NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

5. Comparative Analyses of Point Patterns

Up to this point, our analysis of point patterns has focused on single point patterns, such
as the locations of redwood seedlings or lung cancer cases. But often the relevant
questions of interest involve relationships between more than one pattern. For example if
one considers a forest in which redwoods are found, there will invariably be other species
competing with redwoods for nourishment and sunlight. Hence this competition between
species may be of primary interest. In the case of lung cancers, recall from Section 1.2
that the lung cancer data for Lancashire was primarily of interest as a reference
population for studying the smaller pattern of larynx cancers. We shall return to this
example in Section 5.8 below. But for the moment we start with a simple forest example
involving two species.

5.1 Forest Example

The 600 foot square section of forest shown in Figure 5.1 below contains only two types
of trees. The large dots represent the locations of oak trees, and the small dots represent
locations of maple trees. Although this is a fairly small section of forest, it seems clear
that the pattern of oaks is much more clustered than that of maples. This is not surprising,
given the very different seed-dispersal patterns of these two types of trees.
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Figure 5.1. Section of Forest Figure 5.2. Patterns of Seed Dispersal

As shown in Figure 5.2, oaks produce largest acorns that fall directly from the tree, and
are only partially dispersed by squirrels. Maples on the other hand produce seeds with
individual “wings” that can transport each seed a considerable distance with even the
slightest breeze. Hence there are clear biological reasons why the distribution of oaks
might be more clustered than that of maples. So how might we test this hypothesis
statistically?
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5.2 Cross K-Functions

As one approach to this question, observe that if oaks tend to occur in clusters, then one
should expect to find that the neighbors of oak trees tend to be other oaks, rather than
maples. Hence one way to measure this effect would be to look at the nearest neighbors
of oaks and see whether they tend to be predominantly oaks. But as we have already seen
in the Bodmin tors example, this does not allow any analysis of the scale of oak clusters.
Hence a more flexible approach is to extend the above K-function analysis for single
populations to a comparable approach for comparing two populations.*

The idea is simple. Rather than looking at the expected number of oak trees within
distance h of a given oak, we look at the expected number of maple trees within distance
h of the oak. More generally, if we now consider two point populations, 1 and 2, with
respective intensities, 4, and A,, and denote the members of these two populations by i
and j, respectively, then the cross K-function, K,,(h), for population 1 with respect to

population 2 is given for each distance h by the following extension of expression (4.2.1)
above:

(5.2.1) K, (h) = % E (number of j-events within distance h of an arbitrary i-event)

Notice that there is an asymmetry in this definition, and that in general, K, (h) = K,,(h) .

Notice also that the word “additional” in (4.2.1) is no longer meaningful, since
populations 1 and 2 are assumed to be distinct. This definition can be formalized in a
manner paralleling the single population case as follows. First for any realized point
patterns, S, =(s,:i=1,..,n) and S, =(s,:i1=1,..,n,), from populations 1 and 2 in region

R, let d; =d(s;,s;) denote the distance between member i of population 1 and j of
population 2 in R. Then for each distance h the indicator function

1.d <h
(5.2.2) Ih(dij) = Ih[d(si’si)] :{O , dIJ i h

now indicates whether or member j of population 2 is within distance h of a given

member i of population 1. In terms of this indicator, the cross K-function in (5.2.1) can
be formalized [in a manner paralleling (4.3.3)] as

(5-2-3) Klz(h) = %E[Z?Zﬂlh(dij)}

! Note that while our present focus is on two populations, analyses of more than two populations are
usually formulated either as (i) pairwise comparisons between these populations (as with correlation
analyses), or (ii) comparisons between each population and the aggregate of all other populations. Hence
the two-population case is the natural paradigm for both these approaches.
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where both the size, n,, of population 2 and the distances (d;:j=1,..,n,) are here

regarded as random variables.? This function plays a fundamental role in our subsequent
comparative analyses of populations.

5.3 Estimation of Cross K-Functions
Given the definition in (5.2.3) it is immediately apparent that cross K-functions can be
estimated in precisely the same way as K-functions. First, since the expectation in (5.2.3)

does not depend on which random reference point i is selected from population 1, the
same argument as in (4.3.4) now shows that for any given size, n,, of population 1,

(5.3.1) E[ZﬁJ4¢Q}=@KHm)J=LWW

= Z?ilE[Z?;'h(dij)} = nl/LzKlz(h)

so that for each n,, K, (h) can be written as®

(632) Ky = 7 2 LE| X7 1,)]

In this form, it is again apparent that for any given realized patterns, S, = (s, :i=1,..,n)
and S, =(s,;: j=1..,n,), the expected counts in (5.3.2) are naturally estimated by their

corresponding observed counts, and that the intensities, 4, and 4, , are again estimated by
the observed intensities,

(5.33) A = k=12

nk
a(R)
Thus the natural (maximum likelihood) estimate of K,,(h) is given by the sample cross
K-function:

