NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

APPENDIX TO PART I

In this Appendix, designated as Al (appendices A2 and A3 are for Parts Il and IlI,
respectively), we shall again refer to equations in the text by section and equation
number, so that (2.4.3) refers to expression (3) in section 2.4 of Part I. Also, references to
previous expressions in this Appendix (Al), will be written the same way, so that
(A1.1.3) refers to expression (3) of section 1 in Appendix Al.

Al.1. Poisson Approximation of the Binomial

This standard result appears in many elementary probability texts [such as Larsen and
Marx (2001, p.247)]. Here one starts with the fundamental limit identity

(AL.1.1) lim,,,, (1+%)" =¢*
that defines the exponential function. Given this relation, observe that since

nt nn=1)---(n-k+)(n-k)!' n(n-1)---(n—k+1)
ki(n—k)! k!(n—k)! - k!

(A1.1.2)

it follows that expression (2.2.3) can be written as

(AL1.1.3) nt [a(c:)jk [1—@jn_k
k!(n=k)! a(R) a(R)

_(m\n(-2-+n-k+D)(a@) V[, _aC))"
A k1 a®)) [ am)
= (3- n-l.n-k +1]{[”/ a(R)]a©)} (1_ a(C)jn (1_ a(C)]_k

n n n k! a(R) a(R)

But if we now evaluate expression (Al1l.1.3) at the sequence in (2.3.2) and recall that
n,/a(R,) — A >0, then in the limit we can replace n/a(R,) by A in the second factor.

Moreover, since (n, —h)/n, —1 forall h=0,1,..,k -1, it also follows that the first factor

in (A1.1.3) goes to one. In addition, the last factor also goes to one since
a(R,) > o =a(C)/a(R,) > 0. Hence by taking limits we see that

(AL14)  lim n! (20 V() ac) "
. m—o kl(nm_k)l a(Rm) a(Rm)
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S _aE) )"
_(1)k! {Ilmm%[l a(Rm)j }(1)
k_k.{limm%(l_a(C)[nm/a(Rm)]jn}
k! n,
_}”—k-{limm% [1_ x.a(C)Jnm}
k! n,

A
=" e ra(C)
k!

Al1.2. Distributional Properties of Nearest-Neighbor Distances under CSR

Given that the nn-distance, D, for a randomly selected point has cdf
(Al2.1) Fo(d) = 1-Pr(D>d) = 1-e™*

By differentiating (A1.2.1) we obtain the probability density f, of D as
(AL22)  f,(d)=Fj(d) = 2hnde™

This distribution is thus seen to be an instance of the Rayleigh distribution (as for
example in Johnson and Kotz, 1970, p.197). This distribution is closely related to the
normal distribution, which can be used to calculate its moments. To do so, recall first

from the symmetry of the density for the normal distribution, N(0,6°), that

1 ©x%/262 _ 1 © x%/262 _1
(A1.2.3) %jo e k=2 = jo e 127" dix —E\/ch

Hence by setting o> =1/(2An) so that A =1/(25°), we obtain the identity

(A1.2.4) jwe*’“dle |2 L
0 2\ 2

Next observe from the symmetry of the second-moment for N(0,c°) that

1 L 2,-x%126% _ 62 ®© _x2/262 _GZ
(Al.2.5) o '[O X‘e dx = = '[O X‘e dx —7\/%
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so that again by setting o =1/(2\x) we obtain

(A1.2.6) [ xe? ™ dx = L /2“ __1
° ha\Noan  dann

So to obtain the mean, E(D), of D observe from (A1.2.2) and (A1.2.6) that

(Al2.7) E(D) = J'wfo(x)dx = wa(anxe‘“‘Xz)dx :anfwxze‘mzdx
0 0 0
Cam 1
Mfr 2Jn

To obtain the variance, var(D), of D we first calculate the second moment, E(D?). To

do so, observe first from the integration-by-parts identity (as for example in Bartle, 1975,
Section 22) that for any differentiable functions, f(x) and g(x) on [0,0),

(A1.2.8) [ 1009/ 0)adx + [ () g(x)dx == F(0)g(0) +1im,_,,, (x)g(¥)

whenever these integrals and limits exist. Hence letting f (x) = x> and g(x):e’mz, it
follows that

