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4. K-Function Analysis of Point Patterns

In the Bodmin Tors example above, notice from Figure 3.14a (p.20) that the clustering
structure is actually quite different from that of the Redwood Seedling example in Figure
3.12a (p.12). Rather than small isolated clumps, there appear to be two large groups of
points in the northwest and southwest, separated by a large empty region. Moreover, the
points within each group are actually quite evenly spaced (locally dispersed). These
observations suggest that the pattern of tors exhibits different structures at different
scales. Hence the objective of the present section is to introduce a method of point pattern
analysis that takes such scale effects into account, and in fact allows “scale” to become a
fundamental variable in the analysis.

4.1 Wolf-Pack Example

To motivate the main ideas, we begin with a new example involving wolf packs. A map
is shown in Figure 4.1a below representing the relative locations of wolf packs in a
portion of the Central Arctic Region in 1998.> The enlarged portion in Figure 4.1b is a
schematic map depicting individual wolves in four of these packs.
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Fig.4.1a. Map of Wolf Packs Fig.4.1b. Enlarged Portion

At the level of individual wolf locations in Figure 4.1b, there is a pattern of isolated
clumps that bears a strong resemblance to that of the Redwood seedlings above.’
Needless to say, this pattern would qualify as strongly clustered. But if one considers the
larger map in Figure 4.1a, a different picture emerges. Here, the dominant feature is the
remarkable dispersion of wolf packs. Each pack establishes a hunting territory large
enough for its survival (roughly 15 to 20 km in diameter), and actively discourages other

! This map is based on a more detailed map published in the Northwest Territories Wolf Notes, Winter
1998/99. See also http://www.nwtwildlife.rwed.gov.nt.ca/Publications/wolfnotes/wolf32.htm.
% The spacing of individual wolves is of course exaggerated to allow a representation at this scale.
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packs from invading its territory.® Hence this pattern of wolf locations is very clustered at
small scales, and yet very dispersed at large scales.

But if one were to analyze this wolf-location pattern using any of the nearest-neighbor
techniques above, it is clear that only the small-scale clustering would be detected. Since
each wolf is necessarily close to other wolves in the same dens, the spacing between dens
would never be observed. In this simple example one could of course redefine wolf dens
to be aggregate “points”, and analyze the spacing between these aggregates at a larger
scale. But there is no way to analyze multiple scales using nearest neighbors without
some form of re-aggregation.”

4.2 K-Function Representations

To capture a range of scales in a more systematic way, we now consider what amounts to
an extension of the quadrat (or cell-count) method discussed in section 1 above. In
particular, recall that the quadrat method was criticized for being too dependent on the
scale of individual cells. Hence the key idea of K-functions is to turn this dependency
into a virtue by explicitly incorporating “scale” as a variable in the analysis. Thus, rather
than fixing the scale and locations of cell grids, we now consider randomly sampled cells
of varying sizes. While many sampling schemes of this type can be defined, we shall
focus on the single most basic scheme which is designed to answer the following
question for a given point process with density A: What is the expected number of point
events within distance h from any randomly sampled point event? Note that this expected
number is not very meaningful without specifying the point density, 4, since it will of
course increase with A. Hence if we divide by A in order to eliminate this obvious
“density effect” then the quantities of interest take the form:

4.21) K(h)= % E (number of additional eventswithin distance, h, of an arbitrary event)

If we allow the distance or scale, h, to vary then expression (4.2.1) is seen to define a
function of h, designated as a K-function.> As with nn-distances, these values, K (h),
yield information about clustering and dispersion. In the wolf-pack example above, if one
were to define K(h) with respect to small distances, h, around each wolf in Figure 4.1b,
then given the close proximity to other wolves in the same pack, these values would
surely be too high to be consistent with CSR for the given density of wolves in this area.
Similarly, if one were to define K(h) with respect to much larger distances, h, around
each wolf in Figure 4.1a, then given the wide spacing between wolf packs (and the
relative uniformity of wolf-pack sizes®), these values would surely be too low to be

® Since wolves are constantly on the move throughout their hunting territories, the actual locations shown in
Figure 1a are roughly at the centers of these territories.

* One could also incorporate larger scales by using higher-order nearest neighbors [as discussed for
example in Ripley (1996, sec.6.2)]. But these are not only more complex analytically, they are difficult to
associate with specific scales of analysis.

> This concept was popularized by the work of Ripley (1976,1977). Note also that following standard
convention, we now denote distance by h to distinguish it from nn-distance, d .

® Wolf packs typically consist of six to eight wolves (see the references in footnote 1 above).
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consistent with CSR for the given density of wolves. Hence if one can identify
appropriate bench-mark values for K(h) under CSR, then these K-functions can be used
to test for clustering and dispersion at various scales of analysis. We shall consider these
questions in more detail in Section 4.4 below.

But for the moment, there are several features of definition (4.2.1) that warrant further
discussion. First, while the distance metric in (4.2.1) is not specified, we shall always
refer to Euclidean distance, d(s,v) between pairs of points, as defined expression (3.2.1)
above. Hence with respect to any given point event, s, the expected number of point
events within distance h of s is simply the expected number of such events a circle of
radius h about s, as shown in Figure 4.2 below.

AK(h) = Expected Number
of Points in here

Fig.4.2. Interpretation of K(h)

This graphical image helps to clarify several additional assumptions implicit in the
definition of K(h). First, since this value is taken to depend only on the size of the circle

(i.e., the radius h) and not its position (i.e., the coordinates of s) there is an implicit
assumption of spatial stationarity [as in expression (2.5.1) above]. In other words, it is
assumed that the expected number of additional points in this circle is the same regardless
of where s is located. (This assumption will later be relaxed in our Monte Carlo
applications of K-functions).

Observe next that the circularity of this region implicitly assumes that direction is not
important, and hence that the underlying point process is isotropic (as in Figure 2.2
above). On the other hand, if the point process of interest were to exhibit some clear
directionality, such as the vertical directionality in shown in Figure 2.3 above, then it
might be more appropriate to use directional ellipses as defined by weighted Euclidean
distances of the form:

(4.2.2) d(s,v)= \/Wl (s, V)7 +w, - (s, —V,)°

where the weights w, and w, reflect relative sensitivities of point counts to movements
in the horizontal or vertical direction, respectively.” More generally, if the relevant point

" One can also use appropriate quadratic forms to define anisotropic distances with any desired directional
orientations. We shall consider such distances in more detail in the analysis of spatial variograms in Part |1
of this NOTEBOOK.
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events occur in specific environments (such as the patterns of Philadelphia housing
abandonments in Figures 1.4 and 1.5), then the relevant distances might be determined by
these environments (such as travel distance on the Philadelphia street system).®

