NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

6. Space-Time Point Processes

Point events (such as crimes or disease cases) occur in time as well as space. If both time
and location data are available for these events, then one can in principle model this data
as the realization of a space-time point process. As a prime example, recall that the
Burkitt’s Lymphoma data (examined in Assignment 1 of this class) contains both onset
times and locations for 188 cases during the period 1961-1975. Moreover, the original
study of this data by Williams et al. (1978)", (here referred to as [W]) focused precisely
on the question of identifying significant space-time clustering of these cases. Hence it is
of interest to consider this data in more detail.

The cases occurring in each five-year period of the study are displayed in Figure 6.1
below (with green shading reflecting relative population density in West Nile), and
correspond roughly to Figure 5 in [W].> Here is does appear that cases in subsequent
periods tend to be clustered near cases in previous periods. But the inclusion of
population density in Figure 6.1 was done specifically to show that such casual
observations can be deceptive. Much of the new clustering is seen to occur in more
densely populated areas where one would expect new cases to be more likely based on
chance alone.

1961-65 1966-70 1971-55

Figure 6.1 Lymphoma Cases in each Five-Year Period

The simple regression procedure used in Assignment 1 related times of cases to those of
their nearest-neighbors. But since population density is ignored in this approach, the
“clustering” result obtained by this procedure is questionable at best. Hence, one

! This is Paper 1 in the Reference Materials on the class web page.

% These cases differ slightly from those in Figure 5 of [W]. The present approximation is based on the
counting convention stated in [BG, p.81] that time is “measured in days elapsed since January 1%, 1960”.
This rule does not quite agree with the actual dates in the Appendix of [W], but the difference is very slight.

ESE 502 1.6-1 Tony E. Smith



NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

objective of the present section is to develop an alternative “random labeling” test that is
more appropriate. But before doing so, we shall consider the general question of space-
time clustering more closely.

6.1 Space-Time Clustering

Event sequences exhibit space-time clustering if events that are close in space tend to be
closer in time than would be expected by chance alone. The most classic examples of
space-time clustering are spatial diffusion processes in which point events are propagated
from locations to neighbors through some form of local interactions. Obvious examples
include the spread of forest fires (where new trees are ignited by the heat from trees
burning nearby), or the spread of contagious diseases (where individuals in direct contact
with infected individuals also become infected). Here it is worth noting that cancers such
as Burkitt’s Lymphoma are not directly contagious. However, as observed in [W,p.116],
malaria infections may be a contributing factor leading to Burkitt’s Lymphoma, and the
spread of malaria itself involves a diffusion process in which mosquitoes transmit this
disease from existing victims to new victims.

But even with genuine diffusion processes one must be careful in analyzing space-time
clustering. Consider the onset of a new flu epidemic introduced into a region, R, by a
single carrier, c, and suppose that the cases occurring during the first few days are those
shown in Figure 6.2 below.
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Figure 6.2. Early Epidemic Figure 6.3. Late Epidemic

Here there is a clear diffusion effect in which the initial cases involve contacts with c, and
are in turn propagated to others by secondary contacts. But notice that even though the
initial three cases shown are all close to c, this process spreads out quickly. So while the
six “second round” cases shown in the figure may all occur at roughly the same time,
they are already quite dispersed in space. This example shows that cases occurring close
in time need not occur close in space. However, this figure also suggests that cases
occurring close in space may indeed have a tendency to occur close in time.® So there

® Here we assume that most contacts involve individuals living in close spatial proximity — which may not
be the case. For example, some individuals have significant contact with co-workers at distant job sites.
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appears to be some degree of asymmetry between space and time in such processes. We
shall return to this issue below.

While the early stages of this epidemic show clear propagation effects, this is not true at
later stages. After the first few weeks, such an epidemic may well have spread throughout
the region, so that the pattern of new cases occurring on each day may be very dispersed,
as shown in Figure 6.3. More importantly, this pattern will most likely be quite similar
from day to day. At this stage, the diffusion process is said to have reached a steady state
(or stationary state). In such a steady state it is clearly much harder to detect any space-
time clustering whatsoever. Diffusion is still at work, but the event pattern is no longer
changing in detectable ways.* However, it may still be possible to detect such space-time
effects indirectly. For example, if one were to examine the distribution of cases on day t,
and to identify the new cases on day t+1, then it might still be possible to test whether
these new cases are “significantly closer” to the population of cases on day t than would
be expected by chance alone. We shall not pursue such questions here. Rather the intent
of this illustration is to show that space-time clustering can be subtle in even the clearest
examples of spatial diffusion.

