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3. Testing Spatial Randomness 
 
There are at least three approaches to testing the CSR hypothesis: the quadrat method, the 
nearest-neighbor method, and the method of K-functions. We shall consider each of these 
in turn. 
 
3.1 Quadrat Method 
 
This simple method is essentially a direct test of the CSR Hypothesis as stated in 
expression (2.1.3) above. Given a realized point pattern from a point process in a 
rectangular region, R , one begins by partitioning R  it into congruent rectangular 
subcells (quadrats) 1,.., mC C  as in Figure 3.1 below (where 16m = ). Then, regardless of 
whether the given  
 
 
 
 
 
 
 
 
 
 
 
 
pattern represents trees in a forest or beetles in a field, the CSR Hypothesis asserts that 
the cell-count distribution for each iC  must be the same, as given by (2.1.3).  But rather 
than use this Binomial distribution, it is typically assumed that R  is large enough to use 
the Poisson approximation in (2.3.3). In the present case, if there are n  points in R , and 
if we let 1( )a a C= , and estimate expected point density λ  by  
 

(3.1.1)  ˆ
( )
n

a R
λ =  

 
then this common Poisson cell-count distribution has the form 
 
 

(3.1.2)  ˆˆ( )ˆPr[ | ] , 0,1,2,...
!

k
a

i
aN k e k
k

−λλ
= λ = =  

 
 
Moreover, since the CSR Hypothesis also implies that each of the cell counts, 

( ), 1,..,i iN N C i k= = , is independent, it follows that ( ): 1,..,iN i k=  must be a 
independent random samples from this Poisson distribution. Hence the simplest test of 
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Fig. 3.1. Quadrat Partition of  R 
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this hypothesis is to use the Pearson 2χ  goodness-of-fit test. Here the expected number of 
points in each cell is given by the mean of the Poisson above, which (recalling that 

( ) /a a R m=  by construction) is 
 

(3.1.3)  ˆ ˆ( | )
( )
n nE N a a

a R m
λ = ⋅λ = ⋅ =   

 
Hence if the observed value of iN  is denoted by in , then the chi-square statistic  
 

(3.1.4)  
2

2
1

( / )
/

m i
i

n n m
n m=

−
χ = ∑  

 
is known to be asymptotically chi-square distributed with 1m −  degrees of freedom, 
under the CSR Hypothesis. Thus one can test this hypothesis directly in these terms. But 
since /n m  is simply the sample mean, i.e., 

1
/ (1/ ) m

ii
n m m n n

=
= =∑ , this statistic can also 

be written as  
 
 

(3.1.5)  
2 2

2
1

( ) ( 1)m i
i

n n sm
n n=

−
χ = = −∑  

 
 
where 2 2

1
1

1 ( )m
iims n n

=−= −∑  is the sample variance. But since the variance if the Poisson 
distribution is exactly the mean, it follows that var( ) / ( ) 1N E N =  under CSR. Moreover, 
since 2 /s n  is the natural estimate of this ratio, this ratio is often designated as the index 
of dispersion, and used as a rough measure of dispersion versus clustering. If 2 / 1s n <  
then there is too little variation among quadrat counts, suggesting possible “dispersion” 
rather than randomness. Similarly, if  2 / 1s n >  then there is too much variation among 
counts, suggesting possible “clustering” rather than randomness. 
 
But this testing procedure is very restrictive in that it requires a rectangular region.1 More 
importantly, it depends critically on the size of the partition chosen. As with all 
applications of Pearson’s goodness-of-fit test, if there is no natural choice of partition 
size, then the results can be very sensitive to the partition chosen. 
 
3.2  Nearest-Neighbor Methods 
 
In view of these shortcomings, the quadrat method above has for the most part been 
replaced by other methods. The simplest of these is based on the observation that if one 
simply looks at distances between points and their nearest neighbors in R , then this 
provides a natural test statistic that requires no artificial partitioning scheme. More 

                                                 
1 More general “random quadrat” methods are discussed in Cressie (1995,section 8.2.3). 
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precisely, for any given points, 1 2( , )s s s=  and 1 2( , )v v v=  in R  we denote the  
(Euclidean) distance between s  and v  by2 
 
(3.2.1)  2 2

1 1 2 2( , ) ( ) ( )d s v s v s v= − + −  
 
and denote each point pattern of size n  in R  by ( : 1,.., )n iS s i n= = , then for any point, 

i ns S∈ ,3 the nearest neighbor distance (nn-distance) from is  to all other points in nS  is 
given by4 
 
(3.2.2)  ( ) min{ ( , ) : , }i i n i j j nd d S d s s s S j i= = ∈ ≠  
 
In a manner similar to the index of dispersion above, the average magnitudes of these  
nn-distances (relative to those expected under CSR) provide a direct measure of  
“dispersion” or “clustering” in point patterns.  This is seen clearly by comparing of the 
two figures below, each showing a pattern of 14 points.   
 
   
 
 
 
 
 
 
 
 
 
 
 
In Figure 3.2 these points are seen to be very uniformly spaced, so that nn-distances tend 
to be larger than what one would expect under CSR. In Figure 3.3 on the other hand, the 
points are quite clustered, so that nn-distances tend to be smaller than under CSR. 
 

                                                 

2 Throughout these notes we shall always take ( , )d s v  to be Euclidean distance. However there are many 
other possibilities. At large scales it may be more appropriate to use great-circle distance on the globe. 
Alternatively, one may take ( , )d s v  to be travel distance on some underlying transportation network. In 
any case, most of the basic concepts developed here (such as nearest neighbor distances) are equally 
meaningful for these definitions of distance. 
3 The vector notation, ( : 1,.., )n iS s i n= = , means that each point is  is treated as a distinct component of 

nS . Hence (with a slight abuse of notation), we take i ns S∈  to mean that is  is a component of pattern nS  . 
4 This is called the event-event distance in [BG] (p.98). One may also consider the nn-distance from any 
random point, x R∈  to the given pattern as defined by ( min{ ( , ) : 1, .., })

ix nd S d x s i n== . However, we 
shall not make use of these point-event distances here. For a more detailed discussion see Cressie (1995, 
section 8.2.6). 