Finally, it is important to emphasize that the expected value in (4.2.1) is a conditional
expected value. In particular, given that there is a point event, s, at the center of the
circle in Figure 4.2 above, this value gives the expected number of additional points in
this circle. This can be clarified by rewriting K(h) in terms of conditional expectations.
In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 4.2 minus
its center by

(4.2.3) C, —{s}={veR:0<d(v,s)<h}

then K(h) can be written more precisely as follows:

(4.2.4) K(h) = ZEIN(C, —{sP N(s)=1]

To see the importance of this conditioning, recall from expression (2.3.4) that for any
stationary process (not just CSR processes) it must be true that the expected number of
points in C, —{s} is simply proportional to its area, i.e., that

(4.2.5) E(C, —{s}) = 1a(C, —{s})

But this is not true of the conditional expectation above. Recall from the wolf-pack case,
for example, that for small circles around any given wolf, the expected number of
additional wolves is much larger than what would be expected based on area alone [i.e.,is
larger than Aa(C, —{s})]. These ideas will be developed in more detail in Section 4.4,
where it is shown that such deviations from simple area proportionality form the basis for
all K-function tests of the CSR Hypothesis.

4.3 Estimation of K-Functions
Given this general definition of K-functions as (conditional) expected values, we now
consider the important practical question of estimating these values. To do so, we

introduce the following notation analyzing for point counts. For any given realized point
pattern, S, =(s;:i=1..,n), and pair of points s;,s; €S, we now denote the Euclidean

distance between them by

(4.3.1) d; =d(s,s;)

and for any distance, h, define the indicator function, 1, , for point pairsin S, by

& Here it should be noted that tools are available in the spatial analyst extension of ARCMAP for
constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK.
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1 .,d;< h
(43.2) I (dy) = 1,[d(s;,8))] :{o > h

From this definition it follows at once that for any given point s. € S, , the total number of
additional points s; within distance h of s; is given by the sum X1, (d;) . Hence, if i

now refers to a randomly selected point generated by a point process on R, and if both the
number and locations of points in R are treated as random variables, then in terms of
(4.3.2) the K-function in (4.2.1) above can now be given the following equivalent
definition:

(4.33) K(h) =3E[ Y 1,(d,)]

Observe also that for stationary point processes the value of K(h) must be independent

of the particular point event i chosen. So multiplying through by A4 in (4.3.3) and
summing over all point events i =1,..,n in region R, it follows that

(4.3.4) E[zjiilh(dij)}:lK(h) i=l..n = z:ﬂE[zjﬂlh(dij)}:n/lK(h)

= K(h)= %Zin:lE[z]ﬂ Ih(d”)]

This “pooled” version of K(h) motivates the following pooled estimate of K(h),
designated as the sample K-function,

(4.3.5) K (h) = A3 > ()

where again, A= n/a(R).? The advantage of this estimator is that uses all points of the
given realized point pattern S_ in R. To interpret K(h) , hote that if we rewrite (4.3.5) as

(4.3.6) R(h) = %[%ZL(ZH Ih(dij))}

then the expression in brackets is seen to be simply an average of the relevant point
counts for each of the pattern points, s. €S, . Hence, if the underlying process were truly

stationary (and edge effects were small) then this sample K-function would be

° At this point it should be noted that our notation differs from [BG] where regions are denoted by a script
R with area R. Here we use R for region, and make the area function, a(R), explicit. In these terms, (4.3.5)

is seen to be identical to the estimate on the top of p. 93 in [BG], where 1/(in) =a(R)/n’.
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approximately unbiased (and reasonably efficient) as an estimator of the common
expected point count E[Z 1, (d;)] in (4.3.3).”°

However, since this idealization can never hold exactly in bounded regions R, it is
necessary to take into account the edge effects created by the boundary of R. Unlike the
case of nn-distances, where the expected values of nn-distances are increased for points
near the boundary (as in Figure 3.16), the expected value of point counts are reduced for
these points, as shown in Figure 4.3a below.

* . - R R
.
. .
* °
Fig.4.3a. Edge Effects for K(h) Fig.4.3b. Ripley’s Correction

To counter this downward bias, Ripley (1976) proposed a “corrected” version of (4.3.5)
that is quite effective in practice. His correction consists of weighting each point, s;, in

the count X ;1,(d;;) in a manner that inflates counts for points near the boundary. If one

considers the circle about s; passing through s; (as shown in Figure 4.3b) and defines

w; to be the fraction of its circumference that lies inside R, then the appropriate
reweighting of s; in the count for s; is simply to divide I,(d;) by w;, producing a new

estimate known as Ripley’s correction:

1, (d;)

W

(4.3.7) Ky =4>">.

One can gain some intuition here by observing in Figure 4.3b that weights will be unity
unless circle about s; passing through s; actually leaves R. So only those point pairs will

be involved that are close to the boundary of R, relative to distance h. Moreover, the
closer that s; is to the edge of R, the more of this circumference is outside R, and a hence

the smaller w; becomes. This means that values 1, (d;)/w; are largest for points closest

19 For further discussion of this approximate unbiasedness see Ripley (1977, Section 6).
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to the edge, thus inflating K(h) to correct the bias. [An explicit derivation of Ripley’s
correction in given in Section 6 of the Appendix to Part I.]

It should be emphasized that while Ripley’s correction is very useful for estimating the
true K-function for a given stationary processes, this is usually not the question of most
interest. As we have seen above, the key questions relate to whether this process exhibits
structure other than what would be expected under CSR, and how this structure may vary
as the spatial scale of analysis is increased. Here it turns out that in most cases, Ripley’s
correctign is not actually needed. Hence this correction will not be used in the analysis to
follow.

4.4 Testing the CSR Hypothesis
To apply K-functions in testing the CSR Hypothesis, it is convenient to begin by ignoring
edge effects, and considering the nature of K-functions under this hypothesis for points,

se R and distances, h, that are not influenced by edge effects. Hence, in contrast to
Figure 4.3a above, we now assume that the set of locations, C, , within distance h of s is

entirely contained in R, i.e., that
(4.4.1) C,={veR:d(s,v)<h}cR

Next recall from the basic independence assumption about individual point locations in
CSR processes (Section 2.2 above) that for such processes, the expected number of points
in C, —{s} does not dependent on whether or not there is a point event at s, so that

(4.4.2) EIN(C, —{s}) N(s) =1] = E[N(C, —{s})]

Hence from expression (4.2.3), together with the area formula for circles [and the fact
that a(C, —{s}) =a(C, )], it follows that

(4.4.3) E[N(C, —{s})|N(s) =1] = Aa(C, —{s}) = 4a(C,) = Azh

which together with expression (4.2.4) yields the following simple K-function values:

(4.4.4) K(h) = 4 (A7h?) = zh’

Thus by standardizing with respect to density, A, and ignoring edge effects as in (4.4.1),
we see that the K-function reduces simply to area under the CSR Hypothesis. Note also

that when K (h) > zh?, this implies a mean point count higher than would be expected
under CSR, and hence indicates some degree of clustering at scale h(as illustrated in

1 Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in
Cressie (1993), and to the additional references found therein.
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Section 4.2 above). Similarly, a value K(h) < zh® implies a mean point count lower than

would be expected under CSR, and hence indicates some degree of dispersion at scale h.
Thus for any given h>0,

K (h) > zh* = clustering at scale h
(4.4.5)
K (h) < zh* = dispersion at scale h

While these relations are adequate for testing purposes, area values are difficult to
interpret directly. Hence it usually convenient to further standardize K-functions in a
manner that eliminates the need for considering these values. If for each h we let

(4.4.6) Ly = [XM)
4

then under CSR, this L-function has the property that

h?

