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Analise de matrizes de dados com multiplas particoes

Sumario
A analise de matrizes de dados com multiplas particdoes. O uso
simultaneo de diferentes tipos de dados. “"Gene trees” e “Species
Trees”. Teste de hipdtese e robustez.
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Arvores de genes e de espécies podem contar histérias diferentes
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Incongruence

Two phylogenies inferred from different genes
can be incongruent for three reasons:

(i) stochastic error, which results from the fact
that, when a limited number of characters is
available, a few positions biased by multiple
substitutions (i.e. convergence or reversion)
can, by chance, dominate and lead to an
erroneous tree;

(ii) the departure of the gene phylogeny from
the species phylogeny, which can be due to
undetected gene duplication (i.e. hidden
paralogy), lineage sorting of multiple alleles,
horizontal gene transfer or gene conversion;

(iii) systematic error, which is due to the
inaccuracy of the methods of tree
reconstruction used.
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Incongruence - systematic errors

The known phenomena generating systematic errors can
be classified into four main categories:

(i) variable nucleotide and/or amino-acid composition
across taxa (i.e. the same nucleotide is
independently acquired by distantly related species
because the G+C content of their genomes is
similar);

(ii) reduced number of possible amino acids at a given
position (thereby increasing the probability of
independent acquisition of the same nucleotide);

(iii) variable evolutionary rate inside sites (i.e.
heterotachy);

(iv) non-independence of positions owing to structural
constraints.
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Glossary

Heterotachy: refers to the fact
that the evolutionary rate of a
given position varies throughout
time. Fitch proposed the covarion
model to explain this property.

Orthologous: homologous genes
in two of more organisms that are
related only by lineage splitting
and not by gene duplication
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Tests

Homogeneity of base composition

Bootstrap

Parametric Bootstrap

Ultrafast Bootstrap Approximation
SH-aLRT

LRT - Likelihood Ratio Test
Kishino-Hasegawa test (Kishino and Hasegawa 1989)

Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999)
AU test (Shimodaira, 2002)

ILD test
Likelihood Heterogeneity Test



Homogeneity of base composition

Mean @.29118 B.29871 &.134@87 @.27684 1148.88

Chi-squared test of homogeneity of state frequencies across taxa:

Taxon A C G T
Plotor 343.08 309.80 147.00 336.00
331.95 348.53 152.34 314.63
Elutris 334.88 347.80 156.88 383.00
331.95 348.53 152.34 314.63
Ggulo 322.88 344.80 166.88 383.00
331.95 348.53 152.84 314.68
Maltaica 328.688 341.66 156.868 321.00
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Mflavigul 0 329.@88 348.00 loe.ee 31l.ee

E 331.95 348.53 152.84 314.68
Mfoina 0 315.@88 308.80 l166.88 299,88

E 331.95 348.53 152.84 314.68
Mfure 0 334.86 342.88 143.80 3lo6.889

E 331.95 348.53 152.84 314.68
Mitatsi L] 341.86 334.88 142.88 325.88

E 331.95 348.53 152.84 314.68
Mlutreocla 0 333.868 343.88 143.88 3Slo.88

E 331.95 348.53 152.84 314.638
Mmartes 1] 32@.@88 353.86 163.86 299.88

E 331.95 348.53 152.84 314.63
Mmelampus © 325.@8 357.8@ 162.88 296.08

E 331.95 348.53 152.84 314.68
Mmelesmel O 346.88 323.00 145.80 326.080

E 331.95 348.53 152.84 314.68
Mnivalis 0 327.@88 339.86 154.88 328.080

E 331.95 348.53 152.84 314.68
Mputorius O 336.868 341.88 Il46.8@ 317.80

E 331.95 348.53 152.84 314.68
Msibirica 0 335.86 342.88 144.88 319.88

E 331.95 348.53 152.84 314.638
Mviscn 0 34@8.868 3e5.88 143.88 3S44.88

E

331.95 348.53 152.84 314.88

Chi-square = 33.992727 (df=54), P = 8.93486245
Warning: This test ignores correlation due to phylogenetic structure.
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bootstrap

Three resample techniques are sometimes used to assess the robustness of branches
within trees, nonparametric bootstrapping, jacknife and parametric bootstrapping. Only
nonparametric bootstrapping, simply called bootstrapping, because it is widely used, is
introduced here. The pseudoreplicate data sets are generated by randomly sampling
with reposition the original character matrices of the same size as the original
(Felsenstein 1985). The frequency with which a given branch is found upon analysis of
these pseudoreplicate data sets is recorded as the bootstrapping proportion. These
proportions are used to assess the reliability of individual branches in the optimal tree
(Hillis et al. 1996b).

