NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

3. Testing Spatial Randomness

There are at least three approaches to testing the CSR hypothesis: the quadrat method, the
nearest-neighbor method, and the method of K-functions. We shall consider each of these
in turn.

3.1 Quadrat Method

This simple method is essentially a direct test of the CSR Hypothesis as stated in
expression (2.1.3) above. Given a realized point pattern from a point process in a
rectangular region, R, one begins by partitioning R it into congruent rectangular
subcells (quadrats) C,,..,C,, as in Figure 3.1 below (where m=16). Then, regardless of

whether the given

Fig. 3.1. Quadrat Partition of R

pattern represents trees in a forest or beetles in a field, the CSR Hypothesis asserts that
the cell-count distribution for each C, must be the same, as given by (2.1.3). But rather
than use this Binomial distribution, it is typically assumed that R is large enough to use
the Poisson approximation in (2.3.3). In the present case, if there are n points in R, and
if we let a=a(C,), and estimate expected point density A by

o n
(3.1.1) x_m

then this common Poisson cell-count distribution has the form

N o\ k o
(3.1.2) Pr[N, =k |2] = %e*a ,k=0,12,...

Moreover, since the CSR Hypothesis also implies that each of the cell counts,
N,=N(C),i=1.,k, is independent, it follows that (N,:i=1.,k) must be a
independent random samples from this Poisson distribution. Hence the simplest test of
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this hypothesis is to use the Pearson > goodness-of-fit test. Here the expected number of

points in each cell is given by the mean of the Poisson above, which (recalling that
a=a(R)/m by construction) is

- > n n
(3.1.3) ENI) = ad = apo =

Hence if the observed value of N, is denoted by n., then the chi-square statistic

m . — /m)2
314 2 _\ (n,=n/m)~
( ) X Z':l n/m

is known to be asymptotically chi-square distributed with m—1 degrees of freedom,
under the CSR Hypothesis. Thus one can test this hypothesis directly in these terms. But

since n/m is simply the sample mean, i.e., n/m= (1/m)zirilni =n, this statistic can also
be written as

2

(3.L5) 2 = Z[L@:(m—l)s—

n

where s* = ﬁZL(ni —m)? is the sample variance. But since the variance if the Poisson

distribution is exactly the mean, it follows that var(N)/E(N) =1 under CSR. Moreover,

since s*/M is the natural estimate of this ratio, this ratio is often designated as the index
of dispersion, and used as a rough measure of dispersion versus clustering. If s*/i <1
then there is too little variation among quadrat counts, suggesting possible “dispersion”
rather than randomness. Similarly, if s*/f >1 then there is too much variation among
counts, suggesting possible “clustering” rather than randomness.

But this testing procedure is very restrictive in that it requires a rectangular region." More
importantly, it depends critically on the size of the partition chosen. As with all
applications of Pearson’s goodness-of-fit test, if there is no natural choice of partition
size, then the results can be very sensitive to the partition chosen.

3.2 Nearest-Neighbor Methods

In view of these shortcomings, the quadrat method above has for the most part been
replaced by other methods. The simplest of these is based on the observation that if one
simply looks at distances between points and their nearest neighbors in R, then this
provides a natural test statistic that requires no artificial partitioning scheme. More

! More general “random quadrat” methods are discussed in Cressie (1995,section 8.2.3).
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precisely, for any given points, s=(s;,s,) and v=(v,v,) in R we denote the
(Euclidean) distance between s and v by?

(3.2.1) d(s,V) = (5, ~V)* + (5, ~V,)?

and denote each point pattern of size n in R by S =(s,:i=1,..,n), then for any point,
s, €S, ,% the nearest neighbor distance (nn-distance) from s to all other points in S_ is
given by’

(3.2.2) d, =d,(S,) = min{d(s,,s,):s, €S, j # i}

In a manner similar to the index of dispersion above, the average magnitudes of these
nn-distances (relative to those expected under CSR) provide a direct measure of
“dispersion” or “clustering” in point patterns. This is seen clearly by comparing of the
two figures below, each showing a pattern of 14 points.

: . (&)
° < b
[ * [ ] [ ] *
[} [ J [}
Fig.3.2. Dispersed Pattern Fig.3.3. Clustered Pattern

In Figure 3.2 these points are seen to be very uniformly spaced, so that nn-distances tend
to be larger than what one would expect under CSR. In Figure 3.3 on the other hand, the
points are quite clustered, so that nn-distances tend to be smaller than under CSR.

2 Throughout these notes we shall always take d(s,v) to be Euclidean distance. However there are many

other possibilities. At large scales it may be more appropriate to use great-circle distance on the globe.
Alternatively, one may take d(s,v) to be travel distance on some underlying transportation network. In

any case, most of the basic concepts developed here (such as nearest neighbor distances) are equally
meaningful for these definitions of distance.

® The vector notation, S, =(s, :i=1,..,n), means that each point s, is treated as a distinct component of

S, . Hence (with a slight abuse of notation), we take s, € S to mean that s is a component of pattern S_ .
* This is called the event-event distance in [BG] (p.98). One may also consider the nn-distance from any
random point, x € R to the given pattern as defined by d (S ) = min{d(x,s):i=1..,n}. However, we

shall not make use of these point-event distances here. For a more detailed discussion see Cressie (1995,
section 8.2.6).
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3.2.1 Nearest-Neighbor Distribution under CSR

To make these ideas precise, we must determine the probability distribution of nn-
distance under CSR, and compare the observed nn-distance with this distribution. To
begin with, suppose that the implicit reference region R is large, so that for any given
point density, A, we may assume that cell-counts are Poisson distributed under CSR.
Now suppose that s is any randomly selected point in a pattern realization of this CSR
process, and let the random variable, D, denote the nn-distance from s to the rest of the
pattern. To determine the distribution of D, we next consider a circular region, C,, of

radius d around s, as shown in Figure 3.4 below.
Then by definition, the probability that D is

at least equal to d is precisely the probability R
that there are no other points in C,. Hence if
we now let C,(s) =C, —{s}, then this proba-
bility is given by C,