6.2 Space-Time K-Functions

With this preliminary discussion we turn now to the measurement of space-time
clustering. Here we follow approach of [BG, Section 4.3] by constructing a space-time
version of K-functions. Consider a space-time pattern of events, {e, = (s;,t,):i=1,..,n}, in

region, R, where s, again denotes the location of event e, in R, and t, denotes the time at
which event e, occurs. If for a given event e, we are interested in the numbers of events
that are “close” to e, in both space and time, then for each spatial distance, h, and time
increment, A, it is natural to define the corresponding space-time neighborhood of event,

e =(s,,t.), by the Cartesian product:
(6.2.1) Chm (@) ={(s,t) |5, —s[| < h|t,—t] <A}

={s:||s,—s| < hpx{t:|t —t| <A}

Hence the circular neighborhoods, C,(s;), in two dimensions are now replaced by
cylindrical neighborhoods, C, , () , in three dimensions, as shown in Figure 6.4 below.

* A more extreme example is provided by change in temperature distribution within a room after someone
has lit a match. While the match is burning, there is very sharp peak in the temperature distribution that
spreads out from this point source of heat. After the match has gone out, this heat is not lost. Rather it
continues to diffuse throughout the room until a new steady state is reached in which the temperature is
everywhere slightly higher than before.
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Figure 6.4 Space-Time Neighborhoods

As in two dimensions, one can define a relevant space-time region as the Cartesian
product, RxT of the given spatial region, R, and a relevant time interval, T. For a given
pattern of events, {e =(s;,t.):i=1,..,n}, the default time interval, T, for purposes of

analysis is usually taken to be the smallest time interval containing all event times, i.e.,
(6.2.2) T=t, —tu =max{t:i=1.,n}-min{t :i=1.,n}

max

as illustrated in Figure 6.5 below:’

Figure 6.5. Space-Time Region for Analysis

In this context, the desired space-time extension of K-functions is completely
straightforward. First, if for any two space-time events, e =(s;,t;) and e; =(s;,t;) we

> At this point it should be noted that, as with two dimensions, the cylindrical neighborhoods in (6.2.1) are
subject to “edge effects” in Rx T , so that in general, one must replace C, , (e,) by C,, ()N (RxT).

(h,a) (h,A)
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now let t; =|t,—t;| (and again let d; :Hsi —st) then as an extension of (4.3.2), we now
have the following space-time indicator functions:

)1, (dy<h)and (t; <A)
(6.2.3) oy () = { 0, otherwise
If for a given space-time point process we let A, denote the space-time (st) intensity of

events, i.e., the expected number of events per unit of space-time volume, then the
desired space-time K-function is again defined for each h>0 and A>0 to be the
expected number of additional events within space-time distance (h,A) of a randomly

selected event, e, i.e.,

t

(6.2.4) K(hA) = £ E[ 1o (dyty) ]

So as in (4.3.4), for any given pattern size, n, the pooled form of this function

(6'2'5) K(h’A) - n%ﬂstzrzlzjﬂE[I(h,A)(dij’tij)]

implies that the natural estimator of K(h,A) is given by sample space-time K-function:

(6.2.6) K(ha) = =303 e (i )

Here the sample estimate, /ist , of the space-time intensity is given by

/:i’\st = l
a(R) ' (tmax _tmin)

(6.2.7)

where the denominator is now seen to be the volume of the space-time region, RxT , in
Figure 6.5 above.

6.3 Temporal Indistinguishability Hypothesis

To test for the presence of space-time clustering, one requires the specification an
appropriate null hypothesis representing the complete absence of space-time clustering.
Here the natural null hypothesis to adopt is simply that there is no relation between the
locations and timing of events. Hence in a manner completely paralleling the treatment
of marked point processes in (5.6.1) it is convenient to separate space and time, and write
the joint probability of space-time events as,

(6.3.1) Pri(s,.t):i=1.,n] =Pr[(s,,...S,) (t,...t.)]
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= Pr[(t,...t.)|(s,,-.,S,)]-Pr(s,,...s,)

where Pr(s,,..,S,) again denotes the marginal distribution of event locations, and where
Pr(t,...t,)|(s,...,s,)] denotes the conditional distribution of event times given their

locations.’ In this context,. If the marginal distribution of event times is denotes by
Pr(t,,...t,), then a parallel to (5.6.2), the relevant hypothesis of space-time independence

for our present purposes can be stated as follows:

63.2) | PrItt,)| (8,1 =Pr(tent,)

Here it should be noted (as in footnote 5 of Section 5) that from a formal viewpoint, this
independence condition could equally well be stated by switching the roles of
locations, (s,,..,S,), and times, (t,..,t,), in (6.3.2). But as noted in Section 6.1 above,
there is a subtle asymmetry between space and time that needs to be considered here. In
particular, recall that event sequences are said to exhibit space-time clustering if events
that are close in space tend to be closer in time than would be expected by chance alone.
Hence it is somewhat more natural to condition on the spatial locations of events and
look for time similarities among those events that are close in space.

