
The Homogeneous Universe

The metric and its degrees of freedom



Expansion Dynamics

We saw that it was possible to introduce the concepts of expansion and redshift in a 
general way, without specifying the theory of gravitation (that drives the expansion) 
à they are not necessarily a consequence of general relativity.

Let us now try to derive the equations of movement of the gravitational expansion, 
i.e., the equations for the evolution of the scale factor a(t), or the Hubble function 
H(t), using Newtonian mechanics. 

Is this possible? 

Let us consider the homogeneous and isotropic Universe as a sphere of radius r 
that expands radially and is filled by a homogeneous cosmological fluid with 
density ρ.  

i) Energy conservation (kinetic + potential) 

Ek = v2 / 2 EV = - G M / r



The mass relates to the cosmological fluid density:

We can introduce the scale factor by considering this equation in comoving 
coordinates:



Friedmann’s equation

The constant is K = 2E / (x^2)

where E is the total energy of the Universe and x is the comoving coordinate of 
the surface of the “Newtonian Universe” - the Hubble radius. 

So we get Friedmann’s equation, identical to the one derived in General Relativity 
(although in GR  the constant K has a different and well-defined meaning: it is the 
curvature of space.



ii) To solve Friedmann’s equation for a(t) we need to know the source of gravity, i.e., 
the mass of the Universe, i.e., we need to know ρ(t). 

The evolution of ρ(t) is constrained by the conservation of mass (the continuity 
equation in the Newtonian approach).

For this, let us consider the 1st law of thermodynamics for the expanding 
cosmologcial fluid:

dU = -p dV

(there is no heat dissipation to the exterior of the expanding sphere that constitutes 
the whole Universe)

The energy of the Universe is 



This is identical to the conservation equation 
derived in GR.



iii) Finally, to find the equation of movement of the expanding Universe, we 
consider the 2nd law of Newton: 

This equation is different from its GR 
counterpart, which also involves pressure (in 
GR pressure is source of gravity, while in 
Newtonian gravity it is not). 



However, if we combine the 1st Friedmann equation with the conservation 
equation that we found, we obtain the following:

(differentiate Friedmann’s equation +  use conservation equation à eliminate 
dρ/dt and get an equation for ä :

This is the 2nd Friedmann equation, also 
called Raychadhuri equation and now it is 
identical to the one derived in GR. 



How was this possible? From where did the we get pressure in 
our Newtonian description? 



It came from using the first law of thermodynamics to get the continuity 
equation, i.e., we used a conservation of energy instead of conservation of 
mass. In other words, we wrote U from ρ, implicitly assuming mass-energy 
equivalence.

In conclusion: Newtonian gravity does not find the correct evolution equations. 
We could however find them using relativistic Newtonian gravity, i.e., 
Newtonian gravity + special relativity. 

Note that relativistic Newtonian gravity is different from General Relativity. It is 
just Newtonian physics + the assumption that the energy is source of gravity. It 
does not include the concept of curvature, which also contributes to gravity.



GR of course is not just Newtonian theory + special relativity, and so the 
homogeneous Universe is not just a connected set of large homogeneous 
Newtonian regions. GR introduces new global properties, such as curvature.  

The Robertson-Walker metric

The metric keeps its traditional role of determining distances and local inertial 
frames, but it also plays the dynamic role of a gravitational potential, determining 
the geodesics (trajectories) of the space-time.



The general form of the metric is fixed by the cosmological principle:

(static)



Does this mean that the metric is completely fixed by the cosmological principle, or 
are there some degrees of freedom?



Scale factor 

There is freedom in the time-evolution of the metric, defined by the scale factor a(t).

a(t) is not fixed by the cosmological principle (i.e., by the fact that the metric is RW).
It is free to be determined by the dynamics of the Universe (the differential equations 
provided by GR: the Einstein equations).