(3.2.3) Pr(D > d) = Pr{N[C, ()] = O}

But since the right hand side is simply a
cell-count probability, it follows from Fig.3.4. Cell of radius d
expression (2.3.3) that,

(3.2.4) Pr(D > d) = e G0 = g 4"

where the last equality follows from the fact that a[C,(s)]=a(C,)=Ad*. Hence it
follows by definition that the cumulative distribution function (cdf), F,(d), for D is
given by,

(3.2.5) F.(d) = 1-Pr(D>d) = 1—e ™

In Section 2 of the Appendix to Part | it is shown that this is an instance of the Rayleigh
distribution, and in Section 3 of the Appendix that for a random sample of m nearest-
neighbor distances (D,,..,D,) from this distribution, the scaled sum (known as Skellam’s

statistic),

(3.2.6) S,=2\ty. " D

is chi-square distributed with 2m degrees of freedom (as on p.99 in [BG]). Hence this
statistic provides a test of the CSR Hypothesis based on nearest neighbors.
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3.2.2 Clark-Evans Test

While Skellam’s statistic can be used to construct tests, it follows from the Central Limit
Theorem that independent sums of identically distributed random variables are
approximately normally distributed. Hence the most common test of the CSR Hypothesis
based on nearest neighbors involves a normal approximation to the sample mean of D,
as defined by

(3.2.7) D,=#>..D

To construct this normal approximation, it is shown in Section 2 of the Appendix to Part |
that mean and variance of the distribution in (3.2.4) are given respectively by

1
(3.2.8) E(D) _m

d—r
(3.2.9) var(D) =

To get some feeling for these quantities observe that under the CSR Hypothesis, as the
point density, A, increases, both the expected value and variance of nn-distances
decrease. This makes intuitive sense when one considers denser scatterings of random
pointsin R.

Next we observe from the properties of independently and identically distributed ( iid )
random samples that for the sample mean, D, , in (3.2.7) we must then have

5 )=43" _1 _ -1
(3.2.10) E(D,)=%>.. E(D,)=%[mE(D,)]=E(D,) o
and similarly must have
(3.2.11) var(D, ) = (%)2 > var(D,) =L [mvar(D,)] = mi;}:;)

But from the Central Limit Theorem it then follows for large sample sizes,’ D, must be

approximately normally distributed under the CSR Hypothesis with mean and variance
given by (3.2.10) and (3.2.11), i.e., that:

® Here “large” is usually taken to mean m > 30 as long as the distribution in (3.2.4) is not “too skewed”.
Later we shall investigate this by using simulations.
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_ 1 4—x
(3.2.12) D,~N {m, m(47m)}

Hence this distribution provides a new test of the CSR Hypothesis, known as the Clark-
Evans Test (as in [BG], p.100). If the standard error of D, is denoted by

(3.2.13) o(D,)=+var(D,) = /(4-m)/(m4m)

then to construct this test, one begins by standardizing the sample mean, D_, in order to

use the standard normal tables. Hence, if we now denote the standardized sample mean
under the CSR Hypothesis by

(3.2.14) 7 Dy =E(D,) _ D, -1/(2+)
" o,)  J@-n)/(min)

then it follows at once from (3.2.12) that under CSR,®
(3.2.15) Z. ~ N(0,)

To construct a test of the CSR Hypothesis based on this distribution, suppose that one
starts with a sample pattern S, = (s, :i=1,..,n) and constructs the nn-distance d, for each

point, s, €S,. Then it would seem most natural to use all these distances (d,,..,d,) to

construct the sample-mean statistic in (3.2.10) above. However, this would violate the
assumed independence of nn-distances on which this distribution theory is based. To see
this it is enough to observe that if s; and s; are mutual nearest neighbors, so that d, =d;,

then these are obviously not independent. More generally, if s; is the nearest neighbor of
5, then again d; and d; must be dependent.’

[
However, if one were to select a subset of nn-distance /‘ /
values that contained no common points, such as those
shown in Figure 3.5, then this problem could in principle .y, N
be avoided. The question is how to choose independent
pairs. We shall return to this problem later, but for the /f . /
moment we simply assume that some “independent” o
subset (d,,..,d ) of these distance values has been

Fig.3.5. Independent Subset

® For any random variable, X with E(X)=p and var(X) = o ifZ= (X-wlo=X/lo—-pulo then
E(Z)=E(X)/o-p/c=0 and var(Z) = var(X) /o> =1.
" If the random variable D, is the nearest neighbor of j, then since D, cannot be bigger than d, it follows

that Pr(D, <d, | D, =d;) =1, and hence that these nn-distances are statistically dependent.
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selected (with m<n). [This is why the notation “m
rather than “n” has been used in the formulation above.]
Given this sample, one can construct a sample-mean value,

(3.2.16) d,=4>"d
an use this to construct tests of CSR.

Two-Tailed Test of CSR

The standard test of CSR in most software is a two-tailed test in which both the
possibility of “significantly small” values of d_ (clustering) and “significantly large”

values of d_ (dispersion) are considered. Hence it is appropriate to review the details of
such a testing procedure. First recall the notion of upper-tail points, z, , for the standard
normal distribution as defined by Pr(Z>z )=a for Z~N(0,1). In these terms, it
follows that for the standardized mean in (3.2.14)

(3217) Pr(|zm| 2 Za/z) = Pr[(zm < _Z(x/2) or (Zoc/2 < Zm)] =a

under the CSR Hypothesis. Hence if one estimates point density as in (3.1.1), and
constructs corresponding estimates of the mean (3.2.10) and standard deviation (3.2.13)
under CSR by

