Innate lymphoid cells in the initiation, regulation and resolution of inflammation

Gregory F Sonnenberg1–3 & David Artis1–3

A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans and found to influence the induction, regulation and resolution of inflammation. ILCs have an important role in these processes in mouse models of infection, inflammation and tissue repair. Further, disease-association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be used to selectively modulate ILC responses and limit chronic inflammatory diseases.

Inflammation is defined as heat, redness, pain, swelling and loss of function. Whereas acute inflammation is a necessary process to protect against infection and promote tissue repair, chronic inflammation directly contributes to the pathogenesis and progression of multiple infectious, inflammatory and metabolic disorders, including HIV/AIDS, inflammatory bowel disease, arthritis, psoriasis, allergy, asthma, diabetes, obesity and cancer1,2. Although there are many well-characterized cellular and molecular components of the innate and adaptive immune system that influence inflammatory processes, recent characterization of an emerging family of innate immune cells, termed ILCs, has revealed an essential role for these populations in the initiation, regulation and resolution of inflammation. ILCs are innate lymphocytes that are relatively rare in comparison to adaptive lymphocytes in lymphoid tissues, but they are enriched at barrier surfaces of the mammalian body, such as the skin, lung and intestine, as well as in adipose and some mucosal-associated lymphoid tissues3–6. ILCs rapidly respond to cytokine and microbial signals and are potent innate cellular sources of multiple pro-inflammatory and immunoregulatory cytokines, and recent research has also identified a crucial role for ILCs in modulating adaptive immunity. Mature ILC subsets can be identified by a lack of known lineage markers associated with T cells, B cells, myeloid cells, or granulocytes, but they share expression of the common gamma chain (γc, CD132), IL-7Rα (CD127), IL-2Rα (CD25), and Thy1 (CD90) markers, with some exceptions noted below3–6.

A combination of advances in multi-parameter flow cytometry and the identification of novel cytokine pathways regulating immunity and inflammation—including the interleukin (IL)-23-IL-22 pathway7–12 and epithelial-derived cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)13–17—has contributed to our emerging knowledge of ILCs. Prototypical members of the ILC family were discovered many years ago, including the natural killer (NK) cells in 1975 (refs. 18,19), and subsequently lymphoid tissue-inducer (LTI) cells20. However, it was not until more recently that other members of the ILC family were characterized. These characterizations included simultaneous reports of innate lymphocytes that are predominant cellular sources of the cytokines IL-17 and IL-22 (refs. 21–28) or IL-5 and IL-13 (refs. 29–33) in the steady state or early after infection. These rapid and fundamental advances also generated redundant nomenclature based on the functional potential of the identified cells, including NK-22 cells, LTI-like cells, natural helper cells, nuocytes and innate helper cells. To limit confusion, leaders in the field later unified a common terminology to classify these emerging cell populations as a new family of ILCs which encompasses three subsets, termed group 1, 2 or 3 ILCs, on the basis of common expression of surface markers, transcription factors and cytokines3.

Recent studies of ILCs have provoked a paradigm shift in our understanding of innate and adaptive immunity, and they have fueled additional extensive investigation into these cells because of the potential influence of ILCs in human health and disease. Mouse models indicate that ILCs have a fundamental role in the immune system by initiating, regulating and resolving inflammation. Further, studies in humans have revealed that ILC responses are substantially altered in several disease states. Below we discuss the development and heterogeneity of ILCs, the role of human and mouse ILCs in inflammatory processes, and how current or novel therapeutic strategies could be used to modulate ILC responses and benefit human health.

Development and heterogeneity of the ILC family

ILCs initially develop in the fetal liver and later in the adult bone marrow from common lymphoid progenitors (CLPs)34–36. CLPs...
also differentiate into cells of the adaptive immune system, such as T cells and B cells, but development of ILCs from CLPs occurs independently of somatic recombination, a defining feature of the adaptive immune system that permits the generation of antigen-specific receptors or secreted proteins such as the T cell receptor, B cell receptor and immunoglobulin. ILC development is regulated at the transcriptional level, with several precursor populations and transcription factors regulating each group (Fig. 1).