Fig.3.2. Dispersed Pattern Fig.3.3. Clustered Pattern 
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3.2.1 Nearest-Neighbor Distribution under CSR 
 
To make these ideas precise, we must determine the probability distribution of nn-
distance under CSR, and compare the observed nn-distance with this distribution. To 
begin with, suppose that the implicit reference region R  is large, so that for any given 
point density, λ , we may assume that cell-counts are Poisson distributed under CSR. 
Now suppose that s  is any randomly selected point in a pattern realization of this CSR 
process, and let the random variable, D , denote the nn-distance from s  to the rest of the 
pattern. To determine the distribution of D , we next consider a circular region, dC , of 
radius d  around s , as shown in Figure 3.4 below. 
Then by definition, the probability that D  is  
at least equal to d is precisely the probability 
that there are no other points in dC . Hence if 
we now let ( ) { }d dC s C s= − , then this proba-
bility is given by 
 
(3.2.3)  Pr( ) Pr{ [ ( )] 0}dD d N C s> = =  
 
But since the right hand side is simply a  
cell-count probability, it follows from  
expression (2.3.3) that, 
 
(3.2.4)  

2[ ( )]Pr( ) da C s dD d e e−λ −λπ> = =  
 
where the last equality follows from the fact that 2[ ( )] ( )d da C s a C d= = λ . Hence it 
follows by definition that the cumulative distribution function (cdf), ( )DF d , for D  is 
given by, 
 
(3.2.5)    

2

( ) 1 Pr( ) 1 d
DF d D d e−λπ= − > = −  

 
 
In Section 2 of the Appendix to Part I it is shown that this is an instance of the Rayleigh 
distribution, and in Section 3 of the Appendix that for a random sample of m  nearest-
neighbor distances 1( ,.., )mD D  from this distribution, the scaled sum (known as Skellam’s 
statistic), 
 
(3.2.6)   2

1
2 m

m ii
D

=
= λπ∑S   

 
is chi-square distributed with 2m  degrees of freedom (as on p.99 in [BG]). Hence this 
statistic provides a test of the CSR Hypothesis based on nearest neighbors. 
 
 
 

• s
d 

dC  

R

Fig.3.4. Cell of radius d 
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3.2.2 Clark-Evans Test 
 
While Skellam’s statistic can be used to construct tests, it follows from the Central Limit 
Theorem that independent sums of identically distributed random variables are 
approximately normally distributed. Hence the most common test of the CSR Hypothesis 
based on nearest neighbors involves a normal approximation to the sample mean of D , 
as defined by 
 
(3.2.7)  

1
1 m

m iimD D
=

= ∑  
 
To construct this normal approximation, it is shown in Section 2 of the Appendix to Part I 
that mean and variance of the distribution in (3.2.4) are given respectively by 
 

(3.2.8)  1( )
2

E D =
λ

 

 

(3.2.9)  4var( )
4

D − π
=

λπ
 

 
To get some feeling for these quantities observe that under the CSR Hypothesis, as the 
point density, λ , increases, both the expected value and variance of nn-distances 
decrease. This makes intuitive sense when one considers denser scatterings of random 
points in R . 
 
Next we observe from the properties of independently and identically distributed ( iid ) 
random samples that for the sample mean, mD , in (3.2.7) we must then have 
 

(3.2.10) 1 11
1 1 1( ) ( ) [ ( )] ( )

2
m

m iim mE D E D mE D E D
=

= = = =
λ∑  

 
and similarly must have 
 

(3.2.11) ( ) 2

2
11

1 1 4var( ) var( ) [ var( )]
(4 )

m
m iim mD D m D

m=

− π
= = =

λπ∑  

 
But from the Central Limit Theorem it then follows for large sample sizes,5 mD  must be 
approximately normally distributed under the CSR Hypothesis with mean and variance 
given by (3.2.10) and (3.2.11), i.e., that: 
 

                                                 
5 Here “large” is usually taken to mean 30m ≥  as long as the distribution in (3.2.4) is not “too skewed”. 
Later we shall investigate this by using simulations. 
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(3.2.12) 1 4~ ,
(4 )2mD N

m
⎡ ⎤− π
⎢ ⎥λπλ⎣ ⎦

 

 
Hence this distribution provides a new test of the CSR Hypothesis, known as the Clark-
Evans Test (as in [BG], p.100). If the standard error of mD  is denoted by  
 
(3.2.13) ( ) ( )var( ) (4 ) 4m mD D mσ = = − π πλ  
 
then to construct this test, one begins by standardizing the sample mean, mD ,  in order to 
use the standard normal tables. Hence, if we now denote the standardized sample mean 
under the CSR Hypothesis by 
 

(3.2.14) 
( )
( )

1 2( )
( ) (4 ) 4

mm m
m

m

DD E DZ
D m

− λ−
= =

σ − π πλ
 

 
then it follows at once from (3.2.12) that under CSR,6 
 
(3.2.15) ~ (0,1)mZ N  
 
To construct a test of the CSR Hypothesis based on this distribution, suppose that one 
starts with a sample pattern ( : 1,.., )n iS s i n= =  and constructs the nn-distance id  for each 
point, i ns S∈ . Then it would seem most natural to use all these distances 1( ,.., )nd d  to 
construct the sample-mean statistic in (3.2.10) above.  However, this would violate the 
assumed independence of nn-distances on which this distribution theory is based. To see 
this it is enough to observe that if is  and js  are mutual nearest neighbors, so that i jd d≡ , 
then these are obviously not independent. More generally, if js  is the nearest neighbor of 

is , then again id  and jd  must be dependent.7  
 
However, if one were to select a subset of nn-distance 
values that contained no common points, such as those 
shown in Figure 3.5, then this problem could in principle 
be avoided. The question is how to choose independent 
pairs. We shall return to this problem later, but for the 
moment we simply assume that some “independent” 
subset 1( ,.., )md d  of these distance values has been 

                                                 
6 For any random variable, X  with ( )E X = μ  and 2var( )X = σ  , if ( ) / / /Z X X= − μ σ = σ − μ σ  then 

( ) ( ) / / 0E Z E X= σ − μ σ =  and 2var( ) var( ) / 1Z X= σ = . 
7 If the random variable jD  is the nearest neighbor of j , then since jD  cannot be bigger than 1d  it follows 

that Pr( | ) 1j i i iD d D d≤ = = , and hence that these nn-distances are statistically dependent.  
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Fig.3.5. Independent Subset 
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selected (with m n< ). [This is why the notation “ m ” 
rather than “ n ” has been used in the formulation above.] 
Given this sample, one can construct a sample-mean value, 
 
(3.2.16) 

1
1 m

m iimd d
=

= ∑  
 
an use this to construct tests of CSR. 
 