1 -
(3.2.18) fi=r s G \/(4—7z)/(m4m1)

then one can test the CSR Hypothesis by constructing the following standardized sample
mean:

o
=

(3.2.19) 7 =-n

m N

If the CSR Hypothesis is true, then by (3.2.14) and (3.2.15), z, should be a sample from
N(0,1).2 Hence a test of CSR at the « -level of significance® is then given by the rule:

Two-Tailed CSR Test : Reject the CSR Hypothesis if and only if |z, |>z_,

& Formally this assumes that A is a sufficiently accurate estimate of A to allow any probabilistic variation

in A to be ignored.
° By definition, the level of significance of a test is the probability, « , that the null hypothesis (in this case
the CSR Hypothesis) is rejected when it is actually true. This is discussed further below.
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The significance level, «, is also called the size of the test. Example results of this
testing procedure for a test of size « are illustrated in Figure 3.6 below. Here the two
samples, z_, in the tails of the distribution are seen to yield strong evidence against the

CSR Hypothesis, while the sample in between does not.
One-Tailed Tests of Clustering and Dispersion

As already noted, values of d_ (and hence z,) that are too low to be plausible under

CSR are indicative of patterns more dispersed than random. Similarly, values too large
are indicative of patterns more clustered than random. In many cases, one of these
alternatives is more relevant than the other. In the redwood seedling example of Figure
1.1itis clear that trees appear to be clustered. Hence the only question is whether or not

ol?2 ol/2
Zm _Za/Z 0 Zm Z01/2 Zm
Reject Do Not Reject
CSR Reject CSR

Fig.3.6. Two-Tailed Test of CSR

this apparent clustering could simply have happened by chance. So the key question here
is whether this pattern is significantly more clustered than random. Similarly, one can ask
whether the pattern of Cell Centers in Figure 1.2 is significantly more dispersed than
random. Such questions lead naturally to one-tailed versions of the test above. First, a test
of clustering versus the CSR Hypothesis at the « -level of significance is given by the
rule:

Clustering versus CSR Test : Conclude significant clustering if and only if z, < -z,

Example results of this testing procedure for a test of size « are illustrated in Figure 3.7
below. Here the standardized sample mean z_ to the right is sufficiently low to conclude

the presence of clustering (at the « -level of significance), and the sample toward the
middle is not.
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Z, —Z, zZ. 0
Significant No Significant
Clustering Clustering

Fig.3.7. One-Tailed Test of Clustering

In a similar manner, one can construct a test of dispersion versus the CSR Hypothesis at
the « -level of significance using the rule:

Dispersion versus CSR Test : Conclude significant dispersion ifand only if z >z,

Example results for a test of size « are illustrated in Figure 3.8 below, where the sample
z,, to the left is sufficiently high to conclude the presence of dispersion (at the « -level of
significance) and the sample toward the middle is not.

0 Z, Z,
No Significant Significant
Uniformity Uniformity

Fig.3.8. One-Tailed Test of Dispersion

While such tests are standard in literature, it is important to emphasize that there is no

“best” choice of « . The typical values given by most statistical texts are listed in Tables
3.1 and 3.2 below:

Significance | a | Z,), Significance | « Z,

“Strong” .01 ] 2.58 “Strong” .01]2.33
“Standard” | .05 | 1.96 “Standard” | .05 | 1.65
“Weak” 10 | 1.65 “Weak” 10 | 1.28

Table 3.1. Two-Tailed Significance  Table3.2. One-Tailed Significance
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So in the case of a two-tailed test, for example, the non-randomness of a given pattern is
considered “strongly” (“weakly”) significant if the CSR Hypothesis can be rejected at the
a =.01 (a =.10) level of significance.’® The same is true of one-tailed tests (where the

cutoff value, z_,,, is now replaced by z,). In all cases, the value & =.05 is regarded as a
standard (default) value indicating “significance”.

However, since these distinctions are admittedly arbitrary, another approach is often
adopted in evaluating test results. The main idea is quite intuitive. In the one-tailed test of
clustering versus CSR above, suppose that for the observed standardized mean value, z,,,

one simply asks how likely it would be to obtain a value this low if the CSR Hypothesis
were true? This question is easily answered by simply calculating the probability of a
sample value as low as z,, for the standard normal distribution N(0,1). If the cumulative

distribution function for the normal distribution is denoted by
(3.2.20) ®(z) =Pr(Z<z)

then this probability, called the P-value of the test, is given by
(3.2.21) Pr(Z<z,)= ®(z,)

as shown graphically below:

®(z,)

yA 0

m

Fig.3.9. P-value for Clustering Test

Notice that unlike the significance level, « , above, the P-value for a test depends on the
realized sample value, z,, and hence is itself a random variable that changes from
sample to sample. However, it can be related to o by observing that if P(Z<z )<«
then for a test of size «, one would conclude that there is significant clustering. More
generally the P-value, P(Z <z,) can be defined as the largest level of significance
(smallest value of « ) at which CSR would be rejected in favor of clustering based on the
given sample value, z,,.

Similarly, one can define the P-value for a test of dispersion the same way, except that
now for a given observed standardized mean value, z ,, one asks how likely it would be to

obtain a value this large if the CSR Hypothesis were true. Hence the P-value in this case
is given simply by

19 Note that lower values of « denote higher levels of significance.
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(3.2.22) Pr(Z>z,)=Pr(Z>12,)=1-Pr(Z<z,) =1-9(z,)

where the first equality follows from the fact that Pr(Z=z,)=0 for continuous
distributions.™* This P-value is illustrated graphically below:

l_q)(zm)

0 yA

Fig.3.10. P-Value for Dispersion Test

Finally, the corresponding P-value for the general two-tailed test is given as the answer to
the following question: How likely would it be to obtain a value as far from zero as z,, if

the CSR Hypothesis were true? More formally this P-value is given by
(3.2.23) P(lZ|>2z,)=2-D(—]|z,]|)

as shown below. Here the absolute value is used to ensure that —|z | is negative
regardless of the sign of z . Also the factor “2” reflects the fact that values in both tails
are further from zero than z,.

