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Phylogeography

Principles and processes governing the geographic distribution
of genealogical lineages, especially those within and among

closely related species
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FIGURE 1.9 Above: Original hand-drawn phylogenetic network connecting 23 differ-
ent mtDNA haplotypes in pocket gophers, as scribbled onto a piece of scratch paper
from the RFLP data that eventually was to appear in Avise et al. (1979b). Uppercase let-
ters provide coded summaries of the digestion profiles produced by six restriction en-
zymes. Slashes across network branches reflect the minimum numbers of inferred
mutational steps along a pathway. Heavier lines encompass two distinctive mtDNA
clades that differed by at least nine mutations. Below: Same network, now superim-
posed over the geographic sources of the samples in Alabama, Georgia, and Florida.
Letters a—w indicate the 23 mtDNA haplotypes, and circles or extended ellipses encom-
pass the geographic distributions observed for each haplotype.



Trees and lineages
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Percentagem

Distribuicao de Poisson

Média = variancia= 1

Probabilidade e NUmero
de descendentes por progenitor

40 0.368 - 0
Hi 0.368 - 1
0.184 - 2
20 0.061 - 3
0.015 -4
0.004 - 5
0
0 4 Probabilidade acumulada extingao
Numero de da linhagem ao fim de 100 geragdes = 0.981
Descendentes

por progenitor
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Frequency distribution of the probabilities of survival of

founding lineages through G generations
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Lineage sorting
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Phylogenetic Phylogenetic Distance

Category Status Relationship

I A and B monophyletic maxt,, <mint,, and
max fy, <mint,,

I A and B polyphyletic maxt,, >mint,, and
max g, >mint,,

Ila A paraphyletic with respect to B maxtf,, >mint,, and
max fy, <mint,,

ITb B paraphyletic with respect to A maxf,, <mint,, and

maxt88>mmt“
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Arvores de genes e de espécies podem contar historias
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Genomic compartments

Genomic compartment

Feature Autosomes X chromosomes NRY mtDNA
Location Muclear Muclear Muclear Cytoplasmic
Inheritance Bi-parental Bi-parental Uni-parental Uni-parental
Ploidy Diploid Haploid—diploid Hapleoid Haploid
Relative N_ 4 3 1 1
Recombinationrate Variable Variable Lero Lero
Mutation rate Low Low Low High
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Bottleneck — Nuclear vs mtDNA
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Fst nuclear vs mtDNA
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MtDNA and nuclear
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Relative efficacy of molecular markers
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Relative efficacy of molecular markers
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Genealogical pattern

a Ancestral polymorphism b Introgression (gene flow)
Past
A—B
A—B
A | /\
Present
A B B A A B B A
1 2 3 4 1 2 3 4

Figure 2 | Disentangling ancestral polymorphism from gene flow (ABBA and BABA test). The diagram shows the
divergence of two sister populations (1 and 2), a third population (potential source of introgressed genes; 3) and an
outgroup population (4) over time. The black line represents the gene tree of a given site, and the star represents a
mutation from the ancestral state (allele A) to the derived state (allele B). The pattern ABBA can occur owing to

an ancestral polymorphism (a): that is, coalescent of lineage from population 2 with lineage from population 3 in the
ancestral population (population ancestral to populations 1, 2 and 3), or gene flow from population 3 to population 2
(b). Under a model with no gene flow, we expect that the pattern ABBA is as frequent as BABA owing to the fact that
there is 50% chance that either the lineage from population 1 or from population 2 coalesces with lineage from
population 3 in the population ancestral to populations 1, 2 and 3.
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MtDNA vs nuclear

mtDNA Nuclear DNA
coexistence of highly divergent lineages -> genome-wide recombination = lineage fusion
throughout large geographical range = heterogenous gene flow (barrier loci)=

speciation (selection > gene flow) or despeciation
(gene flow > selection)

e

7 . a1, | e Population expansion and contact
.S ] 2 35 between lineages: gene flow > drift

L "2 et
)

mtDNA = o], &
imprintof [ "t :

Cycles of climatic
changes = range
contraction/expansion

past allopatric

phases . .

Allopatric periods: drift > gene flow Bz

melicus sylves

FIGURE 1 Climatic fluctuations have strong impact on species geographical distributions. The small skipper Thymelicus sylvestris, a
widespread European butterfly, has experienced cycles of range contraction/expansion (Hijonosa et al., 2019). During Pleistocene glacial
periods, the species was fragmented into small geographically isolated populations, and drift was the predominant evolutionary force, acting
especially on mtDNA (small effective population size). During warming periods, populations expanded, and genome-wide recombination
took place between previously diverging lineages, while nonrecombinant highly divergent mt lineages neutrally diffused over large
geographical areas, gene flow overcoming drift. Another possible outcome of secondary contact (not observed in T. sylvestris) could be
heterogeneous gene flow due to selection against hybrids if some isolation mechanisms (barrier loci) evolved during the allopatric phase,
ultimately leading to speciation or despeciation, depending on the relative force of selection over gene flow. Photo credit: Peter Broster
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Relative efficacy of molecular markers
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Relative efficacy of molecular markers
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vicariace