Differentiation of all ILCs from a CLP requires the transcription factors inhibitor of DNA binding 2 (Id2), nuclear factor interleukin-3 regulated (NFIL3), and thymocyte selection-associated high tors inhibitor of DNA binding 2 (Id2), nuclear factor interleukin-3 to support the generation of ILCps. However, additional studies are required to further define these functional interactions, as NFIL3-deficient mice do not completely replicate the phenotype of Id2-deficient mice, which lack all ILCs. Further, although most of these developmental studies have necessarily used mice, CD34+ hematopoietic progenitor cells (HSCs) in the bone marrow or peripheral blood of humans can give rise to other defined ILC subsets. Although the specific interactions and functions of transcription factors in ILC development are not well defined, IL-7 signaling can induce NFIL3 and subsequently Id2 to support the generation of ILCps. However, additional studies are required to further define these functional interactions, as NFIL3-deficient mice do not completely replicate the phenotype of Id2-deficient mice, which lack all ILCs. Further, although most of these developmental studies have necessarily used mice, CD34+ hematopoietic progenitor cells (HSCs) in the bone marrow or peripheral blood of humans can give rise to other defined ILC subsets. Although the specific interactions and functions of transcription factors in ILC development are not well defined, IL-7 signaling can induce NFIL3 and subsequently Id2 to support the generation of ILCps. However, additional studies are required to further define these functional interactions, as NFIL3-deficient mice do not completely replicate the phenotype of Id2-deficient mice, which lack all ILCs. Further, although most of these developmental studies have necessarily used mice, CD34+ hematopoietic progenitor cells (HSCs) in the bone marrow or peripheral blood of humans can give rise to other defined ILC subsets. Although the specific interactions and functions of transcription factors in ILC development are not well defined, IL-7 signaling can induce NFIL3 and subsequently Id2 to support the generation of ILCps.
ILCs orchestrate acute inflammation to promote immunity to infection

Acute inflammation is necessary to mount an effective immune response to various infectious organisms. ILCs were first identified on the basis of their ability to promote rapid and essential innate immune responses to different classes of pathogens, in part by modulating local epithelial cell, myeloid cell or granulocyte responses (Fig. 2).

ILCs and intracellular pathogens. ILC1 populations have a crucial role in promoting immunity to intracellular pathogens (Fig. 2a). Rapid NK cell responses have been well characterized after exposure to multiple intracellular pathogens in both humans and mice. However, the role of other ILC1 populations has been less clear. Recent evidence suggests that ILC1s are the dominant innate source of IFN-γ and TNF in mice after infection with the oral pathogen Toxoplasma gondii, and that they have role in recruiting inflammatory myeloid cells that control infection. Consistent with this, genomic T-bet deficiency rendered mice highly susceptible to T. gondii infection, and adoptive transfer of ILC1s to lymphocyte-deficient mice (Rag2−/−Il2rg−/−) was sufficient to boost immunity.

ILC2s and extracellular parasites. ILC2s rapidly respond after exposure to multicellular parasites that are typically extracellular (Fig. 2b). For example, ILC2s are an important innate cellular source of IL-13 in the intestine after infection of mice with the parasite Nippostrongylus brasiliensis. IL-13 can act on goblet cells to induce mucus production, and on smooth muscle to enhance contractility, both of which are thought to contribute to expulsion of the parasites from the gastrointestinal tract. IL-4 and IL-13 can also induce goblet cell expression of RELMβ, which limits parasitic infection. Epithelial cell-derived IL-25 and IL-33 primarily promote the population expansion and cytokine production of ILC2s after parasite infection of mice. ILC2s can similarly promote IL-13-mediated immunity to other parasites in mice, including Trichuris muris. Notably, this response could be enhanced by vitamin A deficiency, suggesting that ILC2s can respond to dietary stress and that the type 2 immune response may have adapted to support anti-parasite immunity in human populations with malnutrition.

