.

A simple method for generating orthogonal coordinates systems in two dimensions is by a conformal mapping of a
standard two-dimensional grid of Cartesian coordinates (x, y). A complex number z = x + iy can be formed from the real
coordinates x and y, where i represents the imaginary unit. Any holomorphic function w = f(z) with non-zero complex
derivative will produce a conformal mapping; if the resulting complex number is written w = u + iv, then the curves of
constant u and v intersect at right angles, just as the original lines of constant x and y did.

Orthogonal coordinates in three and higher dimensions can be generated from an orthogonal two-dimensional coordinate
system, either by projecting it into a new dimension (cylindrical coordinates) or by rotating the two-dimensional system
about one of its symmetry axes. However, there are other orthogonal coordinate systems in three dimensions that cannot
be obtained by projecting or rotating a two-dimensional system, such as the ellipsoidal coordinates. More general
orthogonal coordinates may be obtained by starting with some necessary coordinate surfaces and considering their
orthogonal trajectories.

In Cartesian coordinates, the basis vectors are fixed (constant). In the more general setting of curvilinear coordinates, a
point in space is specified by the coordinates, and at every such point there is bound a set of basis vectors, which
generally are not constant: this is the essence of curvilinear coordinates in general and is a very important concept. What
distinguishes orthogonal coordinates is that, though the basis vectors vary, they are always orthogonal with respect to
each other. In other words,

These basis vectors are by definition the tangent vectors of the curves obtained by varying one coordinate, keeping the
others fixed:

where r is some point and qi is the coordinate for which the basis
vector is extracted. In other words, a curve is obtained by fixing all
but one coordinate; the unfixed coordinate is varied as in a parametric
curve, and the derivative of the curve with respect to the parameter
(the varying coordinate) is the basis vector for that coordinate.

Note that the vectors are not necessarily of equal length. The useful
functions known as scale factors of the coordinates are simply the
lengths  of the basis vectors  (see table below). The scale factors
are sometimes called Lamé coefficients, not to be confused with Lamé
parameters (solid mechanics).

The normalized basis vectors are notated with a hat and obtained by
dividing by the length:

A vector field may be specified by its components with respect to the
basis vectors or the normalized basis vectors, and one must be sure
which case is meant. Components in the normalized basis are most
common in applications for clarity of the quantities (for example, one may want to deal with tangential velocity instead of
tangential velocity times a scale factor); in derivations the normalized basis is less common since it is more complicated.

Basis vectors

Covariant basis

Contravariant basis
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The basis vectors shown above are covariant basis vectors (because they "co-vary" with vectors). In the case of
orthogonal coordinates, the contravariant basis vectors are easy to find since they will be in the same direction as the
covariant vectors but reciprocal length (for this reason, the two sets of basis vectors are said to be reciprocal with respect
to each other):

this follows from the fact that, by definition, , using the Kronecker delta. Note that:

We now face three different basis sets commonly used to describe vectors in orthogonal coordinates: the covariant basis
ei, the contravariant basis ei, and the normalized basis êi. While a vector is an objective quantity, meaning its identity is
independent of any coordinate system, the components of a vector depend on what basis the vector is represented in.

To avoid confusion, the components of the vector x with respect to the ei basis are represented as xi, while the
components with respect to the ei basis are represented as xi:

The position of the indices represent how the components are calculated (upper indices should not be confused with
exponentiation). Note that the summation symbols Σ (capital Sigma) and the summation range, indicating summation
over all basis vectors (i = 1, 2, ..., d), are often omitted. The components are related simply by:

There is no distinguishing widespread notation in use for vector components with respect to the normalized basis; in this
article we'll use subscripts for vector components and note that the components are calculated in the normalized basis.

Vector addition and negation are done component-wise just as in Cartesian coordinates with no complication. Extra
considerations may be necessary for other vector operations.

Note however, that all of these operations assume that two vectors in a vector field are bound to the same point (in other
words, the tails of vectors coincide). Since basis vectors generally vary in orthogonal coordinates, if two vectors are
added whose components are calculated at different points in space, the different basis vectors require consideration.

The dot product in Cartesian coordinates (Euclidean space with an orthonormal basis set) is simply the sum of the
products of components. In orthogonal coordinates, the dot product of two vectors x and y takes this familiar form when
the components of the vectors are calculated in the normalized basis:

This is an immediate consequence of the fact that the normalized basis at some point can form a Cartesian coordinate
system: the basis set is orthonormal.