Two-Tailed Test of CSR 
 
The standard test of CSR in most software is a two-tailed test in which both the 
possibility of “significantly small” values of md  (clustering) and “significantly large” 
values of md  (dispersion) are considered. Hence it is appropriate to review the details of 
such a testing procedure. First recall the notion of upper-tail points, zα  , for the standard 
normal distribution as defined by Pr( )Z zα≥ = α  for ~ (0,1)Z N . In these terms, it 
follows that for the standardized mean in (3.2.14) 
 
(3.2.17) ( ) [ ]/ 2 / 2 / 2Pr Pr ( ) ( )m m mZ z Z z or z Zα α α≥ = ≤ − ≤ = α  
 
under the CSR Hypothesis. Hence if one estimates point density as in (3.1.1), and 
constructs corresponding estimates of the mean (3.2.10) and standard deviation (3.2.13) 
under CSR by 
 

(3.2.18) 1ˆ
ˆ2

μ
λ

=   ,   ( )ˆˆ (4 ) 4m mσ π πλ= −  

 
 then one can test the CSR Hypothesis by constructing the following standardized sample 
mean: 
 

(3.2.19) 
ˆ

ˆ
m

m
dz μ
σ
−

=  

 
If the CSR Hypothesis is true, then by (3.2.14) and (3.2.15),  mz  should be a sample from 

(0,1)N .8  Hence a test of CSR at the α -level of significance9 is then given by the rule:  
 
Two-Tailed CSR Test :  Reject the CSR Hypothesis if and only if  / 2| |mz zα>  
 

                                                 
8 Formally this assumes that  λ̂  is a sufficiently accurate estimate of λ  to allow any probabilistic variation 
in λ̂  to be ignored. 
9 By definition, the level of significance of a test is the probability,α , that the null hypothesis (in this case 
the CSR Hypothesis) is rejected when it is actually true. This is discussed further below. 



NOTEBOOK FOR SPATIAL DATA ANALYSIS                                Part I. Spatial Point Pattern Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
ESE 502                                                     I.3-8                                                  Tony E. Smith 

The significance level, α , is also called the size of the test. Example results of this 
testing procedure for a test of size α  are illustrated in Figure 3.6 below. Here the two 
samples, mz , in the tails of the distribution are seen to yield strong evidence against the 
CSR Hypothesis, while the sample in between does not.  
 
One-Tailed Tests of Clustering and Dispersion 
 
As already noted, values of md  (and hence mz ) that are too low to be plausible under 
CSR are indicative of patterns more dispersed than random. Similarly, values too large 
are indicative of patterns more clustered than random. In many cases, one of these 
alternatives is more relevant than the other. In the redwood seedling example of Figure 
1.1 it is clear that trees appear to be clustered. Hence the only question is whether or not 
 

 
 
 

Fig.3.6. Two-Tailed Test of CSR 
 
 
this apparent clustering could simply have happened by chance. So the key question here 
is whether this pattern is significantly more clustered than random. Similarly, one can ask 
whether the pattern of Cell Centers in Figure 1.2 is significantly more dispersed than 
random. Such questions lead naturally to one-tailed versions of the test above. First, a test 
of clustering versus the CSR Hypothesis at the α -level of significance is given by the 
rule: 
 
Clustering versus CSR Test :  Conclude significant clustering if and only if  mz zα< −  
 
Example results of this testing procedure for a test of size α  are illustrated in Figure 3.7 
below. Here the standardized sample mean mz  to the right is sufficiently low to conclude 
the presence of clustering (at the α -level of significance), and the sample toward the 
middle is not.  
 
 
 
 

/ 2α  / 2α  

0 
•
mz  

Reject 
 CSR 

• 
mz  

Reject 
 CSR 

•
mz  

 Do Not 
 Reject 

/ 2zα  / 2zα−  



NOTEBOOK FOR SPATIAL DATA ANALYSIS                                Part I. Spatial Point Pattern Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
ESE 502                                                     I.3-9                                                  Tony E. Smith 

 
 
 
 
 
 
 
 
 
 

Fig.3.7. One-Tailed Test of Clustering 
 
In a similar manner, one can construct a test of dispersion versus the CSR Hypothesis at 
the α -level of significance using the rule: 
 
Dispersion versus CSR Test :  Conclude significant dispersion if and only if  mz zα>  
 
Example results for a test of size α  are illustrated in Figure 3.8 below, where the sample 

mz  to the left is sufficiently high to conclude the presence of dispersion (at the α -level of 
significance) and the sample toward the middle is not. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.8. One-Tailed Test of Dispersion 
 
While such tests are standard in literature, it is important to emphasize that there is no 
“best” choice of α . The typical values given by most statistical texts are listed in Tables 
3.1 and 3.2 below:    
 
 
 
 
 
 
             
          
          Table 3.1. Two-Tailed Significance       Table3.2. One-Tailed Significance 

zα  0  

α

•
mz  

No Significant 
   Uniformity 

•
mz  

 Significant 
 Uniformity 

Significance α  / 2zα
“Strong” .01 2.58
“Standard” .05 1.96
“Weak” .10 1.65

Significance α   zα  
“Strong” .01 2.33 
“Standard” .05 1.65 
“Weak” .10 1.28 

zα−  0  

α  

•• 
mz  mz  

Significant 
Clustering 

No Significant 
   Clustering 
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So in the case of a two-tailed test, for example, the non-randomness of a given pattern is 
considered “strongly” (“weakly”) significant if the CSR Hypothesis can be rejected at the 

.01α =  ( .10)α =  level of significance.10 The same is true of one-tailed tests (where the 
cutoff value, / 2zα , is now replaced by zα ). In all cases, the value .05α =  is regarded as a 
standard (default) value indicating “significance”. 
 
However, since these distinctions are admittedly arbitrary, another approach is often 
adopted in evaluating test results. The main idea is quite intuitive. In the one-tailed test of 
clustering versus CSR above, suppose that for the observed standardized mean value, mz , 
one simply asks how likely it would be to obtain a value this low if the CSR Hypothesis 
were true? This question is easily answered by simply calculating the probability of a 
sample value as low as mz  for the standard normal distribution (0,1)N . If the cumulative 
distribution function for the normal distribution is denoted by  
 
(3.2.20) ( ) Pr( )z Z zΦ = ≤  
 
then this probability, called the P-value of the test,  is given by  
 
(3.2.21) Pr( ) ( )m mZ z z≤ = Φ  
 
as shown graphically below:  
 
 
 
 
 
 
 

Fig.3.9. P-value for Clustering Test 
 
Notice that unlike the significance level, α , above, the P-value for a test depends on the 
realized sample value, mz , and hence is itself a random variable that changes from 
sample to sample. However, it can be related to α  by observing that if ( )mP Z z α≤ ≤ , 
then for a test of size α , one would conclude that there is significant clustering. More 
generally the P-value, ( )mP Z z≤  can be defined as the largest level of significance 
(smallest value of α ) at which CSR would be rejected in favor of clustering based on the 
given sample value, mz .  
 