ILC3s and extracellular bacteria and fungi. ILC3s rapidly respond to infection of mice with either extracellular bacteria or fungi (Fig. 2c). NCR+ ILC3s rapidly respond to infection of mice with the Gram-negative enteric pathogen Citrobacter rodentium by producing IL-22, which is essential for host protection. These ILC3 responses in humans and mice can be promoted by dendritic cell (DC)-derived IL-23 (ref. 22), and in mice ILC3 are a dominant and essential source of IL-22 for innate immunity to C. rodentium in the intestine. IL-22 acts almost exclusively on non-hematopoietic cells, such as intestinal epithelial cells (IECs), and it stimulates production of anti-microbial peptides (RegIIIγ and RegIIIβ), element-sequestering proteins (lipocalin-2, S100A8, and S100A9), mucus production (Muc1, 3, 10 and 13) and epithelial fucosylation (Fut2). These responses collectively limit the replication, dissemination and tissue damage induced by pathogenic and opportunistic bacteria. Similarly, ILC3s located in the oral mucosa promote IL-17-dependent innate immunity to infection with the fungal pathogen Candida albicans in mice. IL-17 can act alone or synergistically with IL-22 to also promote antimicrobial peptide production, and it induces the expression of extracellular bacteria and fungi.

Figure 2. ILCs promote acute inflammation and innate immunity to pathogens. ILCs promote innate immune responses to a number of pathogens in the intestine. (a) ILC1s promote innate immunity to intracellular pathogens, such as T. gondii, by producing TNF and IFN-γ in response to DC-derived IL-12, and they subsequently promote recruitment of inflammatory myeloid cells. (b) After infection with the helminth parasites N. brasiliensis or T. muris, ILC2s produce IL-13 in response to epithelial cell-derived IL-25, IL-33 and TSLP, which increases smooth muscle contractility and mucus production from goblet cells. (c) ILC3s produce IL-17 and IL-22 in response to DC-derived IL-23 and IL-1β, which promotes innate immunity to fungi and extracellular bacteria, such as C. rodentium and C. albicans. IL-17 and IL-22 promote neutrophil recruitment to the intestine and the production of antimicrobial peptides from IECs.
ILCs promote the resolution of inflammation and tissue repair

In addition to their role in initiating acute inflammatory responses and immunity to pathogens, ILCs directly contribute to the resolution of inflammation by repairing damaged tissues, including the lung, various lymphoid tissues, and the gastrointestinal tract (Fig. 3). These repair processes are essential to limiting sustained inflammation, preventing re-infection and restoring tissues to a state of homeostasis.

ILC2s and resolution of inflammation in the lung. In the lung of mice, ILC2s are activated in response to IL-33 after influenza virus infection and subsequent immune-mediated tissue damage (Fig. 3a). Experimental depletion of ILC2s in mice did not impair innate immunity to influenza, but rather limited repair of the airway epithelium and reduced lung function. This repair function was not mediated by the cytokine family that was highly expressed by ILC2s (Fig. 3b). Further, after infection and subsequent tissue damage induced by the migration of N. brasiliensis in the lungs of mice, autocrine production of IL-9 contributes to the survival of ILC2s and was associated with amphiregulin production and repair of the lung tissues (Fig. 3c). ILC2s therefore represent a major ILC population in the lung that promotes tissue repair after infection. Mouse ILC2s also promote cutaneous wound healing in an excisional wound model (D.A., unpublished data). Although it has been demonstrated that human ILC2s express amphiregulin at the transcript level, additional work is needed to define whether human ILC2s are potent sources of amphiregulin and mediate tissue repair. Also, it currently remains unclear whether ILC2s can promote tissue repair at different anatomical locations.

ILC3s and resolution of inflammation in lymphoid tissues and the intestine. ILC3s promote tissue repair through several distinct mechanisms (Fig. 3b, c). Systemic viral infections can impair the architecture of secondary lymphoid organs after CD8+ T cell–mediated killing of infected stromal cells. If restoration of tissue homeostasis does not occur, it can render a host susceptible to secondary infections. Disruption of lymphoid tissue architecture in mice promotes a local accumulation of LTI-like ILC3s that express LTRαβ2 and act on LTβR-expressing stromal cells to enhance their proliferation and survival (Fig. 3b). Further, ILC3s can also promote tissue repair in the thymus of mice after total body irradiation (Fig. 3c). In this context, CCR6+ ILC3s are partially radio-resistant and respond to irradiation-induced IL-23, promoting IL-22-dependent restoration of tissue integrity in the thymus (Fig. 3c). IL-22 acts on thymic epithelial cells to promote cell survival and proliferation. Further, IL-22–dependent tissue repair in mice has also been reported in the liver following chemical-induced hepatitis and in the lung after influenza infection or bleomycin-induced damage, which are two other organs in which the tissue-resident non-hematopoietic cells highly express the IL-22 receptor.