There are two important caveats related with the bootstrap technique. The first one is
that it assumes that each site is independent and that there is a single distribution of
rate of evolutionary change across all sites, which, at least for mtDNA is not usually the
case. The second caveat is that bootstrap results are usually summarised by a majority-
rule consensus tree, and if there are sequences that “float” over the trees, i.e.,
sequences that appear in several positions of the bootstrap trees, they lower the
bootstrap value of those parts where they appear, and consequently otherwise robust
parts become weakly supported. As a result of this, but not only this, it can
underestimate branches with high support and overestimate the confidence of the ones
with low support (Felsenstein 1985; Li & Zharkikh 1994; 1995).

Finally it is important to realise that bootstrap values give an indication of the precision
of the results, not of their accuracy. Wrong models can generate wrong trees but with
robust bootstrap support.
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UFBoot2

UFBoot2: Improving the Ultrafast Bootstrap Approximation

Diep Thi Hoang,"' Olga Chernomor,"” Arndt von Haeseler,”> Bui Quang Minh,** and Le Sy Vinh*'
'Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, Vietham
Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University Vienna, Vienna,
Austria

>Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
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Associate editor: Michael S. Rosenberg

Abstract

The standard bootstrap (SBS), despite being computationally intensive, is widely used in maximum likelihood phyloge-
netic analyses. We recently proposed the ultrafast bootstrap approximation (UFBoot) to reduce computing time while
achieving more unbiased branch supports than SBS under mild model violations. UFBoot has been steadily adopted as an
efficient alternative to SBS and other bootstrap approaches. Here, we present UFBoot2, which substantially accelerates
UFBoot and reduces the risk of overestimating branch supports due to polytomies or severe model violations.
Additionally, UFBoot2 provides suitable bootstrap resampling strategies for phylogenomic data. UFBoot2 is 778 times
(median) faster than SBS and 8.4 times (median) faster than RAXML rapid bootstrap on tested data sets. UFBoot2 is
implemented in the IQ-TREE software package version 1.6 and freely available at http://www.iqtree.org.

Key words: phylogenetic inference, ultrafast bootstrap, maximum likelihood, model violation, polytomies.



SH-aLRT

Approximate likelihood-ratio test relies on the Nonparametric
Shimodaira-Hasegawa-like like procedure
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New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing
the Performance of PhyML 3.0
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Abstract.—PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast
algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publi-
cation (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum like-
lihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity
and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this arti-
cle describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search
the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion
is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of
a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this
method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach
extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like
procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more clas-
sical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable,
and ready to use. A Web server and binary files are available from http:/ /www.atgc-montpellier.fr/phyml/. [Bootstrap
analysis; branch testing; LRT and aLRT; maximum likelihood; NNI; phylogenetic software; SPR; tree search algorithms.]



The likelihood ratio test statistic (Huelsenbeck & Crandall 1997)

Models are of critical importance to estimate the rate of evolution,
divergence time and to reconstruct phylogenetic trees, so several tests
have been developed to assess the best hypotheses. The Likelihood ratio
test (Muse & Weir 1992) is a versatile and powerful test used in
phylogenetic analysis to test if a model is significantly better than an
alternative model. Other tests can be used with the some purpose and in
different circumstances, for instance the relative rate test (Sarich &
Wilson 1967), but the overall performance of the likelihood ratio test
seems to be similar or better than the others (Muse & Weir 1992; Tajima
1993).

The likelihood ratio test is commonly used in at least four different
situations.

1 -The first use, to test incongruence between data sets

2 - to test nested models, a particular case of which is to assess whether
a molecular clock hypothesis adequately describes the data

3- to test the fit of a maximum likelihood model to the observed data

4- to compare different evolutionary tree topologies.