Similarly, one can define the P-value for a test of dispersion the same way, except that 
now for a given observed standardized mean value, mz , one asks how likely it would be to 
obtain a value this large if the CSR Hypothesis were true. Hence the P-value in this case 
is given simply by  

                                                 
10 Note that lower values of α  denote higher levels of significance. 

0  
• 
mz  

( )mzΦ  
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(3.2.22) Pr( ) Pr( ) 1 Pr( ) 1 ( )m m m mZ z Z z Z z z≥ = > = − ≤ = −Φ  
 
where the first equality follows from the fact that Pr( ) 0mZ z= =  for continuous 
distributions.11 This P-value is illustrated graphically below: 
 
 
 
 
 
 
 
 

Fig.3.10. P-Value for Dispersion Test 
 
Finally, the corresponding P-value for the general two-tailed test is given as the answer to 
the following question: How likely would it be to obtain a value as far from zero as mz  if 
the CSR Hypothesis were true? More formally this P-value is given by 
 
(3.2.23) (| | ) 2 ( | |)m mP Z z z≥ = ⋅Φ −  
 
as shown below. Here the absolute value is used to ensure that | |mz−  is negative 
regardless of the sign of mz . Also the factor “2” reflects the fact that values in both tails 
are further from zero than mz .  
 
 
 
 
 
 
 
 

Fig.3.11. P-Value for Two-Tailed Test 
 
 
3.3  Redwood Seedling Example 
 
We now illustrate the Clark-Evans testing procedure in terms of the Redwood Seedling 
example in Figure 1.1. This image is repeated in Figure 3.12a below, where it is 
compared with a randomly generated point pattern of the same size in Figure 3.12b. Here 
it is evident that the redwood seedlings are more clustered than the random point pattern. 
However, it is important to notice that there are indeed some apparent clusters in the 
random pattern. In fact, if there were none then this pattern would be “too dispersed”. So 
                                                 
11 By the symmetry of the normal distribution, this P-value is also given by ( ) [ 1 ( )]m mz zΦ Φ− = − . 

0  

1 ( )mz−Φ  

•
mz  

0  
•• 

| |mz−  

( | |)mzΦ −  ( | |)mzΦ −  
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the key task is to distinguish between degrees of clustering that could easily occur by 
chance and those that could not. This is the essence of statistical pattern analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Fig.3.12a.  Redwood Seedlings                  Fig.3.12b. Random Point Pattern 
 
 
To do so, we shall start by assuming that most of the necessary statistics have already 
been calculated. (We shall return to the details of these calculations later.)  Here the area,  

( ) 44108a R =  sq.meters., of this region R  is given ARCMAP. It appears in the Attribute 
Table of the boundary file Redw_bnd.shp in the map document Redwoods.mxd. The 
number of points, 62n = , in this pattern is given in the Attribute Table of the data file, 
Redw_pts.shp, in Redwoods.mxd. [The bottom of the Table shows “Records (0 out of 
62 Selected). Note that there only appear to be 61 rows, because the row numbering 
always starts with zero in ARCMAP.] Hence the estimated point density in (1) above is 
given by 
 

(3.3.1)  62ˆ .00141
( ) 44108
n

a R
λ = = =  

 
For purposes of this illustration we set 62m n= = , so that the corresponding estimates of 
the mean and standard deviation of nn-distances under CSR are given respectively by 
 

(3.3.2)  1 1ˆ 13.336
ˆ 2 .001412

= = =μ
λ

 meters 

 

(3.3.3)  4 4 3.14ˆ .8853ˆ (62)4(3.14)(.00141)4n n
πσ
πλ
− −

= = =  

 
For the redwood seedling pattern, the mean nn-distance, nd , turns out to be 
 
(3.3.4)  9.037nd =  meters  
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At this point, notice already that this average distance is much smaller than the theoretical 
value calculated in (3.3.2) under the hypothesis of CSR. So this already suggests that for 
the given density of trees in this area, individual trees are much too close to their nearest 
neighbors to be random. To verify this statistically, let us compute the standardized mean 
 

(3.3.5)  
ˆ 9.037 13.336 4.855

ˆ .8853
n

n
n

dz μ
σ
− −

= = = −  

 
Now recalling from Table 2 above that there is “strongly significant” clustering if  

.01 2.33nz z≤ − = − , one can see from (3.3.5) that clustering in the present case is even 
more significant. In fact the P-value in this case is given by12 
 
(3.3.6)  P-value ( ) ( ) ( 4.855) .000006n nP Z z zΦ Φ= ≤ = = − =  
 
(Methods for obtaining Φ -values is discussed below). So the chances of obtaining a 
mean nearest-neighbor distance this low under the CSR hypothesis are only about 6 in a 
million. This is very strong evidence in favor of clustering versus CSR. 
 
However, one major difficulty with this conclusion is that we have used the entire point 
pattern ( )m n= , and have thus ignored the obviously dependencies between nn-distances 
discussed above. Cressie (1993, p.609-10) calls this “intensive” sampling, and shows 
with simulation analyses that this procedure tends to overestimate the significance of 
clustering (or dispersion). The basic reason for this is that positive correlation among nn-
distances results in a larger variance of the test statistic, nZ , than would be expected 
under independence (for a proof of this see Section 4 of the Appendix to Part I, and also 
see p.99 in [BG]).  This will tend to inflate the absolute value of the standardized mean, 
thus exaggerating the significance of clustering (or dispersion).  With this in mind, we 
now consider two procedures for taking random subsamples of pattern points that tend to 
minimize this dependence problem. These two approaches utilize JMPIN and MATLAB, 
respectively, and thus provide convenient introductions to using these two software 
packages. 
 
 
3.3.1 Analysis of Redwood Seedlings using JMPIN 
 
One should begin here by reading the notes on opening JMPIN in section 2.1 of Part IV 
in this NOTEBOOK.13 In the class subdirectory jmpin now open the file, 
Redwood_data.jmp in JMPIN. (The columns nn-dist and area contain data exported 
from MATLAB and ARCMAP, respectively, and are discussed later). The column 
Rand_Relabel is a random ordering of labels with associated nn-distance values in the 

                                                 
12  Methods for obtaining Φ -values are discussed later. 
13 This refers to section 2.1 in the Software portion (Part IV) of this NOTEBOOK. All other references to 
software procedures will be done similarly. 
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column, Sample. [These can be constructed using the procedure outlined in section 
2.2(2) of Part IV in this NOTEBOOK.]  
 
Now open a second file, labeled CE_Tests.jmp, which is a spreadsheet constructed for 
this class that automates Clark-Evans tests. Here we shall use a random 50% subsample 
of points from the Redwood Seedlings data set to carry out a test of clustering.14 To do 
so, click Rows → Add Rows and add 31 rows ( 62 / 2)= . Next, copy-and-paste the first 
31 rows of Redwood_data.jmp into these positions.  
 