In the intestine, ILC3s have an important role in regulating tissue repair (Fig. 3c). This may be particularly important in the context of human inflammatory bowel disease (IBD) because several reports have identified reduced numbers of ILC3s in intestinal tissues from disease patients relative to non-IBD controls. In mouse models, production of IL-22 by ILC3s mediates tissue repair after experimental tissue damage induced by hematopoietic stem cell transplantation (HSCT) and subsequent graft-versus-host disease (GVHD), or after administration of dextran sodium sulfate (DSS). Following whole-body irradiation and HSCT, radio-resistant ILC3s respond to DC-derived IL-23 and produce IL-22. IL-22 acts on the intestinal epithelium directly promoting mucus production and epithelial cell repair, in part by acting directly on intestinal stem cells or progenitors.
stem cell or progenitor compartments to limit apoptosis and preserve intestinal barrier function. If allogeneic T cells with the capacity to attack donor tissues are co-transferred into mice after irradiation, this causes GVHD and is associated with a decrease in intestinal ILC3s and enhanced intestinal tissue damage owing to a loss of IL-22 (ref. 98). In humans, ILC3s are not normally observed in the circulation, but they are found after chemotherapy for HSCT. Furthermore, the levels of circulating ILC3s positively correlate with a reduced incidence of developing GVHD, suggesting a critical role for human ILC3s in limiting GVHD.

In the DSS model of intestinal damage and inflammation, ILC3 responses and production of IL-22 also promote tissue repair and maintain intestinal barrier function. This process is regulated by commensal bacteria, which induce expression of IL-25 by IECs after colonization in the postnatal period (refs. 97,101). IL-25 acts on IL-25R+ DCs to subsequently limit ILC3 responses in a contact-dependent manner. However, upon induction of experimental tissue damage with DSS, IL-25 expression was reduced and ILC3 responses were enhanced relative to naive mice, increasing IL-22 production and tissue repair (refs. 97,101). ILC3 responses and IL-22-dependent tissue repair can also be enhanced in mice and humans after recognition of pathogenic or commensal microbes by CX3CR1+ myeloid cells and subsequent production of IL-1β; IL-23 and T1LA (refs. 102–105). One potential reason for the differential roles of commensal bacteria in promoting or suppressing ILC3 responses could be explained by the differential regulation of IL-1β secretion by pathogenic bacteria and selective subsets of commensal bacteria. The vitamin A metabolite retinoic acid (RA) can also enhance ILC3 responses in mice through multiple mechanisms, including direct binding to the Rorc or Il22 loci, promoting maturation of LTi-like ILC3s, and regulating ILC3 proliferation (refs. 81,99,108). In addition to promoting maintenance of the intestinal epithelium, during fetal development vitamin A and the metabolite RA control the size of secondary lymphoid tissues via LTi cells in mice, which could influence the efficiency of protection from viral infections later in life (ref. 108). Thus, ILC3s have a major role in repairing damaged lymphoid tissues, airway epithelia, liver, and intestinal epithelia, thus preserving organ function.

ILCs promote chronic inflammation

ILCs can also promote chronic inflammation in several mouse models, and dysregulated ILC responses have been characterized in patient populations with chronic inflammatory disease of the lung, skin and intestine (Fig. 4).

