Física da Matéria Condensada Margarida Telo da Gama

Do you know, I always thought unicorns were fabulous monsters, too? I never saw one alive before !

Well, now that we have seen each other, said the unicorn, if you'll believe in me, I'll believe in you.

Is that a bargain ?

Lewis Carroll, Through the looking glass

PROGRAMA (OUTLINE)

- 1. INTRODUÇÃO
- 2. ESTRUTURA CRISTALINA
- 3. ESTRUTURAS DOS SÓLIDOS
- 4. DIFRAÇÃO E DIFUSÃO ELÁSTICA DE ONDAS
- 5. LIGAÇÕES QUIMICAS
- 6. VIBRAÇÕES ATÓMICAS
- 7. TERMODINÂMICA DE FONÕES
- 8. ESTADOS ELECTRÓNICOS
- 9. TERMODINÂMICA DE ELECTRÕES EM METAIS 10. CONDUTIVIDADE ELÉCTRICA E TÉRMICA
- 11. ELECTRÕES EM SEMICONDUTORES

AVALIAÇÃO

 Contínua: entrega da resolução escrita de 1-3 problemas das séries (grupos de 2 alunos) seguida da resolução no quadro durante as TPs (25%) e exame final (75%). Válida para a primeira data em que os alunos se apresentarem a exame.

• Exame

 O default é a modalidade de avaliação contínua. Para realizarem apenas o exame os alunos devem comunicar ao docente por escrito, justificando esta escolha.

1. Introduction

What is condensed matter ?

Collective properties that emerge from the interactions of many particles:

- Quantum or classical Dynamics to calculate the energy spectrum (states) $\rm E_{\rm N}$
- Statistical Mechanics to calculate the occupation probability of each state $P(E_N)$

What is condensed matter physics ?

Properties of materials in terms of the interacting building blocks:

- Hard condensed matter: electrons & nuclei
- Soft condensed matter: polymers, colloids ...

Response to external fields:

- Linear
- Non-linear

2. Crystal structure: Lattices

Ideal solid

Periodic structure where the atoms are placed regularly within the medium exhibiting symmetry of translation.

Mathematically, there is symmetry of translation, in 3d, when there are, 3 no coplanar, vectors such that the medium is invariant for a translation **T**:

 $T = n_1 a + n_2 b + n_3 c$

for all integers n_i.

2D crystalline solid: the basis of two atoms is repeated periodically

Lattice points give the positions of the basis: **a** and **b** are the fundamental lattice vectors

Displacement of any lattice point is n₁**a**+n₂**b**

Basis and basis vectors (a) lattice points and atomic positions (b)

Another basis and the same lattice

Primitive lattice vectors correspond to the smallest possible basis

Lattice vectors and unit cells

Unit cells

square lattice square unit cell

rectangular lattice rectangular unit cell

rectangular lattice centered rectangular unit cell

Wigner-Seitz cell

Volume of a unit cell

There is more than one choice for a primitive unit cell

Primitive unit cell

Volume of a unit cell |c.axb|

Rigid symmetry operations: Point & spatial

Reflection

Point symmetries

Mirror, rotation and inversion

Rotational symmetry

Crystals do not have 5-fold rotational axes

Exercise

Show that there are no lattices with 5-fold or nfold axes with n > 6

Lattice proof

Geometric proof

Rigid symmetries are not independent

For example, a 2-fold axis perpendicular to a mirror plane implies inversion symmetry (prove this).

Small number of symmetry groups in 2 and 3 dimensions.

Point symmetry groups: Crystallographic systems

Spatial symmetry groups: Bravais lattices

2D Unit cells and symmetry groups

5 Bravais lattices 4 crystallographic systems

3D Unit cells and symmetry groups

14 Bravais lattices7 crystallographic systems

Questions

Why is there no cubic lattice of type C? And tetragonal of type F?

Symmetry axes and planes of a cube

Primitive translation vectors and primitive cells for bcc and fcc

Stacking of square lattices to form bcc and fcc

Symmetry elements of unit cells

Crystallograpic planes: Miller indices

Planes of cubic lattices

Planes of cubic lattices

Dense crystallographic planes

Reciprocal lattice

Reciprocal lattice vectors

$$egin{aligned} ec{b}_1 &= 2\pi \cdot rac{ec{a}_2 imes ec{a}_3}{V} \ ec{b}_2 &= 2\pi \cdot rac{ec{a}_3 imes ec{a}_1}{V} \ ec{b}_3 &= 2\pi \cdot rac{ec{a}_1 imes ec{a}_2}{V} \end{aligned}$$

- As we have seen above, the reciprocal lattice of a Bravais lattice is again a Bravais lattice.
- The reciprocal lattice of a reciprocal lattice is the (original) direct lattice.
- The length of the reciprocal lattice vectors is proportional to the reciprocal of the length of the direct lattice vectors. This is where the term reciprocal lattice arises from.

44

Reciprocal lattice of an fcc lattice

direct lattice: fcc with edge length a

reciprocal lattice: bcc with edge length $4\pi/a$

y x

 $ec{b}_1 = rac{8\pi}{a^3} \cdot ec{a}_2 imes ec{a}_3 = rac{4\pi}{a} \cdot \left(-rac{\hat{x}}{2} + rac{\hat{y}}{2} + rac{\hat{z}}{2}
ight)$ $ec{b}_2 = rac{8\pi}{a^3} \cdot ec{a}_3 imes ec{a}_1 = rac{4\pi}{a} \cdot \left(rac{\hat{x}}{2} - rac{\hat{y}}{2} + rac{\hat{z}}{2}
ight)$ $ec{b}_3=rac{8\pi}{a^3}\cdotec{a}_1 imesec{a}_2=rac{4\pi}{a}\cdot\left(rac{\hat{x}}{2}+rac{\hat{y}}{2}-rac{\hat{z}}{2}
ight)$

3. Structures of solids

Close packed structures

Close packed structures

48

Close packed structures

Snowballs stacked in preparation for a snowball fight. The front pyramid is hexagonal close packed and rear is face-centered cubic.

The cannon ball mathematical problem (1587)

Cannonballs piled on a triangular (front) and rectangular (back) base, both fcc lattices.

Close packed density: fcc lattice

$$=rac{\sqrt{2}\pi}{6}pprox 74\%$$

Nearest-neighbours

- reference point
- 12 nearest neighbours
 - 6 next-nearest neighbours

Second close packed density: hcp structure

Other crystal structures: diamond, zinc blende and wurzite

54

ZINC BLENDE STRUCTURE

WURTZITE STRUCTURE OF ZINC SULFIDE

S²⁻ Ø Zn²⁺

Zinc blende and wurzite (Zinc sulfide)

Pyrite (Fools Gold)

56

Pyrite and marcasite (Iron sulfide)

Diamond and graphite

Other cubic structures: CsCl, Cu₃Au, NaCl, CuFe₂

Point defects: A vacancy, B intersticial, C substitutional impurity, D intersticial impurity

Dislocations: Edge (a) and screw (b)

Amorphous structures

Radial distribution function of crystalline fcc structure

63

Radial distribution function of amorphous structures

Liquid crystalline order