Note also that as with marked point processes, the indexing of events, e,, is completely
arbitrary. Here it might be argued that the ordering of indices i should reflect the ordering
of event occurrences. But this is precisely why event times have been listed as distinct
attributes of space-time events. Hence in the present formulation, it is again most
appropriate to treats space-time pairs, (s;,t;) and (s;,t;) as exchangeable events. In a
manner paralleling condition (5.6.3), this implies that for all permutations (z,,..,7,) of
the subscripts (1,..,n) the marginal distribution of event times should satisfy the
exchangeability condition:

(6.33) | Pr(t, ,..t, ) =Pr(t,...t,)

These two conditions together constitute our null hypothesis that spatial events are
completely indistinguishable in terms of their occurrence times. Hence we now designate
the combination of conditions, (5.6.2) and (5.6.3) as the temporal indistinguishability
hypothesis.

6.4 Random Labeling Test

We now extend the argument in Section 5.6.2 to obtain an exact sampling distribution for
testing this temporal indistinguishability hypothesis. To do so, observe first that the

® Again for simplicity we take the number of space-time events, n, to be fixed. Alternatively, the
distributions in (6.3.1) can all be conditioned on n.
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argument in (5.6.4) now shows that conditional distribution in (6.3.2) inherits
exchangeability from (6.3.3), i.e., that for all permutations (z,,..,z,) of (,..,n),

(64.1)  Prllt, ., )| (58] = Pr(t, at,)

= Pr(t.l, . n) = Pr[(tl, B n)l(sl’ " n)]

Hence the only question is how to condition these permutations to obtain a well-defined
probability distribution. Recall that the appropriate conditional information shared by all
permutations of population labels, (m;,..,m ), was precisely the number of instances of

each label, “1” and “2”, i.e., the population sizes, n, and n,. Here the set of label
frequencies, {n;,n,}, is now replaced by the set of time frequencies, {n, :teT}, where n,
is the number of times that t occurs in the given set of event times, (t,..,t ), I. e’

(6.42) n=Hi:t=t,i=1.,n}

It is precisely this frequency distribution which is shared by all permutations, (t, ,...t, )
in (6.4.1). Indeed, it follows [as a parallel to (5.6.5)] that for every list of times (t/,..,t})
consistent with this distribution, there is some permutation (t, ,...t, ) of (t,,...,t,) with:

AR

(6.43)  (4,..t)=(,..t.)

Hence if the conditional distribution of such times given both (s,,..,s,) and {n,:teT} is
denoted by Pr[-|(s,,..,S,).{n, :t € T}], then the same arguments in (5.6.6) through (5.6.8)
now yield the following exact conditional distribution for all permutations (z,,..,z,) of
these occurrence times under the temporal indistinguishability hypothesis:

(644) | PrI(t, ,t, )| (s,5,)4n :teTH = l'

As in Section 5.6.2, this sampling distribution again leads directly to a random-labeling
test of this hypothesis. For completeness, we list the steps of this test, which closely
parallels the random-labeling test of Section 5.6.2:

(i) Given observed locations, (s,,..,s,), and occurrence times, (t,,..,t,), simulate N
random permutations [~,(z),..,7,(r)], 7=1.,N of (1..n), and form the permuted
labels (t, ),--+t, ())» 7=1.,N [which is now equivalent to taking a sample of size N
from the distribution in (6.4.4)].

1ttt

" Note that in most cases these frequencies will either be zero or one. But the present general formulation
allows for the possibility of simultaneous events, as for example Lymphoma cases reported on the same
day (or even instantaneous events, such as multiple casualties in the same auto accident).
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@) If K’(h,A) denotes the sample space-time K-function resulting from joint
realization, [(s;,..,S,),(t, (), 1, -))], then choose relevant sets of distance radii,

{h,:w=1.,W;}, for R, and time intervals, {A,:v=1..,V; } for T, and calculate the
sample space-time K-function values, {K’(hW,AV):W=1,..,WR,V=1,..,VT} for each
7=1.,N.