ILC2s and chronic inflammation in the lung and skin. Increased ILC2 responses have been observed in multiple allergic diseases, including in the skin of individuals with atopic dermatitis, in the nasal polyps of individuals with chronic rhinosinusitis, circulating in the blood of individuals with asthma, and in the bronchial lavage fluid of individuals with idiopathic pulmonary fibrosis. In mouse models, disrupted IL22 responses contribute to chronic inflammation in the lung and skin (Fig. 4a). For example, ILC2 responses are elicited by epithelial cell– or myeloid cell–derived TSLP; IL-25 and IL-33 after exposure to allergens, chemicals or helminth parasites, or after influenza virus infection. Basophils can also promote pro-inflammatory ILC2 responses in the skin and lung through production of IL-4 in mouse models of chemical-induced atopic dermatitis and protease allergen-induced airway inflammation. Further, human mast cells co-localize near ILC2s in the human lung and could directly promote ILC2 responses in vitro through production of prostaglandin D2 (PGD2). The population expansion of ILC2s is thought to contribute to chronic inflammation through multiple mechanisms. Production of IL-22-derived IL-5 can promote the recruitment of eosinophils into the lung and skin of mice, which contributes to tissue inflammation. Further, ILC2-derived IL-13 can impair mouse lung function by enhancing airway smooth muscle cell contractility, increasing epithelial cell mucus production, polarizing macrophages to an alternatively activated macrophage (AAMac) phenotype and increasing collagen deposition. ILC2s in mice can also promote chronic inflammation by enhancing T helper 2 cell (Th2) responses either indirectly by IL-13–elicited migration of activated DCs to the lung draining lymph node and subsequent Th2 cell priming, or directly by major histocompatibility complex class II (MHCII)-dependent interactions with CD4 T cells. ILC3s, chronic inflammation and cancer in the skin, lung and intestine. Increases in ILC3 frequencies, cell numbers and cytokine production have also been observed in individuals with chronic inflammatory diseases, including in the skin of patients with psoriasis, in tumors of patients with colitis–associated colon cancer, or in the bronchoalveolar lavage fluid of patients with asthma. In a mouse model of psoriasis, ILC3s are the dominant source of IL-17 and IL-22 in the skin and are reduced by a p40-specific monoclonal antibody, which probably blocks the IL-23–mediated population expansion or activation of ILC3s. ILC3s are necessary and sufficient to induce psoriatic plaque formation in mice via production of IL-17 and IL-22 (ref. 125) (Fig. 4b). Further, although they are normally absent in the lungs of healthy mice, a mouse model of obesity-induced asthma, ILC3s expand in response to NLPR3-dependent production of IL-1β by macrophages. ILC3s were sufficient to promote IL-17–dependent airway hyper-responsiveness in this mouse model (Fig. 4b).

The role of ILC3s in promoting intestinal inflammation is more complex, given the substantial heterogeneity observed in this cell lineage, the potential lineage plasticity, and the differential gating strategies used by different groups conducting human studies. Two reports observed an increased frequency in pro-inflammatory ILC3s in intestinal tissues from individuals with IBD, whereas another identified increased ILC3 production of IL-22 (ref. 102). However, as described in the next section, there have been many reports of tissue-protective functions of ILC3s in mouse models of intestinal inflammation, and additional reports of decreased ILC3 frequencies in people with IBD. The different reports may be explained by the selected mouse models and the heterogeneity and potential plasticity of ILC3s, as well as by the clinical phenotypes and tissue sources of the patient populations studied. Notwithstanding this, a unique ILC3 population has a role in two innate mouse models of intestinal inflammation (Fig. 4c). Administration of a CD40-specific monoclonal antibody or colonization with Helicobacter hepaticus in Rag1−/− mice induces colitis that is dependent on ILCs, RORγt, IL-17A and IFN-γ (ref. 24). The pro-inflammatory ILC3s observed in these models are largely absent in the steady state and lack expression of c-kit, and a portion of these cells co-expressed T-bet, IFN-γ and IL-17A (ref. 24). ILCs with a similar phenotype are also observed in mice that lack the genes encoding both T-bet and Rag2 (TRUC mice); these mice are a spontaneous model of innate cell–driven intestinal inflammation. TRUC mice have increased IL-17A–producing ILCs relative to littermate controls, which act in synergy with DC-derived TNF to promote intestinal inflammation. IL-6 was also found to be a critical cytokine that promotes IL-17A production from human and mouse
pro-inflammatory ILC3s. ILC3s can also promote intestinal inflammation indirectly. After T. gondii infection, ILC3-derived IL-22 acts on IECs to promote expression of the TH1 cell–promoting cytokine IL-18, which leads to subsequent tissue inflammation. Further, ILC3s can promote skin inflammation through production of IL-22 and IL-17. In patients with psoriasis and in mouse models of skin inflammation, ILC3 responses are increased, which can occur in response to DC-derived IL-23. ILC3s are increased in mice models of obesity-induced asthma. In mice this occurs through activation of the NLRP3 inflammasome and macrophage (MΦ) production of IL-1β. IL-1β activates ILC3s to produce IL-17, which directly promotes airway inflammation and hyper-responsiveness. In the intestine ILC3s promote IL-22–dependent tumor growth, which is in part dependent upon DC-derived IL-23. Further, ILC3s can mediate tissue inflammation in the intestine in response to DC-derived IL-23 and IL-12. This may occur through production of IL-17 by ILC3s, production of IFN-γ following loss of RORγt in ILC3s and differentiation to ex-ILC3s, or direct activation of tissue-resident ILC1s.