For components in the covariant or contravariant bases,

Vector algebra

Dot product
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This can be readily derived by writing out the vectors in component form, normalizing the basis vectors, and taking the
dot product. For example, in 2D:

where the fact that the normalized covariant and contravariant bases are equal has been used.

The cross product in 3D Cartesian coordinates is:

The above formula then remains valid in orthogonal coordinates if the components are calculated in the normalized basis.

To construct the cross product in orthogonal coordinates with covariant or contravariant bases we again must simply
normalize the basis vectors, for example:

which, written expanded out,

Terse notation for the cross product, which simplifies generalization to non-orthogonal coordinates and higher
dimensions, is possible with the Levi-Civita tensor, which will have components other than zeros and ones if the scale
factors are not all equal to one.

Looking at an infinitesimal displacement from some point, it's apparent that

By definition, the gradient of a function must satisfy (this definition remains true if ƒ is any tensor)

It follows then that del operator must be:

Cross product

Vector calculus

Differentiation
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and this happens to remain true in general curvilinear coordinates. Quantities like the gradient and Laplacian follow
through proper application of this operator.

From dr and normalized basis vectors êi, the following can be constructed.[3][4]

Differential
element Vectors Scalars

Line
element

Tangent vector to coordinate curve
qi: Infinitesimal length

Surface
element

Normal to coordinate surface qk =
constant:

Infinitesimal surface

Volume
element N/A

Infinitesimal volume

where

is the Jacobian determinant, which has the geometric interpretation of the deformation in volume from the infinitesimal
cube dxdydz to the infinitesimal curved volume in the orthogonal coordinates.

Using the line element shown above, the line integral along a path  of a vector F is:

An infinitesimal element of area for a surface described by holding one coordinate qk constant is:

Similarly, the volume element is:

Basis vector formulae

Integration
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where the large symbol Π (capital Pi) indicates a product the same way that a large Σ indicates summation. Note that the
product of all the scale factors is the Jacobian determinant.

As an example, the surface integral of a vector function F over a q1 = constant surface  in 3D is:

Note that F1/h1 is the component of F normal to the surface.

Since these operations are common in application, all vector components in this section are presented with respect to the
normalised basis: .

Operator Expression

Gradient of a scalar field

Divergence of a vector field

Curl of a vector field

Laplacian of a scalar field

The above expressions can be written in a more compact form using the Levi-Civita symbol  and the Jacobian
determinant , assuming summation over repeated indices:

Operator Expression

Gradient of a scalar field

Divergence of a vector field

Curl of a vector field (3D only)

Laplacian of a scalar field

Also notice the gradient of a scalar field can be expressed in terms of the Jacobian matrix J containing canonical partial
derivatives:

Differential operators in three dimensions
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upon a change of basis:

where the rotation and scaling matrices are:

System

Complex Transform

Shape of  and  isolines Comment

Cartesian line, line

Log-polar circle, line for  becomes Polar

Parabolic parabola, parabola

point dipol circle, circle

Elliptic ellipse, hyperbola field of a needle, appears Log-polar for large distances

Bipolar circle, circle appears like point dipol for large distances

hyperbola, hyperbola field of a inner edge

elipse, parabola

Table of two-dimensional orthogonal coordinates
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cartesian polar logpolar

ellipse parabola parabolic

point dipol sqrt(u+iv) elliptic

bipolar inverse logpolar

Examples of two-dimensional orthogonal coordinates (https://www.desmos.com/calculator/m5gmtg4n1d).

Besides the usual cartesian coordinates, several others are tabulated below.[5] Interval notation is used for compactness in
the coordinates column, and the entries are grouped by their interval signatures, e.g. COCCCO for spherical coordinates.
The entries are not sorted by their interval signatures in alphabetic order. After the grouping of the entries by interval
signature, the sort order here is alphabetic by the curvilinear coordinate system name.

Table of three-dimensional orthogonal coordinates
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Curvillinear coordinates (q1, q2, q3) Transformation from cartesian
(x, y, z) Scale factors

Spherical coordinates

Parabolic coordinates

Bipolar cylindrical coordinates

Ellipsoidal coordinates

where

Paraboloidal coordinates

where

Cylindrical polar coordinates

Elliptic cylindrical coordinates

Oblate spheroidal coordinates

Prolate spheroidal coordinates

Bispherical coordinates
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Toroidal coordinates

Parabolic cylindrical coordinates

Conical coordinates

Curvilinear coordinates
Geodetic coordinates
Tensor
Vector field
Skew coordinates
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