(=12, 1) P(-|z, )

_|'Zm| 0

Fig.3.11. P-Value for Two-Tailed Test

3.3 Redwood Seedling Example

We now illustrate the Clark-Evans testing procedure in terms of the Redwood Seedling
example in Figure 1.1. This image is repeated in Figure 3.12a below, where it is
compared with a randomly generated point pattern of the same size in Figure 3.12b. Here
it is evident that the redwood seedlings are more clustered than the random point pattern.
However, it is important to notice that there are indeed some apparent clusters in the
random pattern. In fact, if there were none then this pattern would be “too dispersed”. So

1 By the symmetry of the normal distribution, this P-value is also given by D(-2 ) [=1-D(z,)].
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the key task is to distinguish between degrees of clustering that could easily occur by
chance and those that could not. This is the essence of statistical pattern analysis.

Fig.3.12a. Redwood Seedlings Fig.3.12b. Random Point Pattern

To do so, we shall start by assuming that most of the necessary statistics have already
been calculated. (We shall return to the details of these calculations later.) Here the area,

a(R) =44108 sg.meters., of this region R is given ARCMAP. It appears in the Attribute
Table of the boundary file Redw_bnd.shp in the map document Redwoods.mxd. The
number of points, n=62, in this pattern is given in the Attribute Table of the data file,
Redw_pts.shp, in Redwoods.mxd. [The bottom of the Table shows “Records (0 out of
62 Selected). Note that there only appear to be 61 rows, because the row numbering
always starts with zero in ARCMAP.] Hence the estimated point density in (1) above is
given by

(3.3.1) =N % _ omm

a(R) 44108

For purposes of this illustration we set m =n =62, so that the corresponding estimates of
the mean and standard deviation of nn-distances under CSR are given respectively by

.1 1
7o 2Jootal

(3.3.3) 0 ‘\/4_” - 90004
3 " “Vnarl (62431400141

(3.3.2) =13.336 meters

For the redwood seedling pattern, the mean nn-distance, d_, turns out to be

(3.3.4) d_=9.037 meters
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At this point, notice already that this average distance is much smaller than the theoretical
value calculated in (3.3.2) under the hypothesis of CSR. So this already suggests that for
the given density of trees in this area, individual trees are much too close to their nearest
neighbors to be random. To verify this statistically, let us compute the standardized mean

(3.3.5) 7 = d,— 4 _9.087-13336 _
o, 8853

n

—4.855

Now recalling from Table 2 above that there is “strongly significant” clustering if
z,<-1, =-2.33, one can see from (3.3.5) that clustering in the present case is even

n

more significant. In fact the P-value in this case is given by*2
(3.3.6) P-value = P(Z < z,) = ®(z,) = ®(—4.855) = .000006

(Methods for obtaining @ -values is discussed below). So the chances of obtaining a
mean nearest-neighbor distance this low under the CSR hypothesis are only about 6 in a
million. This is very strong evidence in favor of clustering versus CSR.

However, one major difficulty with this conclusion is that we have used the entire point
pattern (m=n), and have thus ignored the obviously dependencies between nn-distances
discussed above. Cressie (1993, p.609-10) calls this “intensive” sampling, and shows
with simulation analyses that this procedure tends to overestimate the significance of
clustering (or dispersion). The basic reason for this is that positive correlation among nn-
distances results in a larger variance of the test statistic, Z_, than would be expected

under independence (for a proof of this see Section 4 of the Appendix to Part I, and also
see p.99 in [BG]). This will tend to inflate the absolute value of the standardized mean,
thus exaggerating the significance of clustering (or dispersion). With this in mind, we
now consider two procedures for taking random subsamples of pattern points that tend to
minimize this dependence problem. These two approaches utilize JMPIN and MATLAB,
respectively, and thus provide convenient introductions to using these two software
packages.

3.3.1 Analysis of Redwood Seedlings using JMPIN

One should begin here by reading the notes on opening JMPIN in section 2.1 of Part IV
in this NOTEBOOK.™ In the class subdirectory jmpin now open the file,
Redwood_data.jmp in JMPIN. (The columns nn-dist and area contain data exported
from MATLAB and ARCMAP, respectively, and are discussed later). The column
Rand_Relabel is a random ordering of labels with associated nn-distance values in the

12 Methods for obtaining @ -values are discussed later.
3 This refers to section 2.1 in the Software portion (Part V) of this NOTEBOOK. All other references to
software procedures will be done similarly.
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column, Sample. [These can be constructed using the procedure outlined in section
2.2(2) of Part IV in this NOTEBOOK ]

Now open a second file, labeled CE_Tests.jmp, which is a spreadsheet constructed for
this class that automates Clark-Evans tests. Here we shall use a random 50% subsample
of points from the Redwood Seedlings data set to carry out a test of clustering.** To do

so, click Rows — Add Rows and add 31 rows (=62/2). Next, copy-and-paste the first
31 rows of Redwood_data.jmp into these positions.

In Redwood_data.jmp :

(i) Select rows 1 to 31 (click Row 1, hold down shift, and click Row 31)
(if) Select column heading Sample (this entire column is now selected)

(iii) Click Edit — Copy

Now in CE_Tests.jmp :

(i) Select column heading nn-dist
(it) Click Edit — Paste

Finally, to activate this spread sheet you must fill in the two parameters (area, n), start
with area as follows:

(i) Right click on the column heading area.

(i) Right click on the small red box (may say “no formula”)

(iii) Type 44108, hit return and click Apply and OK. (The entire column should
now contain the value “44108” in each row.)