Figure 4 ILCs can promote chronic inflammation. (a) In response to infection or allergen exposure, ILC2 responses are elicited in the lung (and skin) by epithelial cell– and myeloid cell–derived IL-25, IL-33 and TSLP. Further, ILC2 responses can be enhanced by basophil-derived IL-4 or mast cell–derived PGD2. Activated ILC2s can subsequently promote chronic inflammation via IL-5–dependent eosinophil recruitment, IL-13–mediated contraction of smooth muscle cells, collagen deposition, and AAMac differentiation, or by MHCII-mediated enhancement of Th2 cell responses, resulting in allergy and fibrosis. (b) In patients with psoriasis and in mouse models of skin inflammation, ILC3 responses are increased, which can occur in response to DC-derived IL-23. ILC3s are increased in the bronchoalveolar lavage fluid of patients with asthma and in mouse models of obesity-induced asthma. In mice this occurs through activation of the NLRP3 inflammasome and macrophage (MΦ) production of IL-1β. IL-1β activates ILC3s to produce IL-17, which directly promotes airway inflammation and hyper-responsiveness. (c) In the intestine ILC3s promote IL-22–dependent tumor growth, which is in part dependent upon DC-derived IL-23. Further, ILC3s can mediate tissue inflammation in the intestine in response to DC-derived IL-23 and IL-12. This may occur through production of IL-17 by ILC3s, production of IFN-γ following loss of RORγt in ILC3s and differentiation to ex-ILC3s, or direct activation of tissue-resident ILC1s.
In the colon, ILC3s also promote colitis-associated tumor progression via production of IL-22 (ref. 123). In a novel model of colitis-associated cancer, Rag1−/− mice, which exhibit chronic intestinal inflammation when colonized with H. hepaticus, were administered the carcinogen azoxymethane (AOM) and found to develop colitis-associated colorectal cancer in an ILC- and IL-22–dependent manner123. The timing and regulation of IL-22 production is important to consider in the context of intestinal tumors, as IL-22 production during the peak of intestinal inflammation is protective against tumor resolution, whereas uncontrolled IL-22 production during the resolution of inflammation promotes intestinal tumorigenesis130. In contrast, in an implantable model of mouse melanoma, ILCs that were previously marked with RORγt expression produced IFN-γ and TNF. Further studies are required to define the role of ILCs in promoting pro- versus anti-tumor immune responses, and in particular a role for ILC3s in promoting intestinal inflammation in the presence of adaptive immunity is lacking. Collectively, these studies define a complex role for ILC1s, ILC2s and pro-inflammatory ILC3s or ex-ILC3s in promoting chronic inflammation in mice and humans.

ILCs limit chronic inflammation

ILCs can also have a role in limiting chronic inflammation, either by influencing metabolic homeostasis or by directly regulating innate and adaptive immune cell responses to non-harmful environmental stimuli in the intestine, such as commensal bacteria or dietary antigens (Fig. 5).