The likelihood ratio test statistic (Huelsenbeck & Crandall 1997)

max [LO (Null Model| Data)]

A=
max [L1 (Alternative Model| Data)]

for practical reasons, the minus log likelihood is used and the statistic becomes:

-log A =log L1-log LO



The likelihood ratio test statistic (Huelsenbeck & Crandall 1997)

Where L1 is the maximum likelihood of the alternative hypothesis,
(the complex, parameter rich hypotheses) and LO is the maximum
likelihood of the null hypothesis (the simpler hypothesis). For
nested models, when one of the models is a particular case of the
other, obtained by constraining one or more parameters of the
alternative hypothesis, -2logA (the notation 28 is also common)
approximates to a 2 distribution with degrees of freedom equal to
the difference in the number of free parameters in the two

models.

The statistic becomes:

- 2log A = 26 =2(log Lgeneral- log Lnested )



Likelihood ratio test — molecular clock

A particular case of the nested model is the test for the molecular clock
hypothesis, which is equivalent to comparing the likelihood of an additive
tree with the one of a nested ultrametric tree. If the sequences were
evolving at similar rates an ultrametric tree would not be significantly
different from an additive tree, but if the rates were different then an
additive tree would be significantly better than the ultrametric one. The
statistic is again y2 distributed with n-2 degrees of freedom, where n is
the number of sequences, and it corresponds to the difference in the
number of branch lengths that have to estimate in an additive and in an
ultrametric tree.

The statistic becomes:

26= 2(log Lno clock - log Lclock)



Tree topology tests

Three main tree topology tests are used:
1.Kishino-Hasegawa(KH) test

2.Shimodaira—Hasegawa(SH) test

3.Approximately unbiased (AU) test

The KH test (Kishino and Hasegawa, 1989) was designed to
test 2 trees and thus has no correction for multiple testing.
This is solved in the SH test (Shimodaira and Hasegawa,
1999). However, the SH test becomes too conservative when
testing many trees.

The AU test (Shimodaira, 2002) fixes this issue and is thus
recommended as replacement for both KH and SH tests.



Kishino-Hasegawa test (Kishino and Hasegawa 1989)




Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999)

Shimodaira-Hasegawa (SH-test)
(Shimodaira and Hasegawa, 1999)

The test statistic 1s the score difference between the
Maximum Likelihood tree and every other tree compared:

i = = r ] -
1e. d.=nL,, - InL;

Hypotheses that we wish to test are:

H,:  all trees are equally good explanations of the data

H,;: some or all trees are not equally
good explanations of the data

What is the expected distribution ...

of & under the null?
Hint: We know /nL, ; = InL,




Shimodaira-Hasegawa test

The SH test

Shimodaira and Hasegawa (1999) have described a resampling method that ap-
proximately corrects for testing multiple trees. They suggest that we

1. Make R bootstrap samples of the IV sites. For each compute the total log-
likelihood. (This is most conveniently done by RELL sampling where we
add up sitewise log-likelihoods without re-estimating branch lengths or
other parameters.)

2. For each tree, subtract from the sum of the resampled log-likelihoods its
mean across all R bootstrap samples. This “centering” has the effect of ad-
justing all trees so their resampled log-likelihoods have the same expecta-
tion. Thus if the total log-likelihood of the ith tree in the jth bootstrap sam-
ple is ¢;;, compute the centered value for it as

R
_ il N
Ry = By — = S la (21.1)

k=1

3. For the jth bootstrap replicate, compute for the ith tree how far that centered
value is below the maximum across all trees for that replicate:

Si; = (Inl?.x f{k,j) — Rij (21.2)

4. For each tree i, the tail probability is then taken to be the fraction of the
bootstrap replicates in which S;; is less than the actual difference between
the maximum likelihood and the log-likelihood L; of that tree.
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Approximately Unbiased Test

Syst. Biol. 51(3):492-508, 2002
DOI: 10.1080/10635150290069913

An Approximately Unbiased Test of Phylogenetic Tree Selection

HIDETOSHI SHIMODAIRA

Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minatoku, Tokyo 106-8569, Japan;
E-mail: shimo@ism.ac.jp