(A1.2.9) j: X2 (=20 7xe ™ Ydx + jo‘” (2x)(e"™)dx = — (0) +lim__ x%™™ =0
But by (Al1.2.2) we have,

(A1.2.10) j: fo(x)dx=1 = anj: xe "™ dx =1 = I: 2xe ™ dx = k_ln

which together with (A1.2.9) now shows that

@ @ —hmx? @ —mx? 1
(A1.2.11) E(D?) = jo x2 £ (X)dx = jo X2 (2hmxe ™™ )dx = jo 2xe ™ dx -

Finally, by combining (A1.2.7) and (A1.2.11) we obtain

(AL2.12)  var(D) = E(D")-[E(D) = x—ln‘(ﬁj Tln‘(ﬁj .

ESE 502 Al-3 Tony E. Smith



NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

A1.3. Distribution of Skellam’s Statistic under CSR

Given these distributional properties of D, we next derive the distribution of Skellam’s
statistic in (3.2.6). To do so, we first observe from expression (Al.2.1) above that since

the cdf of the exponential distribution with mean 1/0 is given by F(x;0)=1-e %, it

follows at once that D? is exponentially distributed with mean 1/Ax. But since sums of
m independent and identically distributed exponentials with means 1/6 is well known
to be Gamma distributed, I'(m,0), (as for example in Johnson and Kotz, 1970, Chapter

17), it then follows that under CSR, the distribution of m independent nn-distance
samples (D,,..,D,), is given by,

(A1.3.1) W,=>"D} ~ I'(mAn)

For practical testing purposes, this is usually rescaled. Given that the gamma density for
W._ has the explicit form,

(}\‘n)m Wm71 — AW

(A1.3.2) f, (W) = oD

the change of variables
(A1.3.3) Sy =2AnW, =2Any " D/

yields a new density

(A1.3.4) g, (8) = f, (W(S)|W(s)| = f, (5/2hm)|1/22n]

_ (kn)m(S/ZXW)m_l ekn(s/an)( 1 j _ 27 ms™t e /2
(m-=1)! 2AT (m-=1)!

which is precisely the chi-square distribution with 2m degrees of freedom. Hence

(AL1.3.5) S,=2\ty " D7 ~ %,

Al.4. Effects of Positively Dependent Nearest-Neighbor Samples

In this section it is shown that positive dependencies among nearest neighbors have the
effect of increasing the variance of the test statistic, Z_, thus making outlier values more
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likely than they would otherwise be. To show this, suppose first that the sample nn-
distance values (D,,..,D,) are identically distributed with mean, x=E(D,), and

variance, o* = var(D,) = E[(D, - x)*]. Then as a generalization of expression (3.2.11) in
the text, we have

(A1.4.1) var(D,) = E[(D, - 1)°]

e 1z -a) =€ (Lo )
: E[(%Z?_l(Di —u))z} —E[ &30, (0 -0 - |

= A3 >0 END, - u)(D; - p)]

= > EID-u)1+E2. > ED - u)(D; - u)]
_ " var(D)+L " 2. .cov(D;, D))

- 1Yo E YL Y covD, D)

= G+ 2 2s.00v(D;, D))

Hence if there are some positive dependencies (i.e., positive covariances) among the
nearest-neighbor values (D,,..,D,) , then the second term of the last line will be positive,

so that in this case var(D,) > o*/n. Hence we must have

(A1.4.2) E[(D, ,u)]>72:>—E[(D ,u)]>1:>EK5 \/ﬂ}i

= E(Z})>1 = var(Z,)>1

where the last line follows from the fact that E(Z,) =0 regardless of any dependencies
among the nn-distances. But since one should have var(Z,)=1 under independent
random sampling, it then follows that realized values of Z_ will tend to be farther away

from zero than would be expected under independence. Thus even those clustering or
uniformity effects due to pure chance will tend to look more significant than they actually
are.
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Al1.5. The Point-in-Polygon Procedure

The determination whether a point, s, lies in a given polygon or not depends on certain
basic trigonometric facts. In the Figure 1 below the (hollow) point s is seen to lie inside
the polygon, R, determined by three boundary points {1,2,3}.