ILC2s and metabolic homeostasis. ILC2s have been characterized in the intestine, lung and adipose tissues of healthy humans and mice29–33. In the intestine of mice, ILC2s control the homeostasis of circulating eosinophils through constitutive production of IL-5, and they regulate tissue-resident eosinophils in the intestine through induced production of IL-13 and subsequent eotaxin expression132. Tissue recruitment of eosinophils in the intestine is regulated by nutrient intake and central circadian rhythms that induce vasoactive intestinal peptide (VIP) expression by IECs, and VIP stimulates ILC2 production of IL-13 through the VPAC2 receptor132. However, the functional significance of ILC2-mediated regulation of eosinophil homeostasis in the intestine is poorly understood. In adipose tissue of mice, ILC2s can regulate eosinophil homeostasis and AAMac polarization49,67. In obese mice fed a high-fat diet, or in obese humans, frequencies of ILC2s are reduced in the adipose tissues as compared to non-obese controls, and this reduction in ILC2s is associated with a reciprocal increase in chronic low-grade systemic inflammation64–66, suggesting a critical role for ILC2s in regulating metabolic homeostasis. Consistent with this, experimental depletion of ILC2s exacerbates weight gain in mice and causes insulin resistance, whereas treatment...
ILC3s in chronic systemic and intestinal inflammation. ILC3s also limit chronic inflammation through several distinct mechanisms (Fig. 5b), which may be particularly important in the intestine, as there are several reports of reduced frequencies of ILC3s in individuals with IBD or with HIV infection relative to controls. In the intestine and associated lymphoid tissues of healthy humans, non-human primates and mice, ILC3s are a dominant source of IL-22 that is in part influenced by the colonization of the intestine with commensal bacteria. Production of IL-22 restricts the anatomical localization or replication of specific species of commensal bacteria in mice. Impairment of this pathway promotes systemic dissemination of lymphoid tissue-resident commensal bacteria or increased colonization in the intestinal epithelium with segmented filamentous bacteria, resulting in low-grade systemic and intestinal inflammation. This may be particularly important in the context of HIV infection and progression to AIDS, in which there are defects in intestinal barrier function such that systemic dissemination of commensal bacteria promotes chronic immune activation and contributes to viral replication, loss of CD4 T cells and disease progression. In humans and non-human primates, numbers of ILC3s and production of IL-22 are reduced in the intestine after pathogenic infection with HIV or simian immunodeficiency virus (SIV) and thus may be a novel therapeutic target for limiting disease progression. Production of IL-22 in mice can also promote colonization of the intestine by beneficial and diverse commensal bacteria that provide protection from intestinal inflammation and infection. This occurs via ILC3- and IL-22-dependent fucosylation or glycosylation of IECs via Fut2, thus providing a sugar food source for beneficial microbiota, which in turn limits the growth of pathogens or opportunistic pathogens and protects against intestinal tissue damage. IL-22 production by ILC3s also requires maintained expression of Ifd2 and subsequent regulation of the IL-23R and Ahr pathways, which is necessary to limit infection-induced damage in mice by regulating colonization resistance and the composition of intestinal commensal bacteria.

ILC3s can also limit chronic inflammation through indirect and direct regulation of the adaptive immune cell response (Fig. 5b). ILC3s regulate homeostasis of myeloid cells in the intestine of mice through production of granulocyte macrophage colony-stimulating factor (GM-CSF). This process is regulated by macrophage sensing of intestinal commensal bacteria and production of IL-1β, which can act on ILC3s to promote GM-CSF expression. Conversely, production of GM-CSF by ILC3s was essential to modulate myeloid cells and subsequently generate Treg cell responses to food antigens in the intestine and maintain oral tolerance. Through production of LTB4 or a soluble LTB4, ILC3s can influence the production of T cell–independent and T cell–dependent IgA production in the intestine, respectively, which modulates the composition of the intestinal commensal bacteria. Human and mouse ILC3s were also found to express MHCII, process and present antigens, and directly interact with CD4+ T cells. Genetic deletion of ILC3-intrinsic MHCII in mice results in the development of spontaneous CD4+ T cell–mediated inflammation, which was dependent on commensal bacteria. Mechanistically, MHCII+ ILC3s induced cell death of activated commensal bacteria–specific CD4+ T cells in the intestine of mice, revealing a previously unappreciated selection pathway in the intestine whereby T cells with the potential to cause local inflammation are deleted, akin to the process that occurs for self-reactive T cells during thymic selection. Although no differences were observed in the frequency of ILC3s in intestinal biopsies of pediatric IBD patients, a substantial reduction of MHCII on ILC3s was observed relative to non-IBD controls, and this reduction inversely correlated with increased intestinal Treg cells. These studies identify an essential role for ILC3s in maintaining tissue homeostasis and limiting chronic inflammation in the intestine of humans and mice. Further studies are necessary to interrogate what causes dysregulated ILC3 numbers or responses in the context of chronic human diseases, such as HIV infection or IBD.