In Redwood_data.jmp : 
 
 (i)    Select rows 1 to 31 (click Row 1, hold down shift, and click Row 31) 
 (ii)   Select column heading Sample (this entire column is now selected) 
 (iii)  Click Edit → Copy 
 
Now in CE_Tests.jmp : 
 
 (i)    Select column heading nn-dist 
 (ii)   Click Edit → Paste 
 
Finally, to activate this spread sheet you must fill in the two parameters (area, n), start 
with area as follows: 
 
 (i)    Right click on the column heading area. 
 (ii)   Right click on the small red box (may say “no formula”) 
 (iii)  Type 44108, hit return and click Apply and OK. (The entire column should 
                     now contain the value “44108” in each row.) 
 
The procedure for filling in the value n ( 62)=  is the same. Once these values are 
registered, the spread sheet does all remaining calculations. (Open the formula windows 
for lam, mu, sig, s-mean, and Z as above, and examine the formulas used.) The results 
are shown below (where only the first row is displayed). 
 
 
 
 
 
Notice first that all values other than lam differ from the full-sample case ( )m n=  
calculated above since we have only 31m =  samples. Next observe that the P-value for 
clustering (.0000273) is a full order of magnitude larger than for the full-sample case. So 
while clustering is still extremely significant (as it should be), this significance level has 
                                                 
14 In [BG] (p.99) it is reported that a common a rule-of-thumb to ensure approximate independence is to 
take a random subsample of no more than 10% (i.e., /10m n≤ ). But even for large sample sizes, n , this 
tends to discard most of the information in the data. An alternative approach will be developed in the 
MATLAB application of Section 3.2.5 below.   

  lam    mu   sig s-mean      Z P-Val CSR P-Val Clust P-Val Disp 

0.0014 13.3362 1.2521 8.2826 -4.0363 0.0000546 0.0000273  0.9999727 
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been deflated by removing some of the positive dependencies between nn-distances. 
Notice also that the P-value for CSR is (by definition) exactly twice that for Clustering, 
and similarly that the P-value for Dispersion is exactly one minus that for Clustering. 
This latter P-value shows that there is no statistical evidence for Dispersion in the sense 
that values “as large as” 4.0363Z = −  are almost bound to occur under CSR. 
 
 
3.3.2 Analysis of Redwood Seedlings using MATLAB 
 
While the procedure in JMPIN above does allow one to take random subsamples, and 
thereby reduce the effect of positive dependencies among nn-distances, it only allows a 
single sample to be taken. So the results obtained depend to some degree on the sample 
selected. What one would like to do here is to take many subsamples of the same size 
(say with 31m = ) and look at the range of Z-values obtained. If almost all samples 
indicate significant clustering, then this yields a much stronger result that is clearly 
independent of the particular sample chosen. In addition, one might for example want to 
use the P-value obtained for the sample mean of Z as a more representative estimate of 
actual significance. But to do so in JMPIN would require many repetitions of the same 
procedure, and would clear be very tedious. Hence an advantage of programming 
languages like MATLAB is that one can easily write a program to carry out such 
repetitious tasks. With this in mind, we now consider an alternative approach to Clark-
Evans tests using MATLAB. 
 
One should begin here by reading the notes on opening MATLAB in section 3.1 of Part 
IV in this NOTEBOOK. Now open MATLAB, and set the Current Directory (at the top 
of the MATLAB window) to the class subdirectory, F:/sys502/matlab, and open the data 
file, Redwoods.mat.15 The Workspace window on the left will now display the data 
matrices contained in this file. For example, area, is seen to be a scalar with value, 
44108, that corresponds to the area value used in JMPIN above. [This number was 
imported from ARCMAP, and can be obtained by following the ARCMAP procedure 
outlined in Section 1.2(8) of Part IV.] Next consider the data matrix, Redwoods, which is 
seen to be a 62 x 2 matrix, with each row denoting the (x,y) coordinates of one of the 62 
redwood seedlings. You can display the first three rows of this matrix by typing  
 
>> Redwoods(1:3,:).  
 
I have written a program, cluster.m,16 in MATLAB to carry out Clark_Evans tests. You 
can display this program by clicking  Edit → Open and selecting the file cluster.m.17 
The first few lines of this program are displayed below: 
 
 

 
 

                                                 
15 The extension .mat is used for data files in MATLAB. 
16 The extension .m is used for all executable programs and scripts in MATLAB. 
17 To view this program you can also type the command >> edit cluster. 
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function D = cluster(pts,a,m,test) 
 
% CLUSTER.M performs the Clark-Evans tests for Clustering 
%          
% NOTE: These tests use a random subsample (size = m) of the  
%       full sample of n nearest-neighbor distances, and  
%       ignore edge effects. 
 
% Written by: TONY E. SMITH, 12/28/99 
 
% INPUTS:  
%      (i)   pts  = file of point locations (xi,yi), i=1..n 
%     (ii)      a  = area of region 
%    (iii)     m  = sample size (m <= n) 
%     (iv)  test = indicator of test to be used 
%                  0 = two-sided test for randomness 
%                  1 = one-sided test for clustering 
%                  2 = one-sided test for dispersion 
% 
% OUTPUTS: OUT = vector of all nearest-neighbor distances 
% 
% SCREEN OUTPUT: critical z-value and p-value for test 
 

 
 
 
The first line defines this program to be a function call cluster, with four inputs 
(pts,a,n,test) and one output called OUT. The percent signs (%) on subsequent lines 
indicate comments intended for the reader only. The next few comment lines describe 
what the program does. In this case cluster takes a subsample of size m n≤  and 
performs a Clark-Evans test as in JMPIN. The next set of comment lines describe the four 
inputs in detail. The first, pts, contains the (x,y) coordinates of the given point pattern, 
and corresponds in our present case to Redwoods. The parameter a corresponds to area, 
and m corresponds to the number of subsamples to be taken (in this case 31m = ). Finally 
test is an indicator denoting the type of test to be done, so that for a one-tailed test of 
clustering we would give test the value 1. During the execution of this program, the 
nearest-neighbor distance for each pattern point is calculated. Since this vector of nn-
distances is useful for other applications (such as the JMPIN spread-sheet above) it is 
useful to save this vector. Hence the single output, OUT, is in this case the n x 1 matrix 
of nn-distances. The last comment line describes the screen output of this program, 
which in the present case is simply a display of the Z-value obtained and its 
corresponding P-value.  
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To run this program, suppose that you want to save the nn-distance output as a vector  
called D (the names of inputs and outputs can be anything you choose). Then at the 
command prompt you would type: 
 
>> D = cluster(Redwoods,area,31,1);  
 
Here it is important to end this command statement with a semicolon (;), for otherwise, 
all output will be displayed on the screen (in this case the contents of D). Hence by 
hitting return after typing the above command, the program will execute and give a 
screen display such as the following: 
 
 
 