Abstract.— An approximately unbiased (AU) test that uses a newly devised multiscale bootstrap
technique was developed for general hypothesis testing of regions in an attempt to reduce test bias.
It was applied to maximum-likelihood tree selection for obtaining the confidence set of trees. The
AU test is based on the theory of Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429-13434; 1996), but
the new method provides higher-order accuracy yet simpler implementation. The AU test, like the
Shimodaira-Hasegawa (SH) test, adjusts the selection bias overlooked in the standard use of the
bootstrap probability and Kishino—Hasegawa tests. The selection bias comes from comparing many
trees at the same time and often leads to overconfidence in the wrong trees. The SH test, though safe
to use, may exhibit another type of bias such that it appears conservative. Here I show that the AU
test is less biased than other methods in typical cases of tree selection. These points are illustrated
in a simulation study as well as in the analysis of mammalian mitochondrial protein sequences.
The theoretical argument provides a simple formula that covers the bootstrap probability test, the
Kishino-Hasegawa test, the AU test, and the Zharkikh-Li test. A practical suggestion is provided as to
which test should be used under particular circumstances. [Approximately unbiased test; confidence
limit; Kishino-Hasegawa test; maximum likelihood; multiscale bootstrap; phylogenetics; selection
bias; Shimodaira—Hasegawa test.]



Combine Data

One of the most common questions in phylogenetic analysis is
whether and how to combine different data sets or do a separate
analysis for each one. Three general solutions have been adopted:
total evidence, always combining the data sets (Kluge 1989);
separate analysis, always analysing each data set and comparing
the trees produced by each one, also called congruence or
consensus approach; and conditional combination. The latter only
combines data sets after testing them for data heterogeneity,
whether differences among trees can be or not be explained by
stochastic variation (Huelsenbeck et al. 1996a). If there is
congruence between data sets then combining them would make
the most use of the available information. Each of these approaches
has its advantages and disadvantages, but conditional combinations
are less based on philosophical assumptions and has a stronger
rationality behind it.



Supertree vs Supermatrix
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Figure 1. Schematic of MRP supertree (left) and parsimony supermatrix (right) approaches to the analysis of three data sets. Clade C+D is supported by all three separate
data sets, but not by the supermatrix. Synapomorphies for clade C+D are highlighted in pink. Clade A+B+C is not supported by separate analyses of the three data sets, but
is supported by the supermatrix. Synapomorphies for clade A+B+C are highlighted in blue. E is the outgroup used to root the tree.
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Genes rate heterogeneity

Traditionally, phylogenetic analyses over many genes combine data into
a contiguous block. Under this concatenated model, all genes are
assumed to evolve at the same rate. However, it is clear that genes
evolve at very different rates and that accounting for this rate
heterogeneity is important if we are to accurately infer phylogenies
from heterogeneous multigene data sets. There remain open questions
regarding how best to incorporate gene rate parameters into
phylogenetic models and which properties of real data correlate with
improved fit over the concatenated model. In this study, two methods
of accounting for gene rate heterogeneity are compared: the n-
parameter method, which allows for each of the n gene partitions to
have a gene rate parameter, and the a-parameter method, which fits a
distribution to the gene rates. Results demonstrate that the n-
parameter method is both computationally faster and in general
provides a better fit over the concatenated model than the a-parameter
method. Furthermore, improved model fit over the concatenated model
is highly correlated with the presence of a gene with a slow relative
rate of evolution. [AIC; gene rates; phylogenetic integration;
phylogenomics; rate heterogeneity]

24
Octavio S. Paulo - Filogenética



Incongruence Length Difference ILD

Two main tests have been proposed for conditional combination, the
incongruence length difference (Mickevich & Farris 1981; Farris et
al. 1995; Cunningham 1997b; 1997a) and the likelihood
heterogeneity test (Huelsenbeck & Bull 1996).
The first test is based on the Mickevich-Farris index of incongruence
among data sets, and the test statistic is simple:
n
I=Lc-XY Li
i=1

Where Lc refers to the length of the most parsimonious tree from
the combined analysis, and L/ is the length of the most
parsimonious tree on the /-th data set, out of a total of n data sets.
The I value is then compared with the distribution of I values
expected from chance alone.



Likelihood Heterogeneity Test

The likelihood heterogeneity test is a likelihood ratio test where the
first likelihood, the alternative hypothesis, is the one of the tree
when different trees can underline each data partition, and the
second, the null hypothesis, is the likelihood of the tree when the
same trees are assumed to underlie all data partition, in spite of
possible differences in evolution rates and parameter values. The
null distribution is calculated using simulation and the significance
of the log likelihood assessed.

If the results of the test are not significant, meaning differences
between independent data sets trees were only due by chance, then
combination analysis of the data set can be carried out.
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