ig. 1 Mitochondrial vs. nuclear estimates of F;; for some
published studies of birds (dots). Approximate regions of our four
categories of phylogeographical results (Table 1) are shown with
background shading; categories A and D indicate generally
consistent results between mitochondrial and nuclear markers,
category B results are consistent given differences in eftective
population size and coalescent times, and category C results
are inconsistent (see text). Dotted lines show the expected
relationships between mitochondrial and nuclear Fg; for cases in
which they are identical (equivalence) and for gene tlow at
equilibrium under an island model of population structure (gene
flow). Dashed line shows the expected temporal approach to
equilibrium following vicariance (isolation). Space below the
diagonal represents instances in which mitochondrial markers
are a more sensitive indicator of population structure; space above
the diagonal represents cases in which nuclear markers are more
sensitive (see Appendix).
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Vicariance vs dispersal
vicariance dispersal
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Genes e Geografia

a Isolation b Isolation with migration c lIsolation after migration d Secondary contact

Time
|

Ny Ny Ny Ny

Figure 1 | Alternative modes of divergence. All models assume that an ancestral population of size N splits into two
populations at time of split (t)). The two present-day populations have effective sizes N and N,, respectively. Panel a
shows the model in which migration rate is zero in both directions, which corresponds to an allopatric divergence
scenario. Panels b—d represent alternative models in which populations have been exchanging migrants. Gene flow
occurs at constant rates since the split from the ancestral population (b). Migration rates are assumed to be constant
through time, but gene flow can be asymmetric: that is, one migration rate for each direction. Panel ¢ shows a scenario
in which populations begin diverging in the presence of gene flow but experience a cessation of gene flow after time
since isolation (t). If the lack of current gene flow in this model is due to reproductive isolation then this represents a
history in which divergence occurred to the point of speciation in the presence of gene flow. In panel d, we consider
the alternative migration history in which populations were isolated and diverged for a period of time in the absence of
gene flow, followed by secondary contact at time of secondary contact (t_) and the introgression of alleles from the
other population by gene flow.

Octavio S. Paulo — FEM 41



706,000 y.a. ~370,000 y.a. ~41,000 y.a.

Coalescence time of Split of ancestral Earliest modemv humans
human and Neanderthal hurman and Neanderthal in Europe
reference sequences populations ~195,000 y.a. | ~28,000 y.a.
Earliest known anatomically | Most recant znown
maodern humans Neanderthal remains

Neanderthal

Genomic data

Fossil data

s Evolutionary lineage of human and Neanderthal reference sequences
[ Evolutionary lineage of ancestral human and Neanderthal populations

Fig. 6. Divergence estimates for human and Neanderthal genomic sequences and ancestral human
and Neanderthal populations, shown relative to dates of critical events in modern human and

Neanderthal evolution (2, 22, 25). The branch lengths are schematic and not to scale. y.a., years ago.
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male dispersal and gene flow
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Gender dispersal and gene flow
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DNA Mitocondrial Problemas?

1- numts
2- Clonal - ausencia de recombinacao
3- neutral

4- clock
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Trés tipos de abordagem

1- Phylogenetics / cladistic
2- Summary statistics and Co

3- Coalescence
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Amostragem/Pergunta

Octavio Paulo - Curso de 49



Ultimo maximo glaciar

A Modern vegetation

[ lce M Boreal forest Mediterranean scrub
[l Tundraand m Deciduous Prairie-steppe
mountain and conifer forest

B Glacial vegetation
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Iberian Peninsula: superimposition of ice age vegetation

Filogeografia
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The persistence of Pliocene populations through
the Pleistocene climatic cycles: evidence from the
phylogeography of an lberian lizard

O. S. Paulo'**, C. Dias', M. W. Bruford?, W. C. Jordan® and R. A. Nichols*

Centro de Biologia Ambiental/Departamento de Zoologia e Antropologia, Faculdade de Ciencias da Universidade de Lisboa, P-1700
Lasboa, Portugal

“Cardiff School of Biosciences, Cardiff University, Cathays Park, Cardiff CFI 3TL, UK

Institute of Joology, Zoological Society of London, London NW14RY, UK

*School of Biological Sciences, Queen Mary and Westfield College, University of London, London E1 4NS, UK

Ancient climatic fluctuations have caused changes in the demography and distribution of many species.
The genetic differentiation between populations of the same species and of sister species is often attributed
largely to the more recent Pleistocene fluctuations. Recent interpretations, which implicate earlier
episodes, have proved controversial. We address the timing of genetic divergence in the Iberian lizard
Lacerta schretber: by studying the phylogeography of the cytochrome b sequence. The species has a remark-
able morphological uniformity, yet our evidence suggests that earlier events in the Pliocene initiated the
main divergence between populations. This interpretation implies that the different populations survived
through the Pleistocene in separate localities. This conclusion is robust to different molecular clock
calibrations. The persistence of earlier differentiation through the Pleistocene has wide implications for
our understanding of Pleistocene refugia in this species and, by extension, to the biogeography of the
whole region.