(ii1) Finally, if the observed sample space-time K-function, Ko(h,A), is constructed
from the observed event sequence, [(S,,...S,)(t,,...t.)], then under the temporal

indistinguishability hypothesis each observed value, KO(hW,AV) , should be a “typical”
sample from the list of values [K’(hW,AV):rzo,l,.., N]. Hence if M? denotes the
number of simulated random relabelings, 7 =1,..,N, with R’(hW,AV)z RO(hW,AV),

then the probability of obtaining a value as large as KO(hW,AV) under this hypothesis
is estimated by the space-time clustering p-value:

- M?+1
(645) Pst—clustered (hW’AV) - N +1

(iv) Similarly, if M° denotes the number of simulated random relabelings,
r=1.,N, with K*(h,,A,)<K°(h,,A,), then the estimated probability of obtaining

a value as small as KO(hW,AV) under this hypothesis is again given by the space-time
dispersion p-value:

A MO +1
(646) Pst—dispersed (hw’Av) = N +1

Our primary interest here is of course in space-time clustering for relatively small values
of h and A. But it is clear that a range of other questions could in principle be addressed
within the more general framework outlined above.

6.5 Application to the Lymphoma Example

This testing procedure is implemented in the MATLAB program, space_time_plot.m,
and can be applied to the Lymphoma example above as follows. In the MATLAB
workspace, lymphoma.mat, the (188 x 3) matrix, LT, contains space-time data for the
n =188 lymphoma cases, with rows (x.,y,,t;) denoting the location, (x;,y,), and onset
time, t;, of each case i. In this program, the maximum distance again setto h_, /2 asin
(4.5.1) above, and similarly, the maximum temporal interval is set to half the maximum

ESE 502 1.6-8 Tony E. Smith



NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

time interval, A, /2, where A, =t —t.. inFigure 6.5 above. Given these
maximum values, the user has the option of choosing subdivisions of h ., /2 into s
equal increments, h =(i/s)(h,, /2),i=1,..,s, and subdivisions of A__ /2 into t equal
increments, A; =(j/t)(A,,/2),j=1..,t. So for example the following command uses

999 random relabelings of times to test for space-time clustering of the Lymphoma data,
LT, at each point on a grid of space-time neighborhoods (h;,A;) with s=t=20:

>> results = space_time_plot(LT,999,20,20);

The results of these sxt =400 tests is plotted on a grid and then interpolated in
MATLAB to obtain a p-value contour map such as the one shown in Figure 6.6 below:

<) Figure 1 =181 x|

Eile Edit Wiew Insert Tools Deskbop ‘Window Help
DEEE s aads|d(0a =0
SPACE-TIME P-VALUES

2600 -
40.09

+0.08

2000 ¢
40.07

1500

v
E 10,05
1000 1 may
0.03
500 - 0.02
0.01
>
P

il 10 20 30 40 =0 0
Distance

Figure 6.6. P-value Map for Lymphoma Data

Note first that each location in this region corresponds to the size of a space-time
neighborhood. Hence those areas with darker contours indicate space-time scales at
which there are significantly more cases in neighborhoods of this size (about randomly
selected cases) than would be expected under the temporal indistinguishability
hypothesis. In particular, the dark contours in the lower left corner show that there is very
significant concentration in small space-time neighborhoods, and hence significant space-
time clustering. This not only confirms the findings of the simple regression analysis
done in Assignment 1, but also conveys a great deal more information. In fact the darkest
contours show significance at the .001 level (which is the maximum significance
achievable with 999 simulations).?

® Note also that these p-values can be retrieved in numerical form from the output structure, results, in the
command above.
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Before discussing these results further, it is of interest to observe that while the direct plot
in MATLAB above is useful for obtaining visual results quickly, these p-values can also
be exported to ARCMAP and displayed in sharper and more vivid formats. For example,
the above results were exported to ARCMAP and smoothed by ordinary kriging to obtain
the sharper representation shown in Figure 6.7 below:
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Figure 6.7 Smoothed P-Value Map in ARCMAP

Using this sharper image, notice first that the horizontal band of significance at the
bottom of the figure indicates significant clustering of cases within 500 days of each
other (~ 1.4 years) over a wide range of distances. This suggests the presence of short
periods (about 1.4 years) with unusually high numbers of cases over a wide region, i.e.,
local peaks in the frequency of cases over time. This can be confirmed by Figure 6.8
below, where a number of local peaks are seen, such as in years 7, 11, 13 and 15 (with
year 1 corresponding to 1961)
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Figure 6.8 Time Frequency of Lymphoma Cases
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Next observe that there is a secondary mode of significance at about 1500 days (~ 4
years) on the left edge of Figure 6.7. This indicates that many cases occurred close to one
another over a time lag of about 4 years. Note in particular that the peak years 7,11, and
15 are spaced at 4 years. This suggests that such peaks may represent new outbreaks of
Lymphoma cases in the same areas at intervals of about 4 years. Hence the p-value plots
in Figures 6.6 and 6.7 above do indeed yield more information than simple space-time
clustering of events.
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