Note that in general in a physical system there are several levels of “freedom”:

i)  Symmetries impose general constraints (in this case determine the type of metric) but 
leave the physical functions f(t,x) free (in this case a(t) ).

ii) Differential equations provided by the theory (in this case the Einstein equations of GR) 
are solved to get a solution for f(t,x) (in this case the functional form a(t) ). The solution 
always include integration constants, which implies that the solution function can only be 
determined up to a constant. à This fixes the “model”.

iii) Initial conditions, i.e., conditions at the borders of the (t,x) domain, that can be time or 
spatial, provide the absolute value of a physical function (or its derivatives) at a certain 
point of its domain (t,x) (in this case a(0), a(t0), å(t0) ). The initial conditions 
may be imposed (in this case  a(0) = 0, a(t0) = 1), or determined by observations or 
experiments (in this case, the value of å(t0) , i.e., H0 ). à This fixes the “cosmology”.



The “initial condition” absolute value of a cosmological physical function (or its 
derivatives) at a certain point of its domain (t,x) is what is called a cosmological
parameter.

There are also phenomenological models. In these cases, the cosmological functions are 
proposed empirically and do not come from a solution of a differential equation of a 
theory. In these cases, the functional form of a cosmological function can also be 
parameterized à This introduces more cosmological parameters, besides the ones strictly 
related with initial conditions (that would determine the amplitude of the function).

Solution for a(t)  (model-dependent)

a(t) can thus be determined in a model-dependent way, i.e., by solving the relevant 
differential equations, and its amplitude parameterized by an initial condition.

a(t) is usually parameterized using its amplitude at z=0 (i.e. today at t0).

However, differently from most functions, a0 is not find by observations but it is just 
fixed by convention: a0 = 1.

This means that all possible a(t) solutions are “distorted”, i.e., are forced to reach 
the value a=1 today. 



This implies that the parameter a0 is not useful to distinguish the various cases (the 
various cosmologies).

Various cosmologies are instead distinguished by looking at the slopes with which 
the functions a(t) reach a=1.  In other words, the relevant parameter is  

å (z=0)  (notation: å is da/dt).

Since a0=1, we have å0=H0 à the Hubble constant is a free parameter of the model
(the parameter related to the initial condition of a(t)) and its value (determined from 
observations) will help in defining the cosmology.

(It is the first cosmological parameter we encounter).

Solution for a(t)  (model-independent)

Note that å0 would also be the first parameter in the Taylor expansion of a(t) around t0

In fact, if we would Taylor expand a(t) around t0, introducing a potentially infinite 
number of parameters (the values of all-orders derivatives at t0), a(t) would be fully 
described (in the local Universe). 



If we could design a way to measure all those parameters individually, we would then 
reconstruct a(t) with no need for the evolution equations à in a model-independent 
way.

The set of all those parameters - called the cosmographic parameters - would 
contain the same information as the set of differential equations.

There are attempts to do this, and the lower-order parameters are defined:

The first-order term is a velocity term à the Hubble constant H_0

The second-order term is an acceleration term à the deceleration parameter q_0

(historically defined with a minus sign, hence the name deceleration instead of 
acceleration)



We can continue the expansion to higher-orders, defining a series of parameters:

obtaining

The derivative of the acceleration is known as 
The next parameter is called the jerk j0 (that corresponds to the change of 
acceleration, well-known in mechanics, felt for example 
when changing gears in a car)

The next orders parameters are called snap s0,  
crackle c0 and pop p0 (taken from the names of the 
characters in these cereals!).

This approach to cosmology is called cosmography: 
the Universe is described in terms of its dynamical 
quantities with no need to solve the evolution equations 
(the Einstein equations) and no need define the sources 
of gravity (in the energy-momentum tensor).



Curvature

Let us look at the spatial part of the metric that, due to the cosmological principle, 
must be spherically symmetric. 

Usually, spherical symmetry is written like,

But as we know, gravity in GR is the space-time curvature,

and space itself (not only space-time) may also be curved.

So we need to include the additional degree of freedom of curvature in the metric.

How to do this? 



To do this, we consider the following feature of a curved space:

In a curved (3D) space, the area of a spherical surface at distance r from the 
origin is not  4π r2 but it is smaller (positive curvature) or larger (negative 
curvature) than 4π r2 .