(4.4.7) L(h) = ~h=h-h=0

for all h>0. In other words, this associated L-function is identically zero under CSR.
Moreover, since L(h) is an increasing function of K(h), it follows that L(h) is positive

exactly when K(h) > zh?, and is negative exactly when K (h) < zh?*. Hence the relations
in (4.4.5) can be given the following simpler form in terms of L-functions:

L(h) >0 = clustering at scale h

(4.4.8)
L(h) <0 = dispersion at scale h

Given the estimate, R(h), in (4.3.7) above, one can estimate L(h) by

(4.4.9) L(h) = K _y,
T

and can in principle use (4.4.8) to test for clustering or dispersion.

4.5 Bodmin Tors Example

We can apply these testing ideas to Bodmin by using the MATLAB program,
k_function.m. The first few lines of this program are shown below:
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% edge corrections)

function C = k_function(loc,area,b,extent)

% Written by: TONY E. SMITH, 11/26/01

% K_FUNCTION computes the raw k-Function for a point pattern
% and plots the normalized L-Function (without

% INPUTS:

% (i) loc  =file of locations (xi,yi), i=1..m

% (ii) area =area of region

% (i) b = number of bins to use in CDF (and plot)

% (iv) extent =1 if max h = half of max pairwise distance (typical case)
% = 2 if max h = max pairwise distance to be considered

% DATA OUTPUTS: C = (1:b) vector containing raw Point Count
% SCREEN OUTPUTS: Plot of L-Function over the specified extent.

To apply this program, again open the data file, Bodmin.mat, and recall that the tor
locations are given in the matrix, Bodmin. As seen above, the program first computes
K(h) for a range of distance values, h, and then coverts this to I:(h) and plots these
values against the reference value of zero. The maximum value of h for this illustration
is chosen to be the maximum pairwise distance between pattern points (tors), listed as
option 2 in input (iv) above. The number of intermediate distance values (bins) to be used

is specified by input (iii). Here we set b = 20. Hence to run this program, type:

>> k_function(Bodmin,area,20,2);

The resulting plot is shown in Figure 4.4
to the right. Here the horizontal line
indicates the “theoretical” values of L(h)
under the CSR Hypothesis. So it would
appear that there is some degree of
clustering at small scales, h. However,
recall that the above analysis was
predicated on the assumption of no edge
effects. Since there are clearly strong edge
effects in the Bodmin case, the real
question here is how to incorporate these
effects in a manner that will allow a
meaningful test of CSR.

Possible
Clustering

Fig.4.4. Bodmin L-function
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One approach is suggested by recalling that random point pattern for Bodmin was also
generated in Figure 3.14b above. Hence if the L-function for such a random pattern is
plotted, then this can serve as a natural benchmark against which to compare the L-
function for tors. This random pattern is contained in the matrix, Bod_rn2, of data file
Bodmin.mat (and is also shown again in Figure 4.7 below). Hence the corresponding
command, k_function(Bod_rn2,area,20,2), now Yyields a comparable plot of this
benchmark L-function as shown in Figure 4.5 below.

L -4+ a4l
o L o Relative
Clustering
0 2 4 6 8 h 10 12 14 16 18 20 h
Fig.4.5. Random L-function Fig.4.6. L-function Overlay

Here it is clear that the L-function for this random pattern is not flat, but rather is
everywhere negative, and decreases at an increasing rate. Hence relative to zero, this
pattern appears to exhibit more and more dispersion as the scale increases.

The reason for this of course is that the theory
above [and expression (4.4.1) in particular]
ignores those points near the boundary of the
Bodmin region, such as the point shown in
Figure 4.7. Here it is clear that for sufficiently
small scales, h, there is little effect on |:(h),
so that values are close to zero for small h.
But as this radius increases, it is also clear that
most of the circle is eventually outside of R,
and hence is mostly empty. Thus, given the
estimated point density, A, for Bodmin tors
inside R, point counts for large h start to look
very small relative to the area zh®. This is

precisely the effect that Ripley’s correction _ _
[expression (4.3.7)] attempts to eliminate.*? Fig.4.7. Bodmin Edge Effect

12 A nice comparison of Ripley’s correction with uncorrected L-functions (such as in Figure 4 above) is
given in Figure 8.15 of Cressie (1993, p.617).
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But if we now ignore the zero reference line and use this random L-function as a
benchmark, then a perfectly meaningful comparison can be made by overlaying these two
L-functions, as in Figure 4.6 above. Here one can see that the region of relative clustering
is now considerably larger than in Figure 4.4, and occurs up to a scale of about h =8 (see
the scale shown in Figure 3.14). But observe even these benchmark comparisons have
little meaning at scales so large that circles of radius h around all pattern points lie
mostly outside the relevant region R. For this reason, the commonly accepted rule-of-
thumb is that for any given point pattern, S, one should not consider h-values larger

that half the maximum pairwise distance between pattern points. Hence if we now denote
the maximum pairwise distance for S, by, h . =max{d(s;s;):s;;s; €S}, and use h to

indicate the largest value of h to be considered in a given case, then the standard rule-of-
thumb is to set

(4.5.1) h=h_/2

This corresponds to option 1 for input (iv) of k_function above, and option 2 correspond
to h = h_,, . We shall have occasion to use (18) in many of our subsequent analyses, and

in fact this will usually denote the “default” value of h .

A more important limitation of this benchmark comparison is that (like the JMPIN
version of the Clark-Evans test in Section 3.3.1 above) the results necessarily depend on
the random point pattern that is chosen for a benchmark. Hence we now consider a much
more powerful testing procedure using Monte Carlo methods.

4.6 Monte Carlo Testing Procedures

As we saw in Section 3.5 above, it is possible to use Monte Carlo methods to estimate the
sampling distribution of nn-distances for any pattern size in a given region of interest.
This same idea extends to the sampling distribution of any statistics derived from such
patterns, and is of sufficient importance to be stated as a general principle:

SIMULATION PRINCIPLE: To test the CSR Hypothesis for any point
pattern, S,, of size n in a given region, R, one can simulate a large

number of random point patterns, {S® :i=1,..,N}, of the same size, and
compare S, with this statistical population.