RESULTS OF TEST FOR CLUSTERING 
  
Z_Value = -3.3282 
  
P_Value = .00043697 

 
 
 
The results are now different from those of JMPIN above because a different random 
subsample of size 31m =  was chosen.  To display the first four rows of the output vector, 
D, type18  
 
>> D(1:4,:) 
 
As with the Redwoods display above, the absence of a semicolon at the end will cause 
the result of this command to be displayed. If you would like to save this output to your 
home directory (E:) as a text file, say nn_dist.txt, then use the command sequence 
 
>> save nn_dist.txt  D  -ascii 
 
As was pointed out above, the results of this Clark-Evans test depend on the particular 
sample chosen. Hence, each time the program is run there will be a slightly different 
result (try it!). But in MATLAB it is a simple matter to embed cluster in a slightly larger 
program that will run cluster many times, and produce whatever summary outputs are 
desired. I have constructed a program to do this, called clust_distr.m. If you open this 
program you will see that it has a similar format: 
 

 
 
 
 
 

                                                 
18 Since D is a vector, there is only a single column. So one could simply type D(1:4) in this case. 
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function OUT = clust_distr(pts,a,m,test,N) 
 
% CLUST_DISTR.M samples cluster.m a total of N times 
          
% Written by: TONY E. SMITH, 12/28/99 
 
% INPUTS:  
%      (i)  pts  = file of point locations (xi,yi), i=1..n 
%     (ii)    a  = area of region 
%    (iii)    m  = sample size (m <= n) 
%     (iv)  test = indicator of test to be used 
%                  0 = two-sided test for randomness 
%                  1 = one-sided test for clustering 
%                  2 = one-sided test for dispersion 
%      (v)     N = number of sample tests. 
% 
% OUTPUTS: OUT = vector of Z-values for tests. 
% 
% SCREEN OUTPUT: (1) Normal fit of Histogram for OUT 
%                                     (2) Mean of OUT 
%                                     (3) P-value of mean (if normcdf present) 
 
 

The only key difference is the new parameter, N, that specifies the number of point 
pattern samples of size m to be simulated (i.e., the number of times the cluster is to be 
run). The output chosen for this program is the vector of Z-values obtained. So if N = 
1000, then OUT will be a vector of length 1000. The screen outputs now include 
summary measures of this vector of Z-values, namely the histogram of Z-values in OUT, 
along with the mean of these Z-values and the P-value for this mean. If this program is 
run using the command 
 
>> Z = clust_distr(Redwoods,area,31,1,1000);  
 
then 1000 samples will be drawn, and the resulting Z-values will be saved in a vector, Z. 
In addition, a histogram of these Z-values will be displayed, as illustrated in Figure 3.13 
below. Notice that the results of this simulated sampling scheme yield a distribution of Z-
values that is approximately normal. While this normality property is again a 
consequence of the Central Limit Theorem, it should not be confused with the normal 
distribution in (3.2.12) upon which the Clark-Evans test is based (that requires n  to be 
sufficiently large). However, this normality property does suggest that a 50% sample 
( / 2)m n=  in this case yields a reasonable amount of independence among nn-distances, 
as it was intended to do.19  
 

                                                 
19 Hence this provides some evidence that the 10% rule of thumb in footnote 13 above is overly 
conservative. 
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Fig.3.13. Sampling Distribution of Z-values 
 
In particular, the mean of this distribution is now about -3.46 as shown by the program 
output below:  
 
 

 
RESULTS OF TEST FOR CLUSTERING 
  
Mean Z-Value = -3.4571 
  
P-Value of Mean = 0.00027298 

 
 
 
Here the P-value, .000273, is of the same order of magnitude as the single sample above, 
indicating that this single sample was fairly representative.20 However it is of interest to 
note that the single sample in JMPIN above, with a P-value of .0000546 is an order of 
magnitude smaller. Hence this sample still indicates more significance than is warranted. 
But nonetheless, a P-value of .000273 is still very significant – as it should be for this 
redwood seedling example. 
 
 
3.4 Bodmin Tors Example 
 
The Redwood Seedling example above is something of a “straw man” in that statistical 
analysis is hardly required to demonstrate the presence of such obvious clustering. Rather 

                                                 
20 Again it should be emphasized that this P-value has nothing to do with the sampling distribution in 
Figure 13. Rather it is the P-value for the mean Z-value under the normal distribution in (3.2.12). 
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it serves as an illustrative case where we know what the answer should be.21  However, 
the presence of significant clustering (or dispersion) is often not so obvious. Our second 
example, again taken from [BG] (Figure 3.2), provides a good case in point. It also serves 
to illustrate some additional limitations of the above analysis. 
 
Here the point pattern consists of granite 
outcroppings (tors) in the Bodmin Moor, located 
at the very southern tip of England in Cornwall 
county, as shown to the right. (The granite in 
these tors was used for tomb stones during the 
Bronze age, and they have a certain historical 
significance in England.) 
 
The map in Figure 3.14a below shows a portion of the Moor containing 35n =  tors. A 
randomly generated pattern of 35 tors is shown for comparison in 3.14b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Fig.3.14a. Bodmin Tors                          Fig.3.14b. Random Tors 
 
Here there does appear to be some clustering of tors relative to the random pattern on the 
right. But it certainly not as strong as the redwood seedling example above. So it is of 
interest to see what the Clark-Evans test says about clustering in this case (see also 
exercise 3.5 on pp.114-15 in [BG]). The maps in Figures 3.14a and 3.14b appear in the 
ARCMAP project, bodmin.mxd, in the directory arview/project/Bodmin. The area, 

( ) 206.62a R = , of the region R in Figure 3.14a is given in the Attribute Table of the 
shapefile, bod_bdy.22 This point pattern data was imported to MATLAB and appears in 
the matrix, Bodmin, of the data file, bodmin.mat, in the matlab directory. For our 
present purposes it is of interest to run the following full-sample version of the Clark-
Evans test for clustering: 
 

                                                 
21 Such examples are particularly useful for providing consistency checks on statistical methods for 
detecting clustering.  
22 The area and distance scales for this pattern are not given in [BG]. 
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>> D = cluster(Bodmin,area,35,1); 
  
RESULTS OF TEST FOR CLUSTERING 
  
Z_Value = -1.0346 
  
P_Value = 0.15043 
 
Hence even with the full sample of data points, the Clark-Evans test yields no significant 
clustering. Moreover, since subsampling will only act to reduce the level of significance, 
this tells us that there is no reason to proceed further. But for completeness, we include 
the following results for a subsample of size 18m =  (approximately 50%):23   
 
>> clust_distr(Bodmin,area,18,1,1000); 
  
RESULTS OF TEST FOR CLUSTERING 
  
Mean Z-Value = -0.71318 
  
P-Value of Mean = 0.23787 
 
So even though there appears to be some degree of clustering, this in not detected by 
Clark-Evans. It turns out that there are two key theoretical difficulties here that have yet 
to be addressed. The first is that for point patterns samples as small as the Bodmin Tors 
example, the assumption of asymptotic normality may be questionable.  The second is 
that nn-distances for points near the boundary of region R are not distributed the same as 
those away from the boundary. We shall consider each of these difficulties in turn.  
 