3
Fig.Al.1. Point Inside Polygon

If the angles (in radians) between successive points i and j are denoted by &, then it
should be clear that for any point s inside R these angles constitute a full clockwise
rotation through 2z radians, and hence that we must have 6,+6,,+6, =2z . The
situation can be more complex when the given polygon is not convex. But nonetheless, it
can easily be seen that if counterclockwise rotations are given negative values, then any
counterclockwise rotations are canceled out by additional clockwise rotations to yield the
same total, 2z . So if the polygon boundary points are numbered {L,2,..,N} proceeding

in a clockwise direction from any initial boundary point, then we must always have:*

N-1
(A15.1) "0, =2n

On the other hand, if point s is outside of the polygon, R, then by cumulating angles
from s between each successive pair of points, the sum of clockwise and
counterclockwise rotations must cancel, leaving a total of zero radians, i.e.,

(A1.5.2) > 0,,=0

In the case of the simple polygon, R={1,2,3}, above, this is illustrated by the three
diagrams shown in Figure 2 below.

! Certain additional complications are discussed at the end of this section.
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Fig.Al.2. Point Outside Polygon

Here the first two angles 6, and 6,, are positive, and the angle 6, is precisely the
negative sum of 4, and 6,,. By extending this idea, it is easy to see that a similar
argument holds for larger polygons.
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However, it is important to add here that this argument assumes that the polygon R is
connected, and has no holes. Unfortunately, these conditions can sometimes fail to hold
when analyzing general map regions. For example offshore islands are often included as
part of larger mainland regions, creating disconnected polygons. Also certain small
regions are sometimes nested in larger regions, creating holes in these regions. For
example, military bases or Indian reservations within states are often given separate
regional designations. There are other examples, such as the lake in Figure 2.4 of Part I,
where one may wish to treat treat certain subregions as “holes”.

So when using standard point-in-polygon routines in practice, one must be careful to
watch for these situations. Islands are usually best handled by redefining them as separate
regions. Then by applying a point-in-polygon procedure to each region separately, one
can determine whether a given point is one of them, or none of them. Holes can be
handled similarly. For example if R, < R, so that the relevant region, R, , is given by the

set-theoretic difference, R,—R,. So for this region, one can apply point-in-polygon
routines to R, and R, separately, and then accept only points that are in R, but notin R,.

Al1.6. A Derivation of Ripley’s Correction

First observe that the circular cell, C, of radius h about point s, can be partitioned into a
set of concentric rings, C, about s, , each of thickness A, , so that C = Uka . One such
ring is shown in Figure 3 below.

v

Fig.Al.3. Partition of Circular Cell, C

Since these rings are disjoint, it follows that the number of points in C is identically
equal to the sum of the numbers of points in each ring C,, so that (in terms of the

notation in Section 2.2 in the text),
(A1.6.1) E[N(C)] =), E[N(C))]

But by stationarity, it follows from expression (2.3.4) that
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(A1.6.2) E[N(C,)] = 4a(C,) = 4a(C, N R){%}

Where a(C, nR) is by definition the area of the observable portion of C, inside R.
Now when the ring thickness, A, , becomes small, it should be clear from Figure Al.3
that the ratio of a(C, N R) to a(C,) is approximately equal to the fraction of the circum-
ference of C, that is inside region R. So if this ratio is now denoted by w, then,

(A1.6.3) M ~ Wik M ~ i

a(C,) a(C,NR) W,
Hence, when the ring partition in Figure Al.3 becomes very fine, so that the A,'s
become small, one has the approximation

(A1.6.4) E[N(C,)] = 2a(C, R){a(?:(c(:)R)}

_ E[N(Cka)][ a(C,) }N E[N(C, "R)]

aC AR | w,

Putting these results together, we see that for fine partitions of C,

EIN(C, ~R)]

(AL6S)  K(h)=ZEN(C)]=22 EIN(CI =3, ——

Note also that for sufficiently fine partitions it can be assumed that each ring contains at
most one of the observed points,s;eCnR, so that the point-count estimators