Essentially, this simulation procedure gives us a clear statistical picture of what realized
patterns from a CSR process on R should look like. In the case of K-function tests of
CSR, we first consider the standard application of these ideas in terms of “simulation
envelopes”. This method is then refined in terms of a more explicit P-value
representation.
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4.6.1 Simulation Envelopes

The essential idea here is to simulate N random patterns as above and to compare
observed estimate L(h) with the range of estimates L. (h),i=1,..,N obtained from this

simulation. More formally, if one defines the lower-envelope and upper-envelope
functions respectively by

(4.6.1) L, (h)=min{L,(h):i=1,..,N}
(4.6.2) U, (h) =max{L,(h):i=1.,N}

then I:(h) is compared with L, (h) and U, (h) for each h. So for a given observed

pattern, S, , in region R the steps of this Monte Carlo testing procedure can be outlined as
follows:

(i) Generate a number of random patterns, {S" :i=1,.., N}, of size n in region
R (say N =99).

(i) Choose a selection of h-values, H :{hl,hz,..,ﬁ}, and compute I:i(h) for
each heH and i=1..,N.

(iif) Form the lower- and upper-envelope functions, and L, (h) and U, (h) in
(4.6.1) and (4.6.2).

(iv) Plot the L-values, I:(h), for the observed pattern S, along with the upper
and lower values, U, (h) and L, (h), foreach he H .

The result of this procedure is to yield

a plot similar that shown in Figure 4.8

to the right. Here the blue region 0
indicates the area in which the
observed L-function, L(-) is outside L ~a

the range defined by the upper- and \ N
lower-envelope functions. In the case AN -
shown, this area is above the envelope, L, () Y L() N
indicating that there is significant \
clustering relative to the simulated \
population under CSR. 0

=

Fig.4.8. Simulation Envelope

The key difference between this figure and Figure 4.6 above is that, rather than a single
benchmark pattern, we now have a statistical population of patterns for gauging the
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significance of I:(-). This plot in fact summarizes a series of statistical tests at each
scale of analysis, he H . In the case illustrated, if we consider any h under the blue
area in Figure 4.8, then by definition, I:(h)>UN (h). But if pattern S, were just
another sample from this population of random patterns, then every sample value
{L(h), ,(h),.., L, (h)} would have the same chance of being the biggest. So the chance

that I:(h) is the biggest is only 1/(N +1). More formally, if pattern S, is consistent
with the CSR Hypothesis then:

(4.6.3) Pr[L(h) > U, (h)] = 1 oheH
N+1

(4.6.4) PrL(h) < L ()] =—— , heH
N+1

These probabilities are thus seen to be precisely the P-values for one-tailed tests of the
CSR Hypothesis against clustering and dispersion, respectively. For example, if

N =99 [as in step (i) above] then the chance that I:(h) >U, (h) isonly 1/(99+1) =.01.
Hence at scale, h, one can infer the presence of significant clustering at the .01-level.
Similarly, if there were any he H with I:(h) < L, (h) in Figure 4.8, then at this scale

one could infer the presence of significant dispersion at the .01-level. Moreover, higher
levels of significance could easily be explored by simulating larger numbers of random
patterns, say N =999.

This Monte Carlo test can be applied to the Bodmin example by using the MATLAB
program, k_function_sim.m, shown below.

function k_function_sim(loc,area,b,extent,sims,poly)

% K_FUNCTION_SIM computes the raw k-Function for a point
%  pattern plus N random point patterns for a single polygon and
%  plots the normalized L-Function plus Upper and Lower envelopes

% INPUTS:

% (i) loc = file of locations (xi,yi), i=1..n

% (ii) area = area of region

% (iii) b = number of bins to use in CDF (and plot)

% (iv) extent =2 if max h = max pairwise distance to be considered

% = 1 if max b = half of max pairwise distance (typical case)

% (v) sims =number of simulated random patterns
% (vi) poly = polygon boundary file
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Note that the two key additional inputs are the numbers of simulations (here denoted by
sims rather that N) and the boundary file, poly, for the region, R. As with the program,
clust_sim, in Section 3.5 above, poly is needed in order to generate random points in R.

To apply this program to Bodmin with sims = 99, be sure the data file, Bodmin.mat, in
open in the Workspace, and write:

>> Kk_function_sim(Bodmin,area,20,1,99,Bod_poly);

The results of this program are shown in :
Figure 4.9 to the right. Notice first that -
there is again some clustering, and that ny TTTESLON

now it can be inferred that this clustering
is significant at the .01-level (N =99). R

Notice also that the range of significant N S
clustering is considerably smaller that
that depicted in Figure 4.6 above. This
will almost always be the case, since

here the L(h) values must be bigger that =/
99 other random values, rather than just

one “benchmark” value. Notice also that oo
this scale, roughly 1.5<h<4.5, appears

to be more consistent with Figure 3.14a. Fig.4.9. Bodmin Envelope Test

However, this approach is still rather limited in the sense that it provides information
only about the relation of L(h) to the maximum and minimum simulated values
U, (h) and L, (h) for each he H . Hence the following refinement of this approach is

designed to make fuller use of the information obtained from the above Monte Carlo
procedure.

4.6.2 Full P-Value Approach

By focusing on the maximum and minimum values, U, (h) and L(h) for each
he H , the only P-values that can be obtained are those in (4.6.3) and (4.6.4) above.
But it is clear for example that values of I:(h) that are just below U, (h) are probably

still very significant. Hence a natural extension of the above procedure is to focus
directly on P-values for clustering and dispersion, and attempt to estimate these values
on the basis of the given samples. Turning first to clustering, the appropriate P-value is
given by the answer to the following question: If the observed pattern were coming
from a CSR process in region R, then how likely it would be to obtain a value as large

as I:(h) ? To answer this question let the observed L-value be denoted by |, = I:(h) ,and
let the random variable, L. (h), denote the L-value (at scale h) obtained from a
randomly sampled CSR pattern of size n on R. Then the answer to the above question
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is given formally by the probability that L., (h) is at least as large as |,, which we
designate as the clustering P-value, P, ... ("), at scale h for the observed pattern, S, :

(465) I:)clustered (h) = Pr[LCSR (h) 2 IO] '