First, with respect to normality, the usual rule-of-
thumb associated with the Central Limit Theorem is 
that sample means should be approximately normally 
distributed for independent random samples of size at 
least 30 from distributions that are not too skewed. 
Both of these conditions are violated in the present 
case. To achieve sufficient independence in the 
present case, subsample sizes m  surely cannot be 
much larger that 20. Moreover, the sampling distri-
bution of nn-distances in Figure 3.15 shows a  
definite skewness (with long right tail). 
 
This type of skewness is typical of nn-distances – even under the CSR hypothesis. [Under 
CSR, the theoretical distribution of nn-distances is given by the Rayleigh density in 
expression (2) of Section 2 in the Appendix to Part I, which is seen to have the same 
skewness properties.] 
 

                                                 
23 Here we are not interested in saving the Z-values, so we have specified no outputs for clust_distr. 

Fig.3.15. Bodmin nn-Distances 
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The second theoretical difficulty concerns the special nature of nn-distances near the 
boundary of region R. The theoretical development of the CSR hypothesis explicitly 
assumed that the region R is of infinite extent, so that such “edge effects” do not arise. 
But in practice, many point patterns of interest occur in regions R where a significant 
portion of the points are near the boundary of R.  Recall from the discussion in Section 
2.4 that if region R is viewed as a “window” through which part of a larger (stationary) 
point process is being observed, then points near the boundary will tend to have fewer 
observed neighbors than points away from the boundary. So in cases where the nearest 
neighbor of a point in the larger process is outside R, the observed nn-distance for that 
point will be greater than it should be (such as the example shown in Figure 3.16 below). 
Thus the distribution of nn-distances for such points will clearly have higher expected 
values than for interior points. For samples from CSR processes, this will tend to inflate 
mean nn-distances relative to their theoretical values under the CSR hypothesis. This 
edge effect will be demonstrated more explicitly in the next section.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.16. Example of Edge Effect 
 
 
3.5 A Direct Monte Carlo Test of CSR 
 
Given these shortcomings, we now develop a testing procedure that simulates the true 
distribution of nD  in region R for a given pattern size, n .24 While this procedure is 
computationally more intensive, it will not only avoid the need for normal approxi-
mations, but will also avoid the need for subsampling altogether. The key to this 
procedure lies in the fact that the actual distribution of a randomly located point in R can 
easily be simulated on a computer. This procedure, known as rejection sampling, starts 
by sampling random points from rectangles. Since each rectangle is the Cartesian product 
of two intervals, 1 1 2 2[ , ] [ , ]a b a b× , and since drawing a random number, is  from an 
interval [ , ]i ia b  is a standard operation in any computer language, one can easily draw a 
random point 1 2( , )s s s=  from 1 1 2 2[ , ] [ , ]a b a b× . Hence for any given planar region, R, the 
basic idea is to sample points from the smallest rectangle, ( )rec R  containing R, and then 
to reject any points which are not in R.  
                                                 
24 Procedures for simulating distributions by random sampling are known as “Monte Carlo” procedures.  
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To obtain n  points in R, one continues to reject 
points until n  are found in R. [Thus the choice of 

( )rec R  is designed to minimize the expected 
number of rejected samples.] An example for the 
case of Bodmin is illustrated in Figure 3.17, 
where for simplicity we have sampled only 

10n =  points. Here there are seen to be four 
sample points that were rejected. The resulting 
sample points in R then constitute an independent 
random sample of size n  that by construction 
must satisfy the CSR hypothesis. To see this note 
simply that since the larger sample in ( )rec R  
automatically satisfies this hypothesis, it follows 
that for any subset C R⊆  the probability that a 
point lies in C  given that it is in R must have the 
form: 
 

(3.5.1)   Pr( ) Pr( ) ( ) / [ ( )] ( )Pr( | )
Pr( ) Pr( ) ( ) / [ ( )] ( )
C R C a C a rec R a CC R

R R a R a rec R a R
∩

= = = =  

 
Hence expression (2.1.2) holds, and the CSR hypothesis is satisfied. More generally, for 
any pattern of size n  one can easily simulate as many samples of size n  from R as 
desired, and use these to estimate the sampling distribution of nD  under the CSR 
hypothesis.  
 
This procedure has been operationalized in the MATLAB 
program, clust_sim.m. Here the only additional input 
information required is the file of boundary points defining 
the Bodmin region, R . The coordinates of these boundary 
points are stored in the 145 x 2 matrix, Bod_poly, in the 
data file, bodmin.mat. To display the first three rows and 
last three rows of this file: first type Bod_poly(1:3,:), hit 
return, and type Bod_poly(143:end,:). You will then see 
that this matrix has the form shown to the right. 
 
Here the first row gives information about the boundary, namely that there is one 
polygon, and that this polygon consists of 144 points. Each subsequent row contains the 
(x,y) coordinates for one of these points. Notice also that the second row and the last row 
are identical, indicating that the polygon is closed (and thus that there are only 144 
distinct points in the polygon). This boundary information for R is necessary in order to 
define the rectangle, ( )rec R . It is also needed to determine whether a given point in 

( )rec R  is also in R or not. While this latter determination seems visually evident in the 
present case, it turns out to be relatively complex from a programming viewpoint. A brief 
description of this procedure is given in section 5 of the Appendix to Part I. 
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Fig.3.17. Rejection Sampling 
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1             144 
4.7           -9.7 
4.4         -10.2 
  :             : 
  :             : 
5.2           -9.2 
5.1           -9.2 
4.7           -9.7 
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The program clust_sim is designed to estimate the sampling distribution of nD  by 
simulating a large number, N , of random patterns of size n  in R, and then using this 
statistical population to determine whether there is significant clustering in a given 
observed pattern in R with mean nn-distance, nd . To do so, observe that if nd  were in 
fact a sample from this same distribution, then the probability Pr( )n nD d≤ of obtaining a 
value as low as nd  can be estimated by the fraction of simulated mean nn-distance values 
that do not exceed nd . More precisely, if 0N  denotes the number of simulated patterns 
with mean nn-distances not exceeding nd , then this probability, can be estimated as 
follows: 
 

(3.5.2)  0Pr( )
1n n

ND d
N

≤ =
+

 

 
Here the denominator 1N +  includes the observed sample along with the simulated 
samples. This estimate then constitutes the relevant P-value for a test of clustering 
relative to the CSR hypothesis. Hence the testing procedure in clust_sim consists of the 
follows two steps: 
 
 (i)    Simulate N  patterns of size n  and for each pattern 1,..,i N=  compute the 
                    mean nn-distance, ( )i

nd . 
 