I§[N(Ck NR)] for E[N(C, nR)] will have value one for those rings C, containing a
point and zero otherwise. Hence, observing by definition that I,(d;)=1 for all such
points, it follows that

1,(d;) ,s,€C,NR)

(A1.6.6) E[N(C, NR)] = { 0 otherwise

If we again estimate A1 by i:n/a(R), and relabel the ring containing each point
s;€eCnR as C,, then (A1.6.6) is seen to yield the following estimate of K(h) in

(A1.6.5) based on point counts in the set C "R centered at s,
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: = 1,(d,
(AL6T)  K(h=3) E[N(\?v.ka)] 1y 2 (dy)

Finally, by averaging these estimates over all points s, € R as in the text, we obtain the
pooled estimate,

1, (d;)

Wi

(AL6S) KM =F2 KM =430,
which is seen to be precisely Ripley’s correction in expression (4.3.7).

Al.7. An Alternative Derivation of P-Values for K-functions

The text derivation of the P-values in expressions (4.6.8) and (4.6.10) is appealing from a
conceptual viewpoint in that it focused directly on the distribution of the test statistic,

K(h) , under the CSR Hypothesis. But there is an alternative derivation of this expression
that has certain practical advantages discussed below. This approach is actually much
closer in spirit to the argument used in deriving the “envelope” P-values of expressions
(4.6.3) and (4.6.4), which we now make more precise as follows. Observe that if |, is
consistent with CSR then by construction (l,,1,,..,I,) must be independently and

identically distributed (iid) samples from a common distribution. In the envelope case it
was then argued from the symmetry of iid samples that none is more likely to be the
highest (or lowest) than any other. More generally, suppose we now ask how likely it is

for the observed sample value, |I,, to be the k™ largest among the N +1 samples
(Ip,1,..1y), i.e., to have rank, k, in the ordering of these values. Here it is important to

note that ranks are not well defined in the case of ties. So for the moment we avoid this
complication by assuming that there are no ties. In this case, observe that there must be
(N +1)! possible orderings of these iid samples, and again by symmetry, that each of

these orderings must be equally likely. But since exactly N! of these orderings have |, in
the k™ position (where N! is simple the number of ways of ranking the other values), it
follows that if the random variable, R,, denotes the rank of |;, then under H, we must
have:

NI NI 1

(AL7.1) PR =k = N oD (N+D) NI N1’

k=1.,N+1

which in turn implies that the chance of a rank as high as k is given by,

2 Remember that “high” ranks mean low values of k .
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1 k
A1.7.2 Pr(R. <k)=S" Pr(R. =r) =S¥ - Ck=1. N+1
Mi72) PR E=XLPR D=3 ) - :

So rather than using the distribution of K(h) under CSR to test this null hypothesis, we
can use the distribution of its rank R, in (A1.7.1) and (Al1.7.2). But if we again let
m, (l,) denote the number of simulated samples at least as large as |,, then the observed
rank of |, (assuming no ties) is precisely m, (l,)+1. So to test the CSR Hypothesis we
now ask: How likely would it be to obtain an observed rank as high as m_(l,)+1 if CSR
were true? Here the answer is given from (A1.7.2) by the clustering P-value:

m,(I,)+1

(AL.7.3) Py () = PR, < m, (I,) +1] = A
_l_

which is seen to be precisely the same as expression (4.6.8). However there is one
important difference here, namely that we are no longer attempting to estimate a P-value.
The distribution in (A1.7.1) and (A1.7.2) is exact, so that there is no need for a “hat” on
P

cluster *

Another important advantage of this approach is that it is directly extendable to include
possible ties among values. In particular, suppose that whenever two values are tied, we
flip a fair coin to order them. More generally, suppose we use any tie-breaking procedure
under which the rankings (R,,R,,..,R,) are exchangeable random variables (i.e., under

which their joint distribution in invariant under any permutation of the indices, 0,1,..,N ).
Then it again follows that all (N +1)! orderings resulting from this procedure must be

equally likely, and hence that (A1.7.1) and (A1.7.2) above continue to hold. Hence the
key difference here is that in the presence of one or more ties, the ranking of |; is not