So the spatial part of the metric may be written more generally as,

dl2 = u2(r) dr2 + v2(r) dΩ2

Only for flat space is v2(r) = r2 : 



For positive curvature, we need v(r) < r or u(r) > 1



For negative curvature, we need v(r) > r or u < 1

The curvature K of a surface is the product of its principal curvatures.
Each principal curvature is 1/r, where r is the radius of the circle in the normal plane, 
that best fits the curvature. 

positive
K = 1/r 1/r  > 0 

flat
K = 1/∞ 1/∞   = 0 

negative
K = 1/r 1/(-r)  < 0 



We need now to find out from all possible functions v(r) and u(r) which are the ones 
that verify spherical symmetry in curved spaces. Or in other words, what is the 
constraining condition of a spherical surface:   (in 3D flat space the points on a 
spherical surface verify the constraint dx2 + dy2 + dz2 = constant = dl2).

In a curved 3D space we need to consider that the space “curves into a 4D flat 
space”, i.e., a curved 3D volume may be embedded as a 3D-surface in flat 4D 
space.

The spherical 3D surface is then a constraint on the 4D coordinates. It is simply the 
surface with points at a fixed radius R from the center of the 4D space:

So the points in the 4D space such that w2 + r2 = constant, are the ones that 
define the spherical surface.

where the combination x2+y2+z2

corresponds to the radius of the 3D 
volume in the 3D space.



The line element of that surface is thus   dl2 = dx2 + dy2 + dz2 + (dw/dr)2 dr2 . 

Since the w coordinate of the points on the spherical surface is w2 = R2 - r2, we get: 

is the solution



Note that 1/R2 is the curvature of a spherical surface of radius R:   K = 1/R 1/R
and so the line element is,

It corresponds then to a change in the function u(r) , which is  1/(1-Kr2) instead 
of u(r)=1, while v(r) is kept as  r2

We can also consider that the constant in the condition w2 + r2 = constant is 
negative, to allow for the case of negative curvature.

Note that a negative R2 does not mean an imaginary radius. It simply means that the 
equivalent radius of one of the principal components is positive and the other is 
negative (meaning it curves to the opposite side).

This scenario allows for a different solution:



and now the functions are u(r) = 1/(1+Kr2) and v(r) = r2



There is thus a degree of freedom associated with the curvature, since there 
are several possibilities for the curvature of a spherical symmetric space,

that is encapsulated in the curvature parameter K
(K>0: positive curvature; K=0: flat; K<0: negative curvature)

It is also usual to write the metric using the dimensionless curvature parameter k
(“small k”):

In this case, the curvature types are: k = 1: positive curvature; k = 0: flat; 
k = -1: negative curvature.
Since k is dimensionless, all values of R are equivalent. However in this case, the 
element dr2 / (1-kr2) no longer has dimensions of length, and so the scale factor 
a(t) needs to have units of length and is no longer dimensionless. 



Now, the derivation can also be done in a way that the curvature is encapsulated in 
the function v(r) instead of in u(r), i.e., u(r) is kept as r, and is v(r) that changes.
The result is:

K
This is the most usual way
to write the RW metric

with



Distances

Once we know the metric of the space-time, we can define distances.

In general there is no unique (or correct) definition of distance.

This happens for two reasons: 

- the existence of curvature
- the existence of expansion 

Effect of curvature

As we saw, the existence of curvature introduces two different radial quantities in the 
spherical symmetric metric: the radial displacement u(r) and the radius of spherical 
surfaces v(r).

Both are legitimate ways to define a radial distance.

Looking at the metric,



[note that the comoving radial 
coordinate (i.e. in the comoving frame 
not affected by the expansion) is 
usually written with the letter χ instead 
of r.]

we can infer that those two distances are Δχ and ΔfK (χ) and they define the:

- comoving distance, dC , also called the line-of-sight comoving distance [ Δχ ]

and

- comoving angular-diameter distance, dM , also called transverse comoving
distance or movement distance [Δ fK (χ) ] 

Since fK (χ) is the radius of a spherical surface at 
comoving distance χ from the origin, it is the 
distance that relates an intrinsic diameter with
an angular aperture, hence the name angular
diameter distance. 