The procedure for filling in the value n (=62) is the same. Once these values are
registered, the spread sheet does all remaining calculations. (Open the formula windows
for lam, mu, sig, s-mean, and Z as above, and examine the formulas used.) The results
are shown below (where only the first row is displayed).

lam mu sig s-mean 4 P-Val CSR P-Val Clust | P-Val Disp

0.0014 13.3362 1.2521 8.2826 -4.0363 0.0000546 0.0000273 0.9999727

Notice first that all values other than lam differ from the full-sample case (m=n)

calculated above since we have only m =31 samples. Next observe that the P-value for
clustering (.0000273) is a full order of magnitude larger than for the full-sample case. So
while clustering is still extremely significant (as it should be), this significance level has

Y In [BG] (p.99) it is reported that a common a rule-of-thumb to ensure approximate independence is to
take a random subsample of no more than 10% (i.e., m < n/10). But even for large sample sizes, n, this
tends to discard most of the information in the data. An alternative approach will be developed in the
MATLAB application of Section 3.2.5 below.
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been deflated by removing some of the positive dependencies between nn-distances.
Notice also that the P-value for CSR is (by definition) exactly twice that for Clustering,
and similarly that the P-value for Dispersion is exactly one minus that for Clustering.
This latter P-value shows that there is no statistical evidence for Dispersion in the sense
that values “as large as” Z =—-4.0363 are almost bound to occur under CSR.

3.3.2 Analysis of Redwood Seedlings using MATLAB

While the procedure in JMPIN above does allow one to take random subsamples, and
thereby reduce the effect of positive dependencies among nn-distances, it only allows a
single sample to be taken. So the results obtained depend to some degree on the sample
selected. What one would like to do here is to take many subsamples of the same size
(say with m=31) and look at the range of Z-values obtained. If almost all samples
indicate significant clustering, then this yields a much stronger result that is clearly
independent of the particular sample chosen. In addition, one might for example want to
use the P-value obtained for the sample mean of Z as a more representative estimate of
actual significance. But to do so in JMPIN would require many repetitions of the same
procedure, and would clear be very tedious. Hence an advantage of programming
languages like MATLAB is that one can easily write a program to carry out such
repetitious tasks. With this in mind, we now consider an alternative approach to Clark-
Evans tests using MATLAB.

One should begin here by reading the notes on opening MATLAB in section 3.1 of Part
IV in this NOTEBOOK. Now open MATLAB, and set the Current Directory (at the top
of the MATLAB window) to the class subdirectory, F:/sys502/matlab, and open the data
file, Redwoods.mat.”® The Workspace window on the left will now display the data
matrices contained in this file. For example, area, is seen to be a scalar with value,
44108, that corresponds to the area value used in JMPIN above. [This number was
imported from ARCMAP, and can be obtained by following the ARCMAP procedure
outlined in Section 1.2(8) of Part 1V.] Next consider the data matrix, Redwoods, which is
seen to be a 62 x 2 matrix, with each row denoting the (x,y) coordinates of one of the 62
redwood seedlings. You can display the first three rows of this matrix by typing

>> Redwoods(1:3,:).

| have written a program, cluster.m,*® in MATLAB to carry out Clark_Evans tests. You
can display this program by clicking Edit — Open and selecting the file cluster.m."’
The first few lines of this program are displayed below:

1> The extension .mat is used for data files in MATLAB.
16 The extension .m is used for all executable programs and scripts in MATLAB.
" To view this program you can also type the command >> edit cluster.
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function D = cluster(pts,a,m,test)

% CLUSTER.M performs the Clark-Evans tests for Clustering
%

% NOTE: These tests use a random subsample (size = m) of the
%  full sample of n nearest-neighbor distances, and

%  ignore edge effects.

% Written by: TONY E. SMITH, 12/28/99

% INPUTS:

% (i) pts = file of point locations (xi,yi), i=1..n
% (i) a =areaofregion

% (iii) m =sample size (m <=n)

% (iv) test = indicator of test to be used

% 0 = two-sided test for randomness

% 1 = one-sided test for clustering

% 2 = one-sided test for dispersion

%

% OUTPUTS: OUT = vector of all nearest-neighbor distances
%

% SCREEN OUTPUT: critical z-value and p-value for test

The first line defines this program to be a function call cluster, with four inputs
(pts,a,n,test) and one output called OUT. The percent signs (%) on subsequent lines
indicate comments intended for the reader only. The next few comment lines describe
what the program does. In this case cluster takes a subsample of size m<n and
performs a Clark-Evans test as in JMPIN. The next set of comment lines describe the four
inputs in detail. The first, pts, contains the (X,y) coordinates of the given point pattern,
and corresponds in our present case to Redwoods. The parameter a corresponds to area,
and m corresponds to the number of subsamples to be taken (in this case m =31). Finally
test is an indicator denoting the type of test to be done, so that for a one-tailed test of
clustering we would give test the value 1. During the execution of this program, the
nearest-neighbor distance for each pattern point is calculated. Since this vector of nn-
distances is useful for other applications (such as the JMPIN spread-sheet above) it is
useful to save this vector. Hence the single output, OUT, is in this case the n x 1 matrix
of nn-distances. The last comment line describes the screen output of this program,
which in the present case is simply a display of the Z-value obtained and its
corresponding P-value.
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To run this program, suppose that you want to save the nn-distance output as a vector
called D (the names of inputs and outputs can be anything you choose). Then at the
command prompt you would type:

>> D = cluster(Redwoods,area,31,1);

Here it is important to end this command statement with a semicolon (;), for otherwise,
all output will be displayed on the screen (in this case the contents of D). Hence by
hitting return after typing the above command, the program will execute and give a
screen display such as the following:

RESULTS OF TEST FOR CLUSTERING
Z Value = -3.3282

P_Value = .00043697

The results are now different from those of JMPIN above because a different random
subsample of size m =31 was chosen. To display the first four rows of the output vector,
D, type™®

>>D(1:4,)

As with the Redwoods display above, the absence of a semicolon at the end will cause
the result of this command to be displayed. If you would like to save this output to your
home directory (E:) as a text file, say nn_dist.txt, then use the command sequence

>> save nn_dist.txt D -ascii

As was pointed out above, the results of this Clark-Evans test depend on the particular
sample chosen. Hence, each time the program is run there will be a slightly different
result (try it!). But in MATLAB it is a simple matter to embed cluster in a slightly larger
program that will run cluster many times, and produce whatever summary outputs are
desired. | have constructed a program to do this, called clust_distr.m. If you open this
program you will see that it has a similar format:

'8 Since D is a vector, there is only a single column. So one could simply type D(1:4) in this case.
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function OUT = clust_distr(pts,a,m,test,N)
% CLUST_DISTR.M samples cluster.m a total of N times
% Written by: TONY E. SMITH, 12/28/99

% INPUTS:

% (i) pts =file of point locations (xi,yi), i=1..n
% (ii) a =areaof region

% (iii) m =sample size (m <=n)

% (iv) test = indicator of test to be used

% 0 = two-sided test for randomness

% 1 = one-sided test for clustering

% 2 = one-sided test for dispersion

% (v) N =number of sample tests.