uniquely determined by its value. There must be some additional tie-breaking procedure.
So if 1, is tied with exactly g of the simulated values, then there must be some additional

information about the ranking, say R,(q), among these q+1 equal values. Hence all that
can be said is that if m_(l,) again has the same meaning then the final rank of 1, will be
m,(l,)-g+R,(q). For example, if 1, were ranked last among the ties, so that
R,(9) =q+1, then |, would again have rank m_(l,)—q+(q+1) =m,_(l,)+1, since all tied
values would be ranked ahead of |, (i.e., would be closer to rank 1 than 1,). Similarly, if
I, were ranked ahead of all other ties, so that R,(q)=1, then I, would have rank
m, (l,)—qg+1. Hence if we are given R,(q), then a conditional cluster P-value could be
defined in terms of expression (A1.7.2) as follows:

(AL1.7.4) P.....[N| R, (@)] = PrR, > m. (I,)—q+ R, (q)] = m+(Io)&q+ +1r R, (q)
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But since the above exchangeability property also implies that
. 1 .
(A1.7.5) Pr[R,(q)=i]=—— , i=01..,q
g+1

it follows that we can obtain an unconditional clustering P-value (depending only on q)
by simply taking summing out these conditioning effects as follows:

(A176) Pcluster (h | q) = Ziq=0 Pcluster[h | R0 (q)]P[RO (q) = I]

_ q m+(|0)+l—i 1 _ 1 q s
= 20 N1 £q+1J_(N +1)(q+1)zi=°[m*(l")+1 )l

1

= m_{”h(%) +1H(q+1) —Zizoi}

~ 1
~ (N+1)(q+D)

{m, (I,) +B(q +1) _@}

_m.(l)+1-(q/2)
- N +1

Hence this generalized cluster P-value amounts to replacing the rank, m_(l,)+1, of |, in
(A1.7.2) for the case of no ties with its average rank, m, (l,)+1—q/2, for cases where q
values are tied with |,. So for example, if N=3 and (l,,1,1,,1,)=(5,2,5,6), so that
m, (l,) =2, q=1 and the possible ranks of |, are {2,3}, then its average rank is 2.5 and

(- 2rD-1/2_25

Al.7.7 P
( ) cluster 5 5

Note finally that the special case in (A1.7.3) above is now simply the special case of “no
ties”, so that P, ., (") = P, (N]0).

The argument for uniform P-values is of course identical. Thus the corresponding
generalized uniform P-value in the presence of q ties is given by:

m_(I,)+1-(q/2)

Al.7.8 P . (h =
( ) unlform( |q) N +1
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where m_(l,) is again the number of simulated values I, no larger than I,. Here it is

important to note that these P-values are “almost complements” in the sense that for all q
and h,

N+2

ALT9 Passir 1 @) + Pirorm (] @) =
( ) cluster( |q) unlform( |q) N-l—l

To see this, note simply that if we let N_,N_,N_ denote the number of simulated
samples that are less, equal, or greater than |,, then it follows by definition that g=N_,
so that

(AL7.10)  m.(I)=N.+N_=N_+q
(AL7.11)  m.(,)=N_+ N_=N_+q

and hence that

(A1.7.12) P (N Q)+ P, (N Q) = m, (Io)l;:l_ (q/2) N m_(I,)+1-(q/2)
+1 N +1

_ [N, +a)+1-(a/2)1+[(N_+ ) +1-(q/2)]
N +1

_[(N<+q+N>]+2 ~N+2
N +1 N +1

Thus for even fairly small N it must be true that

(A1.7.13) Pauser (N10) + Pyiorm (N @) = 1

so that we can essentially plot both P-values on one diagram. Hence all plots in K-
function programs such as k_function_plot focus on cluster P-values, P, (h|q),

where P,_....(h]q) is implicitly taken to be 1-P, ... (h|Q) .

uniform

Al1.8. A Grid Plot Procedure in MATLAB

While the full grid, ref, can be represented in ARCMAP by exporting this grid from
MATLAB and displaying it as a point file, it is often more useful to construct this display
directly in MATLAB to obtain a quick check of whether or not the extent and grid size
are appropriate. Assuming that the boundary file exists in the MATLAB workspace, this
can be accomplished with the program poly_plot.m, which was written for this kind of
application. In the present case the boundary file, Bod_poly (shown on page 3-23 of Part
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1), is the desired input. Hence to plot the grid, ref, with respect to this boundary, use the

command:
>> poly_plot(Bod_poly,ref);

The direct screen output of poly plot
is shown in Figure Al1.4 on the right,
and is clearly distorted relative to the
true shape of Bodmin (since MATLAB
assigns internal scales to each axis
based solely on relative magnitudes).