To estimate this probability, observe that our simulation has by construction produced a
sample of N realized values, |. =L, (h),i=1..,N, of this random variable L_g(h).
Moreover, under the CSR Hypothesis the observed value, |, is just another sample,

which for convenience we designate as sample i=0. Hence the task is to estimate
(4.6.5) on the basis of a random sample, (l,,1.,...I,) of size N+1. The standard

approach to estimating event probabilities is simply to count the number of times the
event occurs, and then to estimate its probability by the relative frequency of these
occurrences. In the present case, the relevant event is “ L. (h) > 1,”. Hence if we now

define the indicator variables for this event by

R S
(4.6.6) 50(|i)={0 L 1=01.N

then the relative-frequency estimator, P, .., (h), of the desired P-value is given by*
R ~ o
(467) Pclustered (h) = Pr[LCSR (h) 2 IO] - mzi=o 50(I|)
To simplify this expression, observe that if m_ (l,) denotes the number of simulated

samples, i=1,.,N, that are at least as large as |, [i.e., with ¢,(l.)=1], then this
estimated P-value reduces to**

m+(|0) +1

(468) Islustered (h) = N +1

Cl

Observe that expression (4.6.3) above is now the special case of (4.6.8) in which |:(h)
happens to be bigger than all of the N simulated values. But (4.6.8) conveys a great
deal more information. For example, suppose that N =99 and that I:(h) is only the

fifth highest among these N +1 values. Then in Figure 4.9 this value of I:(h) would be
inside the envelope [probably much closer to U, (h) than to L, (h)]. But no further
information could be gained from this envelope analysis. However in (4.6.8) the
estimated the chance of observing a value as large as I:(h) is 5/(99+1) = .05, so that

13 This is also the maximum-likelihood estimator of P

cluster
detail in Part 111 of this NOTEBOOK.
¥ An alternative derivation of this P-value is given in Section 7 of the Appendix to Part I.

(h) . Such estimators will be considered in more
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this L-value is still sufficiently large to imply some significant degree of clustering.
Such examples show that the P-values in (4.6.8) are considerably more informative
than the simple envelopes above.

Turning next to dispersion, the appropriate P-value is now given by the answer to the

following question: If the observed pattern were coming from a CSR process in region
R, then how likely it would be to obtain a value as small as L(h) ? The answer to this
question is given by the dispersion P-value, P, (h), at scale h for the observed

ispersed

pattern, S, :
(469) I:)dispersed (h) = Pr[LCSR (h) < IO]

Here, if we let m_(I,) denote the number of simulated L-values that are no larger than
l,, then exactly the same argument above [with respect to the event “ L., (h) <1, ] now
shows that the appropriate relative-frequency estimate of P, ..., (N), is given by

isperse

m (1) +1

4.6.10 P, h) =
( ) dispersed ( ) N +1

To apply these concepts, observe first that (unless many |, values are the same as |,)"
it must be true that P (h)~1-P,

dispersed

both. Hence we now focus on clustering P-values, P,

(h) . So there is generally no need to compute

lustered

(h) for a given point pattern,

lustered
S,, in region R. Observe next that to determine é,ustered (h), there is no need to use L-
values at all. One can equally well order the K-values. In fact, there is no need to

normalize by A since this value is the same for both the observed and simulated
patterns. Hence we need only compute “raw” K-function values, as given by the
bracketed part of expression (4.3.6). Finally, to specify an appropriate range of scales to
be considered, we take the appropriate maximum value of h to be the default value

h=h_ /2 in (4.5.1), and specify a number b of equal divisions of h. The values of
P, s () are then computed for each of these h values, and the result is plotted.

This procedure is operationalized in the MATLAB program, k_count_plot.m. This
program will be discussed in more detail in the next section. So for the present, we
simply apply this program to Bodmin (with Bodmin.mat in the Workspace), by setting
N =99, b=20 and writing:

>> k_count_plot(Bodmin, 99,20,1,Bod_poly);

1> The question of how to handle such ties is treated more explicitly in Section 7 of the Appendix to Part I.
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(Simply ignore the fourth input “1” for the present.) The screen output of k_count_plot

gives the value of h computed by the program, which in this case is Dmax/2 = 8.6859.
The minimum pairwise distance between all pairs of points (Dmin = 0.5203) is also
shown. This value is useful for interpreting P-values at small scales, since all values of

h less that this minimum must have R(h):o and hence must be “maximally
dispersed” by definition [since no simulated pattern can have smaller values of R(h)].

The cluster P-value plot for Bodmin is .
shown in Figure 4.10. With respect to
significant clustering, there is seen to
be general agreement with the results
of the envelope approach above. Here
we see significant clustering at the .05
level (denoted by the lower dashed red
line) for scale values in the range
1.3<h<6.1 (remember that one will
obtain slightly different values for each
simulation).®* But this figure clearly
shows more. In particular, clustering at
scales in the range 1.7 <h <5.7 is now
seen to be significant at the .01 level, Fig.4.10. Bodmin Cluster P-Values
which by definition the highest level of

significance possible for N = 99.

P-Values

Here it is also worth noticing that the clustering P-value at scale h=.5 is so large (in
fact .93 in the above simulation) that it shows weakly significant dispersion (where the
upper dashed red line indicates significant dispersion at the .05 level). The statistical
reason for this can be seen from the screen output that shows the minimum distance
between any two tors to be .52. Hence at scale h=.5 it must be true that no circle of

radius .5 about any tor can contain other tors, so that we must have K(.S) =0. But since

random point patterns such as in Figure 3.14b often have at least one pair of points this
close together, it becomes clear that there is indeed some genuine local dispersion here.
Further reflection suggests that is probably due to the nature of rock outcroppings,
which are often only the exposed portion of larger rock formations and thus cannot be
too close together. So again we see that the P-value map adds information about this
pattern that may well be missed by simply visual inspection.

4.7 Nonhomogeneous CSR Hypotheses

As mentioned in Section 2.4 above, it is possible to employ the Generalized Spatial
Laplace Principle to extend CSR to the case of nonhomogeneous reference measures.

16 Simulations with N = 999 yield about the same results as Figure 4.10, so this appears to be a more
accurate range than given by the envelope in Figure 4.9.
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While no explicit applications are given in [BG], we can illustrate the main ideas with
the following housing abandonment example.

4.7.1 Housing Abandonment Example
As in the Philadelphia example of Section 1.2 above, suppose that we are given the
locations of n currently abandoned houses in a given city, R, such as in Figure 4.11a

below.

City

Boundary
YO D

Fig.4.11a. Abandoned Houses Fig.4.11b. Census Tract Data

In addition, suppose that data on the number of housing units, H, = p(C,), in each
census tract, C, ,i=1..,m within city R is also available, as in Figure 4.11b. If the
number of total housing units in the city is denoted by

(47 H=pR)=21pC) = ZIH,

then the probability that a randomly sampled housing unit will be located in tract i is
given by

(4.7.2) p. Hi _ pC)

, , i=1..,m
H  p(R)

Thus if these n housing abandonments were completely random events (i.e., with no
housing unit more likely to be abandoned than any other) then one would expect the
distribution of abandoned houses across census tracts to be given by n independent
random samples from the distribution in (4.7.2)."” More formally, this is an example of
a nonhomogeneous CSR hypothesis with respect to a given reference measure, p.