%

% OUTPUTS: OUT = vector of Z-values for tests.

%

% SCREEN OUTPUT: (1) Normal fit of Histogram for OUT

% (2) Mean of OUT

% (3) P-value of mean (if normcdf present)

The only key difference is the new parameter, N, that specifies the number of point
pattern samples of size m to be simulated (i.e., the number of times the cluster is to be
run). The output chosen for this program is the vector of Z-values obtained. So if N =
1000, then OUT will be a vector of length 1000. The screen outputs now include
summary measures of this vector of Z-values, namely the histogram of Z-values in OUT,
along with the mean of these Z-values and the P-value for this mean. If this program is
run using the command

>> Z = clust_distr(Redwoods,area,31,1,1000);

then 1000 samples will be drawn, and the resulting Z-values will be saved in a vector, Z.
In addition, a histogram of these Z-values will be displayed, as illustrated in Figure 3.13
below. Notice that the results of this simulated sampling scheme yield a distribution of Z-
values that is approximately normal. While this normality property is again a
consequence of the Central Limit Theorem, it should not be confused with the normal
distribution in (3.2.12) upon which the Clark-Evans test is based (that requires n to be
sufficiently large). However, this normality property does suggest that a 50% sample
(m=n/2) in this case yields a reasonable amount of independence among nn-distances,

as it was intended to do.*°

19 Hence this provides some evidence that the 10% rule of thumb in footnote 13 above is overly
conservative.
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Fig.3.13. Sampling Distribution of Z-values

In particular, the mean of this distribution is now about -3.46 as shown by the program
output below:

RESULTS OF TEST FOR CLUSTERING

Mean Z-Value = -3.4571

P-Value of Mean = 0.00027298

Here the P-value, .000273, is of the same order of magnitude as the single sample above,
indicating that this single sample was fairly representative.”® However it is of interest to
note that the single sample in JMPIN above, with a P-value of .0000546 is an order of
magnitude smaller. Hence this sample still indicates more significance than is warranted.
But nonetheless, a P-value of .000273 is still very significant — as it should be for this
redwood seedling example.

3.4 Bodmin Tors Example

The Redwood Seedling example above is something of a “straw man” in that statistical
analysis is hardly required to demonstrate the presence of such obvious clustering. Rather

% Again it should be emphasized that this P-value has nothing to do with the sampling distribution in
Figure 13. Rather it is the P-value for the mean Z-value under the normal distribution in (3.2.12).
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it serves as an illustrative case where we know what the answer should be.”* However,
the presence of significant clustering (or dispersion) is often not so obvious. Our second
example, again taken from [BG] (Figure 3.2), provides a good case in point. It also serves
to illustrate some additional limitations of the above analysis.

Here the point pattern consists of granite
outcroppings (tors) in the Bodmin Moor, located
at the very southern tip of England in Cornwall
county, as shown to the right. (The granite in
these tors was used for tomb stones during the <
Bronze age, and they have a certain historical
significance in England.)

BODMIN MOOR

The map in Figure 3.14a below shows a portion of the Moor containing n=35 tors. A
randomly generated pattern of 35 tors is shown for comparison in 3.14b.

Fig.3.14a. Bodmin Tors Fig.3.14b. Random Tors

Here there does appear to be some clustering of tors relative to the random pattern on the
right. But it certainly not as strong as the redwood seedling example above. So it is of
interest to see what the Clark-Evans test says about clustering in this case (see also
exercise 3.5 on pp.114-15 in [BG]). The maps in Figures 3.14a and 3.14b appear in the
ARCMAP project, bodmin.mxd, in the directory arview/project/Bodmin. The area,
a(R) =206.62, of the region R in Figure 3.14a is given in the Attribute Table of the
shapefile, bod_bdy.? This point pattern data was imported to MATLAB and appears in
the matrix, Bodmin, of the data file, bodmin.mat, in the matlab directory. For our
present purposes it is of interest to run the following full-sample version of the Clark-
Evans test for clustering:

21 Such examples are particularly useful for providing consistency checks on statistical methods for
detecting clustering.
%2 The area and distance scales for this pattern are not given in [BG].
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>> D = cluster(Bodmin,area,35,1);

RESULTS OF TEST FOR CLUSTERING

Z Value =-1.0346

P_Value = 0.15043

Hence even with the full sample of data points, the Clark-Evans test yields no significant
clustering. Moreover, since subsampling will only act to reduce the level of significance,
this tells us that there is no reason to proceed further. But for completeness, we include
the following results for a subsample of size m =18 (approximately 50%):%

>> clust_distr(Bodmin,area,18,1,1000);

RESULTS OF TEST FOR CLUSTERING

Mean Z-Value = -0.71318

P-Value of Mean = 0.23787

So even though there appears to be some degree of clustering, this in not detected by
Clark-Evans. It turns out that there are two key theoretical difficulties here that have yet
to be addressed. The first is that for point patterns samples as small as the Bodmin Tors
example, the assumption of asymptotic normality may be questionable. The second is

that nn-distances for points near the boundary of region R are not distributed the same as
those away from the boundary. We shall consider each of these difficulties in turn.