To correct the shape, simply use the
mouse to drag the bottom and sides of
the frame until a more satisfactory
image of Bodmin is obtained, such as
that shown in Figure A1.5 below. This
provides a very quick way of deter-
mining whether the grid extent and cell
size looks appropriate for a reasonable
interpolation to be done.

Notice also that the size of the dots in
the Figure may be too large or too
small, depending on the size of the
boundary being used. These attributes
(and others, such as the thickness of
the boundary) can be altered. To do so,
click on Edit and select Current
Object Properties. Then to edit the
size of the grid points, click on any of
these points. You will then see that a
few diagonal points are selected, and
that a window has opened containing
the attributes of these points. Observe
that under “Marker” there is a point-
type window and a numerical Marker
size. If you increase or decrease this
size, you will see that the point size in
the display above has changed. In a
similar manner, you can edit the
boundary thickness by repeating the
above Edit procedure, this time
clicking on any exposed portion of the
boundary, rather than on one of the
grid points.

i} Figure 1

File Edit View Insert Tools Deskbop Window Help

~=lolx|

Ded&s|k(aame || 0850

10

e
=y

Fig.Al.4. Screen Output from poly_plot

) Figure 1

File Edit Wiew Insert Tools Desktop Window Help

=10l x|

DS

‘2L E R L]

SREBRBERRREE.
‘S22 22 LS ]

SRERBRRBREEE

ARRRRER SRR,

‘S22 22X EI SIS RL Y ]
'S LI ES XIS E R ST Y]

FERBRER R RS R R R R R RR R R R,

-

L2l X Iy I I I I Y I i I IXY1IY ]

Fig.A1l.5. Adjusted Screen Output
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A1.9. A Procedure for Interpolating P-Values

21|
To duplicate these results, open Spatial Analyst ot pints |as =l =)
and then select: 2 value feld: [F_oos =]
Spline type: IF!eguIarized j
Interpolate to Raster — Spline. weight s
. . Mumber of points: 12
In the Spline window that opens set: |
Output cell size: I n.omos
Input points = “P-val.shp” Ouputiaster.  [<Temporan =
Z Value fleld = “P_OOSH ITI Cancel |

Weight = “5”

and leave all other values as defaults. The value-field, P_005, contains the desired p-
values in the file, P-val.shp. The weight 5 adds a degree of “stiffness” to the spline
which yields a somewhat smoother result than the default .01 value. Now click OK and
a new layer appears called “Spline of P-val.shp”. Right click on this layer and select
“Make Permanent”. Save it to your home directory as say, spline_pvals. This will not
change the layer, but will give it an editable form. You can alter the display by right
clicking on the layer, “Spline of P-val.shp”, selecting “Classified” (rather than
“Stretched”), and editing its properties. [Notice that the values are mostly negative, and
that the relevant range from 0 to 1 is only a very small portion of the values. This is due
to the extreme nonlinearity of the spline fit.]

2| xl
- - - - nput suface ine of Pals - M

To obtain the display in Figure 4.23 above, - e P 3 3]
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lines as follows. First open Spatial Analyst R ]
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Tatal number of contour values: 226
Input Surface = “Spline of PVals”
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Click OK and a new layer called “ctour” appears that shows the desired contours. This
file is stored as a temporary file. You can edit its properties. So select “Classify” and
choose the “Manual” option with settings (.01,.05,0.1,0.2) and appropriate colors. This
should yield roughly the representation in Figure 4.23 above. This file is stored as a
temporary file only. So you can keep trying different interval and base contour values
until you find values that capture the desired regions of significance. Then use Data —
Export to save a permanent copy in your home directory and edit as desired.
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