7 In particular, this would yield a marginal distribution of abandonments in each tract C, given by the

binomial distribution in expression (2.4.3) above with C =C, .
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4.7.2 Monte Carlo Tests of Hypotheses

To test such hypotheses, we proceed exactly the same way as in the homogeneous case.
The only real difference here is that the probability distributions corresponding to
nonhomogeneous spatial hypotheses are somewhat more complex. Using the above
example as an illustration, we can simulate samples of n random abandonments from
the appropriate distribution by the following two-stage sampling procedure:

(i) Randomly sample a census tract, C,., from the distribution in (4.7.2).

(if) Randomly locate a point s{” in C,.

- - - - - - (I)_ (l). ._

(iif) Repeat (i) and (ii) n times to obtain a point pattern S = (s;" : j =1,..,n).

The resulting pattern S corresponds to the above hypothesis in the sense that
individual abandonment locations are independent, and the expected number of
abandonments in each tract C, is proportional to the reference measure, H; = p(C;).
However, this reference measure p is only an approximation to the theoretical

measure, since the actual locations of individual housing units are not known. [This is
typical of situations where certain key spatial data is available only at some aggregate
level.*®] Hence in step (ii) the location of a housing units in C, is taken to be uniformly

(homogeneously) distributed throughout this subregion. The consequences of this
“local uniformity” approximation to the ideal reference measure, p, will be noted in

the numerical examples below.

Given a point pattern, S, =(s;:j=1..,n), such as the locations of n abandonments

above, together with N simulated patterns {S":i=1,..,N} from the Monte Carlo
procedure above, we are now ready to test the corresponding nonhomogeneous CSR
hypothesis based on this reference measure p. To do so, we can proceed exactly as
before by constructing K-counts, K(h), for the observed pattern, S, over a selected

range of scales, h, and then constructing the corresponding K-counts, K@ (h), for each
simulated pattern, i =1,..,N .

This procedure is operationalized in the same MATLAB program, k_count_plot
(which is more general than the Bodmin application above). Here the only new
elements involve a partition of region R into subregions, {C, :i=1,..,m}, together with
a specification of the appropriate reference measure, p, defined on this set of
subregions.

'8 Such aggregate data sets will be treated in more detail in Part 111 of this NOTEBOOK.
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4.7.3 Lung Cancer Example

To illustrate this testing procedure, the following example has been constructed from
the Larynx and Lung Cancer example of Section 1.2 above. Here we focus only on
Lung Cancer, and for simplicity consider only a random subsample of n=100 lung
cases, as shown in Figures 4.12 below.

Fig.4.12. Subsample of Lung Cases Fig.4.13. Random Sample of Same Size

Note from Figures 1.7 and 1.8 that this is fairly representative of the full data set (917
lung cancers). To analyze this data set we begin by observing that in terms of area
alone, the point pattern in Figure 4.12 is obviously quite clustered.

One can see this by comparison with a o~
typical random pattern of the same size in
Figure 4.13. This can be verified
statistically by using the program
k_function_plot (as in the Bodmin case)
to conduct a Monte Carlo test for the o
homogenous case developed above. The
results are shown in Figure 4.14 to the
right. Here it is evident that there is ,
extreme clustering. In fact, note from the
scale in Figure 4.12 above that there is o
highly significant clustering up to a radius ~~ ~—=--~---=-==-=“--=-—"f-—=-=---~/|
of h=20km, which is large enough to 0 000 10000 15000 20000 h
encompass the entire region. Notice also

that the significance levels here are as high ~ Fig.4.14. Test of Homogeneous Clustering
as possible for the given number of simu-

lations, which in this case was N =999. This appears to be due to the fact that the
overall pattern of points in Figure 4.12 is not only more clustered but is also more
compact. So for the given common point density in these figures, cell counts centered

at pattern points in Figure 4.12 tend to be uniformly higher than in Figure 4.13.

0.6~

0.5-

P-Value

0.3-
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But the single most important factor contributing to this clustering (as observed in
Section 2.4 above) is the conspicuous absence of an appropriate reference measure —
namely population. In Figure 4.15 below, the given subsample of lung cases in Figure
4.12 above is now depicted on the appropriate population backcloth of Figure 1.8.

Fig.4.15. Subsample of Lung Cases Fig.4.16. Random Sample from Population

Here it is clear that much of the clustering in Figure 4.12 can be explained by variations
in population density. Notice also that the relative sparseness of points in the west and
east are also explained by the lower population densities in these areas (especially in
the east). For comparison, a random pattern generated using the two-stage sampling
procedure above is shown in Figure 4.16. Here there still appears to be somewhat less
clustering than in Figure 4.15, but the difference is now far less dramatic than above.

Using these parish population densities
as the reference measure, p, a Monte  *

Carlo test was run with N =999 o}
simulated patterns (including the one
shown in Figure 4.16). The results of
this test are plotted in Figure 4.17 to the ~ °f
right. Notice that the dramatic results of
Figure 4.14 above have all but
disappeared. There is now only
significant clustering at the local scale ..l
(with h<2km). Moreover, even this

local clustering appears to be an artifact ]
of the spatial aggregation inherent in the % oo o 0 a0 s sm 700 a0 o0 1000
parish population density measure, p. h (meters)

As pointed out above, this aggregation
leads to simulated point patterns under
the nonhomogeneous CSR hypothesis that tend to be much too homogeneous at the
parish level. This is particularly evident in the densely populated area of the south-
central portion of the region shown. Here the tighter clustering of lung cancer cases
seen in Figure 4.15 more accurately reflects local variations in population density than
does the relatively uniform scattering of points in Figure 4.16. So in fact, a more

P-Value

Fig.4.17. Test of Nonhomogeneous Clustering
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disaggregated representation of population density would probably show that there is
no significant clustering of lung cancer cases whatsoever.

4.8 Local K-Function Analysis

Up to this point we have only considered global properties of point patterns, namely the
overall clustering or dispersion of patterns at various scales. However, in many cases
interest focuses on more local questions of where significant clustering or dispersion is
occurring. Here we begin by constructing local versions of K-functions, and then apply
them to several examples.

4.8.1 Construction of Local K-Functions

Recall from expression (4.3.3) that K-functions were defined in terms of expected point
counts for a randomly selected point in a pattern. But exactly the same definitions can
be applied to each individual point in the pattern by simply modifying the interpretation
of (4.3.3) to be a given point, i, rather than a randomly sampled point, and rewriting
this expression as a local K-function for each point, i:

(4.8.1) K,(h) = %E[ZM |h(di,.)]

Moreover, if we now relax the stationarity assumption used in (4.3.4) above, then these
expected values may differ for each point, i. In this context, the pooled estimator
(4.3.5) for the stationary case now reduces to the corresponding local estimator:

(4.8.2) Ki(h) =43 1,@d,)

Hence to determine whether there is significant clustering about point i at scale h, one
can develop local Monte Carlo testing procedures using these statistics.