 (ii)   Determine the number of patterns, 0N , with ( )i

n nd d≤  and calculate the 
                    P-value for nd  using (3.5.2) above. 
 
To run this program we require one additional bit of information, namely the value of nd . 
Given the output vector, D, of nn-distances for Bodmin tors obtained above from the 
program, cluster, this mean value (say m_dist) can be calculated by using the built-in 
function, mean, in MATLAB as follows: 
 
>> m_dist = mean(D); 
 
In the present case, m_dist = 1.1038. To input this value into clust_sim, we shall use a 
MATLAB data array known as a structure. Among their many uses,  structures offer a 
convenient way to input optional arguments into MATLAB programs. In the present 
case, we shall input the value m_dist together with the number of bins to be used in 
constructing a histogram display for the simulated mean nn-distance values. [The default 
value in MATLAB is bin = 10 is useful for moderate samples sizes, say 100N = . But for 
simulations with 1000N ≥ , is better to use bin = 20 or 25.] If you open the program, 
clust_sim, you will see that the last input of this function is a structure namely opts (for 
“options”) that is described in more detail under INPUTS: 
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function OUT = clust_sim(poly,a,m,N,opts) 
 
% CLUST_SIM.M simulates the sampling distribution of average  
% nearest-neighbor distances in a fixed polygon. It can also determine  
% the P-value for a given mean nearest-neighbor distance, if supplied. 
%  
% Written by: TONY E. SMITH, 12/31/00 
 
% INPUTS:  
%      (i)  poly = boundary file of polygon 
%     (ii)      a  = area of polygon 
%    (iii)     m  = number of points in polygon 
%     (iv)     N  = number of simulations 
%      (v)  opts = an (optional) structure with variable inputs: 
%                        opts.bins = number of bins in histogram (default = 10) 
%                        opts.m_dist = mean nearest-neighbor distance for testing 
                  

 
To define this structure in the present case, we shall use the value of m_dist just 
calculated, and shall set bins = 20. This is accomplished by the two commands: 
 
>> opts.m_dist = m_dist;   opts.bins = 20; 
 
Notice that opts is automatically defined by simply specifying its components.25 The key 
point is that only the structure name, opts, needs to be specified in the command line. 
The program clust_sim will look to see if either of these components for opts have been 
specified. So if you want to use the default value of bins, just leave out this command. 
Moreover, if you just want to look at the histogram of simulated values (and not run a test 
at all), simply leave opts out of the command line. This is what is meant in the 
description above when opts is referred to as an “(optional) structure”.  
 
Given these preliminaries, we are now ready to run the program, clust_sim, for Bodmin. 
To do so, enter the command line: 
 
>> clust_sim(Bod_poly,area,35,1000,opts); 
 
Here we have specified n = 35 for the Bodmin case, and have specified that N = 1000 
simulated patterns be constructed. The screen output will start with successive displays: 
 
percent_done = 10 
percent_done = 20 
: 
percent_done = 100 

                                                 
25 Note also we have put both commands on the same line to save room. Just remember to separate each 
command by a semicolon (;) 
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that indicate how the simulations are proceeding. The final screen output will then 
include both a histogram of mean nn-distance values, and some numerical outputs, as 
described in the “SCREEN OUTPUT” section of the comments in clust_sim. The 
histogram will be something like that shown in Figure 3.18 below (the red vertical bar 
will be discussed below): 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.18. Histogram of Mean nn-Distances 
 
Note first that in spite of the relatively skewed distribution of observed nn-distance 
values for Bodmin, this simulated distribution of mean nn-distances appears to be 
approximately normal. Hence, given the sample size, 35n = , it appears that the 
dependencies between nn-distance values in this Bodmin region are not sufficient to rule 
out the assumption of normality used in the Clark-Evans test.  
 
But in spite of its normality, this distribution is noticeably different from that predicted 
by the CSR hypothesis. To see this, recall first that that for the given area of Bodmin, 

( ) 206.6a R = , the point density estimate is given by ˆ 35 / 206.6 .1694λ = = . Hence the 
theoretical mean nn-distance value predicted by the CSR hypothesis is  
 

(3.5.3)     1ˆ 1.215
ˆ2

μ
λ

= =  

 
However, if we now look at the numerical screen output for this simulation, we have 
 
 
 

CLUST_SIM RESULTS 
  
SIM_MEAN_DIST = 1.3087 
  
M_DIST = 1.1038 
  
P-VALUE FOR M_DIST = 0.044955 
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Here the first line reports the mean value of the 1000 simulated mean nn-distances. But 
since (by the Law of Large Numbers) a sample this large should give a fairly accurate 
estimate of the true mean, ( )nE D , we see that this true mean is considerable larger than 
that predicted by the CSR hypothesis above.26 The key point to note here is that the edge 
effects depicted in Figure 3.16 above are quite significant for pattern sizes as small as 

35n =  relative to the size of the Bodmin region, R.27 So this simulation procedure does 
indeed give a more accurate distribution of nn-distances in the Bodmin region under the 
CSR hypothesis. 
 
Observe next that the second line of screen output above gives the value of opts.m_dist 
as noted above (assuming this component of opts was included). The final line is the 
critical one, and gives the P-value for opts.m_dist, as estimated by (3.5.2) above. Hence, 
unlike the Clark-Evans test where no significant clustering was observed (even under full 
sampling), the present procedure does reveal significant clustering.28 This is shown by 
the position of the red vertical bar in Figure 3.18 above (at approximately a value of 
m_dist = 1.1038). Here there are seen to be only a few simulated values lower than 
m_dist. Moreover, the discussion above now shows why this result differs from Clark-
Evans. In particular, by accounting for edge effects, this procedure reveals that under the 
CSR hypothesis, mean nn-distance values for Bodmin should be higher than those 
predicted by the Clark-Evans model. Hence the observed value of m_dist is actually 
quite low once this effect is taken into account. 
 

                                                 
26 You can convince yourself of this by running clust_sim a few times an observing that the variation in 
this estimated mean values is quite small.  
27 Note that as the sample size n  becomes larger, the expected nn-distance, ( )nE D , for a given region, R, 
becomes smaller.  Hence the fraction of points sufficiently close to the boundary of R to be subject to edge 
effects eventually becomes small, and this edge effect disappears. 
28 Note again that this P-value will change each time clust_sim is run. However, by trying a few runs you 
will see that all values are close to .05. 