But note that it is a radial distance and not a
transverse distance.



To compute these distances from the metric elements, we can consider the space-
time triangle defined by the line-element (not considering angular variation)

(the line element is like the theorem of Pythagoras)

We can also use the redshift as a 
variable in the integral: 



The resulting expressions for the comoving distance are, 

where the Hubble function is written as H(z) = H0 E(z). This is used to separate the 
functional form and the H0 parameter value. 

The actual value of the comoving distance between two points in the Universe 
depends on the cosmological model of that Universe. It requires the knowledge of 
E(z) (obtained from the Einstein equations for the particular model), and of the 
cosmological parameter H0 (obtained from observations).

It is usual to absorb the dependence on H0 into the units of distance, i.e, 
cosmological distances are usually given in Mpc/h, instead of Mpc
(megaparsec), hiding the explicit dependence on the unknown value of H0



The comoving angular-diameter distance, ΔfK (χ) , or dM is computed from dc
using fK (χ), and is:

positive curvature

negative curvature

flat

- volume distance, dV

The so-called volume distance is not another fundamental distance defined from the 
metric. It is essentially a weighted geometric combination of the line-of-sight (1/3) 
and transverse (2/3) comoving distances.

It was introduced in the analysis of the first detection of baryon acoustic oscillations  
as a way to take into account the error produced by the Alcock-Paczynski effect.

It is defined as:



Effect of expansion

The existence of expansion (and the fact that light propagates at finite speed) 
implies that the emission from a source and the detection by an observer are 
never at the same instant of the Universe (or at the same value of the scale 
factor). 
Hence, they are never in the same comoving frame and the two comoving
distances are not measurable distances, and may be considered “non-
physical”.

Several “physical” non-comoving distances can be defined:

- Light-travel distance, dT



It can be computed from,

and it is a potentially measurable distance (if the time of emission is known)



- Proper distance, dP

The proper distance is similar to the light-travel distance, but for a fixed value of 
the scale factor (the one of the observer), and thus it is not an observable 
distance, since it is not connected to an actual propagation.

It is given by dP = a dC,

for  a = 1, dP = dC

It is the distance that would be measured by a ruler placed between two points.
Conceptually it is the simplest distance, and the one that could be thought as 
“the true distance”. However, it is not directly measurable.

- Angular-diameter distance, dA

Consider a large transversal region of the Universe (meaning with all its points 
at the same redshift) that occupies a solid angle dΩ2 in the sky.  

Like we did for the comoving diameter-angular distance, we can draw the 
corresponding spatial triangle for this source-observer system:



The difference with respect to that case is that due to 
the expansion, the intrinsic size of the observed region 
is not its comoving size (fixed) but its proper size 
(expanding).

We can thus define the (non-comoving) angular-diameter distance dA
which is just: dA = asource dM (distance from observer at a0=1 to the source at 
the spherical surface asource)

or dA = asource dM = asource dC for flat space. 

We can also define the angular-diameter distance between two points (instead of 
between a point and the origin) :

a

a



The angular-diameter distance is the cosmological probe measured in 
observations of standard rulers.

A standard ruler is an object for which the intrinsic size is known (from theory) and 
for which the angular size can be observed à enabling to determine its distance dA, 
which in turn contains cosmological information because it is model-dependent (and 
can be computed from theory).

A useful standard ruler needs to be at a:
reasonably high redshift (to contain cosmological information),
be large (for its size to expand, so cannot be an astrophysical collapsed 

object; and to occupy a large enough solid angle that can be measured with good 
precision),

be observable; 

Do such objects exist in the Universe?

Yes, an horizon is a good candidate for this! In particular, the sound horizon at 
recombination (z=1100).  The sound horizon of the Universe is observed as a peak 
in the CMB power spectrum (the first peak of CMB) and also as a peak in the 
matter power spectrum (the baryon acoustic oscillations BAO peak - even though  
the analysis of BAO uses dV instead of dA).



- Luminosity distance, dL

As we already saw, the luminosity distance is not another fundamental distance 
from the metric. It is simply a version of the angular-diameter distance corrected 
for the effects of the redshift on the luminosity. 