First, with respect to normality, the usual rule-of-
thumb associated with the Central Limit Theorem is
that sample means should be approximately normally
distributed for independent random samples of size at
least 30 from distributions that are not too skewed. -
Both of these conditions are violated in the present [
case. To achieve sufficient independence in the .
present case, subsample sizes m surely cannot be | 1 B N
much larger that 20. Moreover, the sampling distri-

bution of nn-distances in Figure 3.15 shows a Fig.3.15. Bodmin nn-Distances
definite skewness (with long right tail).

This type of skewness is typical of nn-distances — even under the CSR hypothesis. [Under
CSR, the theoretical distribution of nn-distances is given by the Rayleigh density in
expression (2) of Section 2 in the Appendix to Part I, which is seen to have the same
skewness properties.]

2 Here we are not interested in saving the Z-values, so we have specified no outputs for clust_distr.
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The second theoretical difficulty concerns the special nature of nn-distances near the
boundary of region R. The theoretical development of the CSR hypothesis explicitly
assumed that the region R is of infinite extent, so that such “edge effects” do not arise.
But in practice, many point patterns of interest occur in regions R where a significant
portion of the points are near the boundary of R. Recall from the discussion in Section
2.4 that if region R is viewed as a “window” through which part of a larger (stationary)
point process is being observed, then points near the boundary will tend to have fewer
observed neighbors than points away from the boundary. So in cases where the nearest
neighbor of a point in the larger process is outside R, the observed nn-distance for that
point will be greater than it should be (such as the example shown in Figure 3.16 below).
Thus the distribution of nn-distances for such points will clearly have higher expected
values than for interior points. For samples from CSR processes, this will tend to inflate
mean nn-distances relative to their theoretical values under the CSR hypothesis. This
edge effect will be demonstrated more explicitly in the next section.

Fig.3.16. Example of Edge Effect

3.5 A Direct Monte Carlo Test of CSR

Given these shortcomings, we now develop a testing procedure that simulates the true
distribution of D, in region R for a given pattern size, n.** While this procedure is
computationally more intensive, it will not only avoid the need for normal approxi-
mations, but will also avoid the need for subsampling altogether. The key to this
procedure lies in the fact that the actual distribution of a randomly located point in R can
easily be simulated on a computer. This procedure, known as rejection sampling, starts
by sampling random points from rectangles. Since each rectangle is the Cartesian product
of two intervals, [a,,b]x[a,,b,], and since drawing a random number, s, from an

interval [a;,b] is a standard operation in any computer language, one can easily draw a
random point s=(s,,s,) from [a,b]x[a,,b,]. Hence for any given planar region, R, the
basic idea is to sample points from the smallest rectangle, rec(R) containing R, and then
to reject any points which are not in R.

2 Procedures for simulating distributions by random sampling are known as “Monte Carlo” procedures.
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To obtain n points in R, one continues to reject
points until n are found in R. [Thus the choice of
rec(R) is designed to minimize the expected
number of rejected samples.] An example for the
case of Bodmin is illustrated in Figure 3.17,
where for simplicity we have sampled only
n=10 points. Here there are seen to be four
sample points that were rejected. The resulting
sample points in R then constitute an independent
random sample of size n that by construction
must satisfy the CSR hypothesis. To see this note
simply that since the larger sample in rec(R)

automatically satisfies this hypothesis, it follows

that for any subset C = R the probability that a Fig.3.17. Rejection Sampling
point lies in C given that it is in R must have the

form:

Pr(CnR) Pr(C) a(C)/a[rec(R)] a(C)
Pr(R)  Pr(R) a(R)/a[rec(R)] a(R)

(3.5.1) Pr(C|R) =

Hence expression (2.1.2) holds, and the CSR hypothesis is satisfied. More generally, for
any pattern of size n one can easily simulate as many samples of size n from R as

desired, and use these to estimate the sampling distribution of D, under the CSR
hypothesis.

This procedure has been operationalized in the MATLAB 1 144
program, clust_sim.m. Here the only additional input 47 97
information required is the file of boundary points defining 44 102

the Bodmin region, R. The coordinates of these boundary
points are stored in the 145 x 2 matrix, Bod_poly, in the

data file, bodmin.mat. To display the first three rows and 59 9.2
last three rows of this file: first type Bod_poly(1:3,:), hit 51 9.9
return, and type Bod_poly(143:end,:). You will then see 4:7 _9:7

that this matrix has the form shown to the right.

Here the first row gives information about the boundary, namely that there is one
polygon, and that this polygon consists of 144 points. Each subsequent row contains the
(x,y) coordinates for one of these points. Notice also that the second row and the last row
are identical, indicating that the polygon is closed (and thus that there are only 144
distinct points in the polygon). This boundary information for R is necessary in order to
define the rectangle, rec(R). It is also needed to determine whether a given point in

rec(R) is also in R or not. While this latter determination seems visually evident in the

present case, it turns out to be relatively complex from a programming viewpoint. A brief
description of this procedure is given in section 5 of the Appendix to Part I.
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The program clust_sim is designed to estimate the sampling distribution of D, by

simulating a large number, N, of random patterns of size n in R, and then using this
statistical population to determine whether there is significant clustering in a given

observed pattern in R with mean nn-distance, d,. To do so, observe that if d, were in
fact a sample from this same distribution, then the probability Pr(D, < Jn)of obtaining a
value as low as d can be estimated by the fraction of simulated mean nn-distance values
that do not exceed d_. More precisely, if N, denotes the number of simulated patterns

with mean nn-distances not exceeding (Tn, then this probability, can be estimated as
follows:

NO
N +1

(35.2) Pr(D, <d,) =

Here the denominator N +1 includes the observed sample along with the simulated
samples. This estimate then constitutes the relevant P-value for a test of clustering
relative to the CSR hypothesis. Hence the testing procedure in clust_sim consists of the
follows two steps:

(i) Simulate N patterns of size n and for each pattern i =1,.., N compute the
mean nn-distance, d .