4.8.2 Local Tests of Homogeneous CSR Hypotheses

In the case of homogenous CSR hypotheses, one can simply hold point i fixed in
region R and generate N random patterns of size n—1 in R (corresponding to the
locations of all other points in the pattern). Note that in the present case, (4.8.2) is

simply a count of the number of points with distance h of point i, scaled by 1/1 . But
since this scaling has no effect on Monte Carlo tests of significance, one can focus
solely on point counts (which may be thought of as a “raw” K-function). For each
random pattern, one can then simply count the number of points within distance h of
point i. Finally, by comparing these counts with the observed point count, one can then
generate p-values for each point i =1,..,n and distance, h, [paralleling (4.6.8) above]:

(4.8.3) P(h) = 2=
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where m,(h) now denotes the number of simulated patterns with counts at distance h

from i at least as large as the observed count. This testing procedure is operationalized
in the MATLAB program, k_count_loc.m, shown below:

function [PVal,C0] = k_count_loc(loc,sims,D,M,poly)

% K_COUNT_LOC computes the raw K-function at each point in the
% pattern, loc, for a range of distances, D, and allows tests of non-

% homogeneous CSR hypotheses by including a set of polygons, poly, with
% reference measure, M.

%

% INPUTS:

% (i) loc =population location file [loc(i)=(Xi, Yi),i=1:N]

% (ii) sims =number of simulations

% (ii) D =setof distance values (in ASCENDING order)

% (iv) M =k-vector of measure values for each of k polygons

% (v) poly =matrix describing boundaries of k polygons

Here the main output, Pval, is a matrix of P-values at each reference point and each
distance value under the CSR Hypothesis. (The point counts for each point-distance
pair are also in the output matrix, C0.) Notice that since homogeneity is simply a
special case of heterogeneity, this program is designed to apply both to homogeneous
and nonhomogeneous CSR hypotheses.

Application to Bodmin Tors

The homogeneous case can be illustrated by the following application to Bodmin tors.
Recall that the location pattern of tors is given by the matrix, Bodmin, in the workspace
Bodmin.mat. Here there is a single boundary polygon, Bod_poly. Hence the reference
measure can be set to a constant value, say M = 1. So the appropriate command for
999 simulations in this case is given by:

>> [Pval,C0] = k_count_loc(Bodmin,999,D,1,Bod_poly);

In view of Figure 4.10 above, one expects that the most meaningful distance range for
significant clustering will be somewhere between h=1 and h=5 kilometers. Hence
the selected range of distances was chosen to be D = [1,2,3,4,5]. One key advantage of
this type of local analysis is that since a p-value is now associated with each individual
point, is now possible to map the results. In the present case, the results of this Monte
Carlo analysis were imported to ARCMAP, and are displayed in Bodmin.mxd. In
Figure 4.18 below, the p-value maps for selected radii of h=2,3,5 km are shown. As
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seen in the legend (lower right corner of the figure), the darker red values correspond to
lower p-values, and hence denote regions of more significant clustering. As expected,
there are basically two regions of significant clustering corresponding to the two large
groupings of tors in the Bodmin field.

h=5km

h=2km

P-VALUES
0.001 - 0.005
0.005 - 0.010

Figure 4.18. Cluster P-Values for Bodmin Tors 0.010 - 0.050

0.050 - 0.100
0.100 - 0.999

O 0 0 @ ¢

Notice here that clustering is much more pronounced at a radius of 3 km than at smaller
or larger radii. (The red circle in the figure shows the actual scale of a 3 km radius.)
This figure well illustrates the ability of local K-function analyses to pick up sharper
variations in scale than global analyses such as Figure 4.10 above (where there
appeared to be equally significant clustering at all three scales, h=2,3,5 km). Hence it

should be clear from this example that local analyses are often much more informative
than their global counterparts.

Local Analyses with Reference Grids

The ability to map p-values in local analyses suggests one additional extension that is
often more appropriate than direct testing of clustering at each individual point. By way
of motivation, suppose that one is studying a type of tree disease by mapping the
locations of infected trees in a given forest. Here it may be of more interest to
distinguish diseased regions from healthy regions in the forest rather than to focus on
individual trees. A simple way to do so is to establish a reference grid of locations in
the forest, and then to estimate clustering p-values at each grid location rather than at
each tree. (The construction of reference grids is detailed in Section 4.8.3 below.) Such
a uniform grid of p-values can then be easily interpolated to produce a smoother visual
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summary of disease clustering. An illustration of this reference-grid procedure is shown
in Figure 4.19 below, where the red dots denote diseased trees in the section of forest
shown, and where the white dots are part of a larger grid of reference points. In this
illustration the diseased-tree count within distance h of the grid point shown is thus
equal to 4.

Figure 4.19. Reference Grid for Local Clustering

Assuming that the forest itself is reasonably uniform with respect to the spatial
distribution of trees, the homogeneous CSR hypothesis would again provide a natural
benchmark for identifying significant clustering of diseased trees. In this case, one
would simulate random patterns of diseased trees and compare disease counts with
those observed within various distances h of each grid point. Hence those grid points
with low p-values at distance h would denote locations where there is significant
disease clustering at scale h.

To develop the details of this procedure, it is convenient to construct a reference grid
representation for Bodmin, so that the two approaches can more easily be compared. To
do so, we start by constructing a reference grid for Bodmin. By inspecting the boundary
of Bodmin in ARCMAP one can easily determine a box of coordinate values just large
enough to contain all of Bodmin. In the present case, appropriate bounding X-values
and Y-values are given by Xmin = -5.2, Xmax = 9.5, Ymin =-11.5, and Ymax = 8.3.
Next one needs to choose a cell size for the grid (as exemplified by the spacing between
white dots in Figure 4.19). One should try to make the grid fine enough to obtain a
good interpolation of the p-values at grid points. Here the value of .5 km was chosen for
spacing in each direction, yielding square cells with dimensions, Xcell = .5 = Ycell.
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The construction of the corresponding reference grid is operationalized in the program
grid_form.m with the command:

>> ref = grid_form(Xmin,Xmax,Xcell,Ymin,Ymax,Ycell);

This produces a 2-column matrix, ref, of grid point coordinates. (The upper left corner
of the grid is displayed on the screen for a consistency check.). A plot of the full grid,

Full Grid Masked Grid

Figure 4.20. Reference Grid for Bodmin

ref, is shown on the left in Figure 4.20."° (In Section 8 of the Appendix to Part | a
procedure is developed for obtaining this full grid representation directly in MATLAB.)
While all of these grid points are used in the calculation, those outside of the Bodmin
boundary are only relevant for maintaining some degree of smoothness in the
interpolation constructed below. On the right, these grid points have been masked out in
order to display only those points inside the Bodmin boundary. (The construction of
such visual masks is quite useful for many displays, and is discussed in detail in Section
1.2.4 of Part IV in this NOTEBOOK.)