Potential therapeutic modulation of ILCs

Given the role of ILCs in the initiation, regulation and resolution of inflammation in mice, and in the reported alterations of ILCs in defined patient populations, there is an urgent need to investigate whether therapeutic strategies can be used to modulate ILC responses and provide clinical benefit. As a proof of principle, ILC responses were recently shown to be modulated in patients with multiple sclerosis (MS) after CD25–specific monoclonal antibody (daclizumab) therapy. Although the role of ILCs in MS is poorly defined, this study identified increased circulating numbers of ILC3-like cells in individuals with MS that were reduced after CD25–specific monoclonal antibody treatment and associated with reduced inflammatory markers in the cerebrospinal fluid. Despite this advance, further high-resolution profiling of ILC responses in defined patient populations, and during specific treatment regimens, is required to fully elucidate how we can modulate ILCs to limit human disease.

There are many other therapeutics in the clinic or currently under development that could influence ILC differentiation, homeostasis or function. These include targeting the cytokine–cytokine receptor pathways that are critical for the differentiation, function and maintenance of ILCs such as IL-2–IL-2R, IL-12–IL-12R, IL-23–IL-23R, IL-1–IL-1R, TSLP–TSLPR and IL-6–IL-6R; targeting molecules critical for migration of ILCs such as α4β7 and MadCAM-1; or targeting effector molecules of ILCs such as TNF–TNFR, IL-17–IL-17R, IFNγ and IL-13–IL-13R. It will be important to consider how these strategies may influence the pathologic versus protective functions of ILCs. For example, targeting the IL-23–IL-17 pathway has demonstrated efficacy in psoriasis and rheumatoid arthritis. However, in IBD patients, blockade of IL-17 had limited efficacy and in some cases resulted in enhanced disease and susceptibility to fungal infections. Given the role of ILC3s and IL-17 in promoting anti-fungal immunity, one possibility is that targeting IL-17 may have limited efficacy in certain conditions, as it also targeted protective ILC3 responses. Therefore, the design of novel therapeutics may be necessary in order to find strategies that selectively modulate protective versus pathologic ILC responses. These could include novel small-molecule inhibitors of transcription factors, other recently identified ILC modulators in mice and humans, such as the vitamin A metabolite retinoic acid, Lipoxin A4,
or exogenous cytokines that may promote protective functions of ILCs or limit their pathologic potential[11,99,108,118].

Outstanding questions and future directions

Research on the biology of ILCs has already advanced our understanding of their development and the role they have in regulating acute and chronic inflammation as well as tissue repair. One future challenge is to better define this family of innate immune cells, and to delineate how they specifically interact with other innate, adaptive and non-hematopoietic cells to promote, limit or resolve inflammation. A universal consensus on gating strategies on human and mouse ILCs should be considered. A critical evaluation of translational studies is needed, and it should be focused on examining patient numbers, current medication use, longitudinal samples, sources of healthy or non-diseased control tissues, tissue digestion protocols, and genetic and environmental factors as such commensal bacteria. Further, additional mouse studies are needed to carefully define the potential plasticity of ILC populations, and to identify novel functions and regulatory pathways influencing ILC responses. Defining these outstanding questions could prompt the development of novel therapeutic strategies or promote new approaches that will permit selective regulation of protective versus pathologic ILC responses. These advances will be critical for our understanding of the cellular and molecular basis of inflammation and to determining whether and how we can manipulate ILC responses to maintain healthy tissues and limit chronic inflammation.

ACKNOWLEDGMENTS

Research in the Sonnenberg laboratory is supported by the US National Institutes of Health (NIH) (DPSPD012116), the National Institute of Allergy and Infectious Diseases Mucosal Immunology Studies Team (MIST) Scholar Award in Mucosal Immunity and the Institute for Translational Medicine and Therapeutics Transdisciplinary Program in Translational Medicine and Therapeutics (UL1-RR024134 from the US National Center for Research Resources). Research in the Arts laboratory is supported by the NIH (AI061570, AI074878, AI095466, AI095608, AI102942, AI109733 and AI106967), the Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Disease Award and the Crohn's and Colitis Foundation of America.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

et al. 16