(i) Determine the number of patterns, N, , with d® < d_ and calculate the
P-value for d_ using (3.5.2) above.

To run this program we require one additional bit of information, namely the value of cTn :

Given the output vector, D, of nn-distances for Bodmin tors obtained above from the
program, cluster, this mean value (say m_dist) can be calculated by using the built-in
function, mean, in MATLAB as follows:

>> m_dist = mean(D);

In the present case, m_dist = 1.1038. To input this value into clust_sim, we shall use a
MATLAB data array known as a structure. Among their many uses, structures offer a
convenient way to input optional arguments into MATLAB programs. In the present
case, we shall input the value m_dist together with the number of bins to be used in
constructing a histogram display for the simulated mean nn-distance values. [The default
value in MATLAB is bin = 10 is useful for moderate samples sizes, say N =100. But for
simulations with N >1000, is better to use bin = 20 or 25.] If you open the program,
clust_sim, you will see that the last input of this function is a structure namely opts (for
“options”) that is described in more detail under INPUTS:
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function OUT = clust_sim(poly,a,m,N,opts)

% CLUST_SIM.M simulates the sampling distribution of average

% nearest-neighbor distances in a fixed polygon. It can also determine
% the P-value for a given mean nearest-neighbor distance, if supplied.
%

% Written by: TONY E. SMITH, 12/31/00

% INPUTS:

% (i) poly = boundary file of polygon

% (i) a =areaof polygon

% (iii) m =number of points in polygon

% (iv) N =number of simulations

%  (v) opts = an (optional) structure with variable inputs:

% opts.bins = number of bins in histogram (default = 10)
% opts.m_dist = mean nearest-neighbor distance for testing

To define this structure in the present case, we shall use the value of m_dist just
calculated, and shall set bins = 20. This is accomplished by the two commands:

>> opts.m_dist = m_dist; opts.bins = 20;

Notice that opts is automatically defined by simply specifying its components.” The key
point is that only the structure name, opts, needs to be specified in the command line.
The program clust_sim will look to see if either of these components for opts have been
specified. So if you want to use the default value of bins, just leave out this command.
Moreover, if you just want to look at the histogram of simulated values (and not run a test
at all), simply leave opts out of the command line. This is what is meant in the
description above when opts is referred to as an “(optional) structure”.

Given these preliminaries, we are now ready to run the program, clust_sim, for Bodmin.
To do so, enter the command line:

>> clust_sim(Bod_poly,area,35,1000,0pts);

Here we have specified n = 35 for the Bodmin case, and have specified that N = 1000
simulated patterns be constructed. The screen output will start with successive displays:

percent_done = 10
percent_done = 20

percent_done = 100

?* Note also we have put both commands on the same line to save room. Just remember to separate each
command by a semicolon (;)
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that indicate how the simulations are proceeding. The final screen output will then
include both a histogram of mean nn-distance values, and some numerical outputs, as
described in the “SCREEN OUTPUT” section of the comments in clust_sim. The
histogram will be something like that shown in Figure 3.18 below (the red vertical bar
will be discussed below):

Fig.3.18. Histogram of Mean nn-Distances

Note first that in spite of the relatively skewed distribution of observed nn-distance
values for Bodmin, this simulated distribution of mean nn-distances appears to be
approximately normal. Hence, given the sample size, n=35, it appears that the
dependencies between nn-distance values in this Bodmin region are not sufficient to rule
out the assumption of normality used in the Clark-Evans test.

But in spite of its normality, this distribution is noticeably different from that predicted
by the CSR hypothesis. To see this, recall first that that for the given area of Bodmin,

a(R) =206.6, the point density estimate is given by A =35/206.6 =.1694. Hence the
theoretical mean nn-distance value predicted by the CSR hypothesis is

(3.5.3) = 1.215

1
S

However, if we now look at the numerical screen output for this simulation, we have

CLUST _SIM RESULTS
SIM_MEAN_DIST = 1.3087
M_DIST =1.1038

P-VALUE FOR M_DIST = 0.044955
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Here the first line reports the mean value of the 1000 simulated mean nn-distances. But
since (by the Law of Large Numbers) a sample this large should give a fairly accurate

estimate of the true mean, E(D,), we see that this true mean is considerable larger than

that predicted by the CSR hypothesis above.?’ The key point to note here is that the edge
effects depicted in Figure 3.16 above are quite significant for pattern sizes as small as
n =35 relative to the size of the Bodmin region, R.%" So this simulation procedure does
indeed give a more accurate distribution of nn-distances in the Bodmin region under the
CSR hypothesis.

Observe next that the second line of screen output above gives the value of opts.m_dist
as noted above (assuming this component of opts was included). The final line is the
critical one, and gives the P-value for opts.m_dist, as estimated by (3.5.2) above. Hence,
unlike the Clark-Evans test where no significant clustering was observed (even under full
sampling), the present procedure does reveal significant clustering.?® This is shown by
the position of the red vertical bar in Figure 3.18 above (at approximately a value of
m_dist = 1.1038). Here there are seen to be only a few simulated values lower than
m_dist. Moreover, the discussion above now shows why this result differs from Clark-
Evans. In particular, by accounting for edge effects, this procedure reveals that under the
CSR hypothesis, mean nn-distance values for Bodmin should be higher than those
predicted by the Clark-Evans model. Hence the observed value of m_dist is actually
quite low once this effect is taken into account.

%6 you can convince yourself of this by running clust_sim a few times an observing that the variation in
this estimated mean values is quite small.

%" Note that as the sample size n becomes larger, the expected nn-distance, E(E_)n) , for a given region, R,
becomes smaller. Hence the fraction of points sufficiently close to the boundary of R to be subject to edge
effects eventually becomes small, and this edge effect disappears.

%8 Note again that this P-value will change each time clust_sim is run. However, by trying a few runs you
will see that all values are close to .05.
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