Given this reference grid, ref, the extension of k_count_loc.m that utilizes ref is
operationalized in the MATLAB program, k count_loc_ref.m. This program is
essentially identical to k_count_loc.m except that ref is a new input. Here one obtains
p-values for Bodmin at each reference point in ref with the command:

19 Notice that the right side and top of the grid extend slightly further than the left and bottom. This is
because the Xmax and Ymax values in the program are adjusted upward to yield an integral number of
cells of the same size.
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>> [Pval,C0] = k_count_loc_ref(Bodmin,ref,999,D,1,Bod_poly);

where the matrix Pval now contains one p-value for each grid point in ref and distance
radius in D. The results of this Monte Carlo simulation were exported to ARCMAP and
the p-values at each grid point inside Bodmin are displayed for h =3 km on the left in
Figure 4.21 below (again with a mask). By comparing this with the associated point

P-VALUES

I ©.001-0.002
I 0.002-0.005
I 0.005-0.01
I 0.01-0.02
0.02-0.05
0.05-0.10
0.10- 0.20

0.20 - 1.00

Figure 4.21. Interpolated P-Values for Bodmin

plot in the center of Figure 4.18, one can see that this is essentially a smoother version
of the results depicted there. However, this representation can be considerably
improved upon by interpolating these values using any of number of standard
“smoothers” (discussed further in Part I1). The interpolation shown on the right was
obtained by the method known as ordinary kriging. This method of (stochastic)
interpolation will be developed in detail in Section ??? of Part Il in this NOTEBOOK.

4.8.3 Local Tests of Nonhomogeneous CSR Hypotheses

Next we extend these methods to the more general case of nonhomogeneous CSR
hypotheses. As with all spatial Monte Carlo testing procedures, the key difference
between the homogeneous and nonhomogeneous cases is the way in which random
points are generated. As discussed in Section 4.7.2 above, this generation process for
the nonhomogeneous case amounts to a two-stage sampling procedure in which a
polygon is first sampled in a manner proportional to the given reference measure, M,
and then a random location in this polygon is selected. Since this procedure is already
incorporated into both the programs k_count loc.m and k_count_loc_ref.m above,
there is little need for further discussion at this point.
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By way of illustration, we now apply k_count_loc_ref.m to a Philadelphia data set,
which includes 500 incidents involving inter-group conflict (IGC) situations (such as
housing discrimination) that were reported to the Community Service Division of the
Philadelphia Commission on Human Relations from 1995-1996. [This data set is
discussed in more detail in the project by Amy Hillier on the ESE 502 class web page.]

The locations of these 500 incidents are shown on the left in Figure 4.22 below, and are
also displayed in the map document, Phil_igc.mxd, in ARCMAP. Here the natural null
hypothesis would be that every individual has the same chance of reporting an
“incident”. But as with the housing abandonment example in Figure 4.11 above,
individual location data is not available. Hence census tract population levels

ACTUAL IGC INCIDENTS RANDOM IGC INCIDENTS

Figure 4.22. Comparison with IGC Random Incidents

will be used as an approximation to individual locations, so that the relevant reference
measure is here taken to be population by census tract (with corresponding population
densities shown in green in Figure 4.22). The relevant nonhomogeneous CSR
hypothesis for this case is thus simply that the chance of any incident occurring in a
given census tract is proportional to the population of that census tract. Under this
hypothesis, a typical realization of 500 “random IGC incidents” is shown on the right.
Here it is clear that incidents are more clustered in areas of high population density,
such as in West Philadelphia and South Philadelphia. So clusters of actual data on the
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left are only significant if they are more concentrated than would be expected under this
hypothesis. Hence, even though there is clearly a cluster of cases in South Philadelphia,
it is not clear that this is a significant cluster. Notice however that the Kensington area
just Northeast of Center City does appear to be more concentrated than would be
expected under the given hypothesis. But no conclusion can be reached on the basis of
this visual comparison. Rather, we must simulate many realizations of random patterns
and determine statistical significance on this basis.

To do so, a reference grid for Philadelphia was constructed, and is shown (with
masking) on the left in Figure 4.23 below, in a manner similar to Figure 4.20 above.
Here a range of distances was tried, and clustering was most apparent at a radius of 500
meters (in a manner similar to the radius of 3 km in Figure 4.18 above for the Bodmin
example). The p-value results for this case are contained in the MATLAB workspace,

P-VALUES

0.000 - 0.001
0.001 - 0.005
0.005 - 0.100
0.100 - 0.200
0.200 - 1.000
REFERENCE GRID P-VALUE CONTOURS

LN ) LN )
o0 o000

Figure 4.23. P-Value Map for ICG Clustering

phil_igc.mat, and were obtained using k_count_loc_ref.m with the command:
>> [Pval,C0] = k_count_loc_ref(loc,ref,999,D,pop,bnd);

Here loc contains the locations of the 500 IGC incidents, ref is the reference grid
shown above, D contains a range of distances including the 500-meter case,” and pop

0 The actual coordinates for this map were in decimal degrees, so that the value .005 corresponds roughly
to 500 meters.
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contains the populations of each census tract, with boundaries given by bnd. These
results were imported to ARCMAP as a point file, and are displayed as P-val.shp in the
data frame, “P-Values for Dist = .005”, of Phil_igc.mxd. Finally, these p-values were
interpolated using a different smoothing procedure than that of Figure 4.21 above. Here
the spline interpolator in Spatial Analyst was used, together with the contour option.
The details of this procedure are described in Section 8 of the Appendix to Part 1.2

Here the red contours denote the most significant areas of clustering, which might be
interpreted as IGC “hotspots”. Notice in particular that the dominant hotspot is
precisely the Kensington area mentioned above. Notice also that the clustering in West
Philadelphia, for example, is now seen to be explained by population density alone, and
hence is not statistically significant.

It is also worth noticing that there is a small “hotspot” just to the west of Kensington
(toward the Delaware River) that appears hard to explain in terms of the actual IGC
incidents in Figure 4.22. The presence of this hotspot is due to the fact that while there
are only four incidents in this area, the population density is less than a quarter of that
in the nearby Kensington area. So this incidence number is usually high given the low
density. This raises the practical question of how many incidents are required to
constitute a meaningful cluster. While there can be no definitive answer to this
question, is important to emphasize that statistical analyses such as the present one
should be viewed as providing only one type of useful information for cluster
identification. %

2! Notice also that this contour map of P-values is an updated version of that in the graphic header for the
class web page. That version was based on only 99 simulations (run on a slower machine).

22 This same issue arises in regression, where there is a need to distinguish between the statistical
significance of coefficients (relative to zero) and the practical significance of their observed magnitudes in
any given context.
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