Consider the emission of light from a source of luminosity L, from which we 
measure its flux F.

M

Measuring the flux and knowing the intrinsic luminosity enables us to measure the 
comoving angular-diameter distance.

However, the luminosity in our reference-frame at a0 is not the one emitted at the 
rest-frame.  The luminosity is “redshifted” in two different ways:

note that the distance to be used here is the distance from the 
source to a spherical surface at a0, i.e. the angular-diameter 
distance dA with a=1, which is the comoving angular-diameter 
distance dM.

F



F



The correction factors are absorbed in the definition of a luminosity distance, 
such that:

dL = dM (1+z) or dL = dC (1+z)  (flat)

or, in function of the angular-diameter distance to the source:

dL = dA (1+z)2 à dL seen explicitly as a renormalization of dA

The luminosity distance is the cosmological probe measured in observations 
of standard candles.

A standard candle is an object for which the intrinsic luminosity is known (from 
theory) and for which the flux can be observed à enabling us to determine its 
distance dL, which in turn contains cosmological information because it is model-
dependent (and can be computed from theory).

Do such objects exist in the Universe?

Yes, supernovae of type Ia are good candidates for this.  Even though they do not 
all have the same intrinsic luminosity (absolute magnitude) as first thought, they can 
be “standardized” (meaning the observed light-curves can be shifted in a way to 
renormalize their absolute magnitudes).



Volume

The metric also defines volumes.

The volume, like the distances, is a geometrical quantity that can be used for 
cosmological tests.

The comoving volume, VC , is the volume where the number density of objects that 
follow the cosmic flow remains constant as the Universe evolves.

dA = 

and as we saw, 



(c=1)

We can also define the proper volume, VP , multiplying the comoving volume by a3 : 

(z)

The volume is the cosmological probe measured in number counts observations.

The number of objects (e.g. galaxy clusters) within a volume of the Universe (defined 
by an angular size and a redshift size) is counted, usually in bins of a physical property, 
such as mass (building a mass function). 
If the mass function is known (from theory), the comparison between predicted and 
observed number counts à enables to measure the volume VC which in turn contains 
cosmological information because it is model-dependent (and can be computed from 
theory).

The integrated volume, from z=0 to z 
and over the full angular sky is thus,



Einstein tensor

The “equations of GR” are the Einstein equations, which are a set of constraint 
differential equations that relate gravity with the sources of gravity. 
For this, gravity is represented by the Einstein tensor, and the sources of gravity are 
encoded in the energy-momentum tensor.

In GR, gravity arises from the curvature of space-time.

Given that the curvature of a manifold in any number of dimensions is described by 
the Riemann tensor, the Einstein tensor has to be related to it.

In particular, the Einstein tensor is defined as: Gab = Rab - ½ gab R

where R is the Ricci scalar, and the Ricci tensor is a contraction of the Riemann 
tensor: 

and is computed as,



The connection Γbc is the quantity that enables to “connect” the local geometry 
around one point of the curved space (or space-time) with the local geometry 
around another point of the same space (or space-time). In other words, it describes 
how the basis vector change from point to point due to the curvature.

The connection is thus a needed quantity when computing derivatives in a curved 
space: the covariant derivative (;) of a function, includes the “normal” derivative (,) of 
the function and the derivative of the basis: 

a

derivative of a vector:

derivative of a tensor:

derivative of a scalar:

or

naturally, the connection is not needed when
differentiating a scalar quantity

In GR the connection is completely determined by the metric, as,



(here f is fK)

but in general the connection and the metric could be two independent quantities
related to curvature. Note: this is the case in the Palatini approach to gravity.

Hence, the Einstein tensor is computed from the connection and the metric.
We saw that the homogeneous Universe is described by the Robertson-Walker 
metric:



Computing the various terms of the connection, metric and tensors 
(for all combinations of indexes, running from 0 [time]  to 1,2,3 [space] ):  



the resulting Einstein tensor is:

It is diagonal, like the RW metric, having only 4 non-zero elements.

This tensor is the left-side of the Einstein equations: 

Gab = 8ΠG Tab