Keywords: phylogeography; range expansion; mitochondrial DNA; Pleistocene glaciations;
glacial refugia
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Distribution of Lacerta schreiberi (pink area)
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Former hypothesis about the origin and postglacial
expansions routes for Lacerta schreiberi
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Phylogenetic tree of 663bp of cytochrome b of L.
schreiberi samples and spatial pattern.




Origin of the two main clades of Lacerta schreiberi

llogeogratia



Origin of the two inland subclades of Lacerta schreiberi




Pleistocene climatic conditions(data from Holland)
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Hypothetical distribution of Lacerta schreiberi
during the glacial and interglacial phases

Interglacial Glacial
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Origin of the two coastal subclades of Lacerta schreiberi




Pleistocene climatic conditions(data from Holland)
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Split of the North inland subclade of L. schreiberi

Filogeografia



Expansion of the coastal subclades of Lacerta schreiberi
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Minimum spanning network of the 24 haplotypes found in the
populations of L. schreiberi
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Molecular Ecology (2002) 11, 809-819

Using nested clade analysis to assess the history of
colonization and the persistence of populations of
an Iberian Lizard

OCTAVIO S. PAULO,* WILLIAM C. JORDAN,t MICHAEL W. BRUFORDZ% and
RICHARD A. NICHOLSS

*Centro de Biologia Ambiental/Departamento de Zoologia e Antropologia, Faculdade de Ciencias da Universidade de Lisboa, P- 1749—
016 Lisboa, Portugal, TInstitute of Zoology, Zoological Sociefy of London, London NW1 4RY, UK, $Cardiff School of Biosciences, Cardiff
University, Cathays Park, Cardiff CF10 3TL, UK, §5chool of Biological Sciences, Queen Mary and Westfield College, University of
London, London E1 4NS, LUK

Abstract

The distribution of the lizard Lacerfa schreiberi is likely to have been severely affected by
the climatic cycles that have influenced the Iberian Peninsula. Information about the species
ecology and Iberian physiogeography was used to generate specific hypotheses about
episodes of colonization and subsequent population persistence. These hypotheses generated
predictions about the distribution of genetic variation, which were tested using nested clade
analysis (NCA) supplemented by analysis of molecular variance (amovwva). Two predictions
were confirmed by NCA; that is those that specified multiple and allopatric refugia. However,
the remaining three predictions were not corroborated by the analyses. Firstly, a simple
analysis of the distribution of genetic variability failed to detect an expected difference in
the pattern of colonization between the inland mountain system and the coastal region.
Moreover, while NCA did detect the expected genetic pattern in southern coastal populations,
it was explained in terms of long-distance migration, which seems implausible because
of the extent of unsuitable habitat. A more likely cause of the pattern is population frag-
mentation and a reduction in population size caused during the Holocene. Finally, NCA
also failed to detect a northwestern population expansion, which is supported by other
evidence. We conclude that NCA has a limited ability to detect range expansion led by
individuals with more ancestral (interior) haplotypes.

Keywords: Iberian Peninsula, Lacerta schreiberi, phylogeography, Pleistocene, Pliocene, range
expansion



Miraldo et al. BMC Evolutionary Biology 2011, 11:170
http:/fwew.blomedcentral.com/1471-2148/11/170 BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Phylogeography and demographic history of
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Figure 4 Distribution of Lacerta lepida mitochondrial phylogroups based on 627 bp of the cytochrome b gene. Colours are the same as
in Figures 2 and 3. Filled red circles represent populations where divergent haplotypes from two or more phylogroups were detected in
sympatry. Numbers correspond to sampling localities as in Figure 1 and Additional file 1, Table 51.

Figure 3 Statistical Parsimony network of Lacerta lepida cytochrome b haplotypes from 312 samples. Open circles with r'chgé‘LElVIO S . PaUIO - FE M 69

represent unsampled or extinct haplotypes. L1, L2, L3, L4, LS and N represent different mitochondrial phylogroups. The ancestral haplotype
within each phylogroup is marked with an asterisk Phylogroup N connects to the main network through 65 mutations, represented by an
interrupted line

L.




Figure 521 The present configuration (top of figure) can be created by four classes of
events. Two identical sequences could coalesce, two sequences identical in common

ancestral material could coalesce, a sequence can mutate and lastly a sequence could have
arisen by recombination. This is here illustrated by taking one representative of the four

Octavio S. Paulo — FEM 70
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