(534) | Kum)= A 3057 1(d)

% To be more precise, n, is a random integer (count), and for any given value of n,, the conditional
distribution of [d, =d(s,s;): j=1..,n,] is then determined by the conditional distribution of the
locations, [s, (s, : j =1..,n,)] inR, where s, is implicitly taken to be the location of a randomly sampled

member of population 1.
® Technically this should be written as a conditional expectation given n, [and (4.3.4) should be a
conditional expectation given n]. But for simplicity, we ignore this additional layer of notation.
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5.4 Spatial Independence Hypothesis

We next use these sample cross K-functions as test statistics for comparing populations 1
and 2. Recall that in the single population case, the fundamental question of interest was
whether or not the given population was more clustered (or more dispersed) than would
be expected if the population locations were completely random. This led to the CSR
hypothesis as a natural null hypothesis for testing purposes. However, when one
compares two populations of random events, the key question is usually whether or not
these events influence one another in some way. So here the natural null hypothesis takes
the form of statistical independence rather than randomness. In terms of cross K-
functions, if there are significantly more j-events close to i-events than would be
expected under independence, then one may infer that there is some “attraction” between
populations 1 and 2. Conversely, if there are significantly fewer j-events close to i-
event than expected, then one may infer that there is some “repulsion” between these
populations. These basic distinctions between the one-population and two-population
cases can be summarized as in Table 5.1 below:

CASE HYPOTHESIS FRAMEWORK
One Pop Clustering - Spatial Randomness = Dispersion
Two Pops Attraction -e— Spatial Independence — Repulsion

Figure 5.3. Comparison of Hypothesis Frameworks

Next we observe that from a testing viewpoint, the particular appeal of the CSR
hypothesis is that one can easily simulate location patterns under this hypothesis. Hence
Monte Carlo testing is completely straightforward. But the two-population hypothesis of
spatial independence is far more complex. In principle this would not be a problem if one
were able to observe many replications of these sets of events, i.e., many replications of
joint patterns from populations 1 and 2. But this is almost never the case. Typically we
are given a single joint pattern (such as the patterns of oaks and maples in Figure 5.1
above) and must somehow detect “departures from independence” using only this single
realization. Hence it is necessary to make further assumptions, and in particular, to define
“spatial independence” in a manner that allows the distribution of sample cross K-
functions to be simulated under this hypothesis. Here we consider two approaches,
designated respectively as the random-shift approach and the random-permutation
approach.

5.5 Random-Shift Approach to Spatial Independence

This approach starts by postulating that each individual population k =1,2 is generated

by a stationary process on the plane. If region R is viewed as a window on this process
(as in Section 2) and we again represent each process by the collection of cell counts in
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R,say N, ={N,(C):C cR}, k=12, then it follows in particular from (2.5.1) that the
marginal cell-count distribution, Pr[N, (C,)] for population k in any circular cell, C, , of

radius h must be the same for all locations.* Hence if we now focus on population 2 and
imagine a two-stage process in which (i) a point pattern for population 2 is generated, and
(if) this pattern is then shifted by adding some constant vector, a, to each point,
s; — s; +a, then the expected number of points in C, would be the same for both stage

(i) and stage (ii). Indeed this shift simply changes the location of C, relative to the

pattern (as in Figure 5.5 below) so that by stationarity the expected point count must stay
the same.

5.5.1 Spatial Independence Hypothesis for Random Shifts

In this context, the appropriate spatial independence hypothesis simply asserts that cell
counts for population 2 are not influenced by the locations of population 1, i.e., that for
all cells, C c R,

(5.5.1) Pr[N,(C)=n|N,] = Pr[N,(C)=n], n>0

where Pr[N,(C)=n]|N,] is the conditional probability that N,(C)=n given all cell
counts, N, for population 1.° Under this hypothesis it then follows that the conditional
distribution on the left must also exhibit stationarity, so that if the circular cell, C,, is
centered at the location of a point s, in population 1, this will make no difference. To

illustrate the substantive meaning of this hypothesis in the presence of stationarity,
suppose that populations 1 and 2 are plant species in which the root system of species 1 is
toxic to species 2, so that no plant of species 2 can survive within two feet of any species
1 plant. Then consider a two stage process in which the plant locations of species 1 and 2
are first generated at random, and then all species 2 plants within two feet of any species
1 plant are removed.® Then it is not hard to see that the marginal process for population
2 will still exhibit stationarity (since locations of population 1 are equally likely to be
anywhere). But the conditional process for population 2 given the locations of population
1 is highly non-stationary, and indeed must have zero cell counts for all two-foot cells
around population 1 sites.

Now returning to the two-stage “shift” process described above, this process suggests a
natural way of testing the independence hypothesis in (5.5.1) using sample cross K-
functions. In particular, if the given realization of population 2 is randomly shifted in any
way, then this should not affect the expected counts,

* For the present, we implicitly assume that region R is “sufficiently large” that edge effects can be ignored.
® Note that while there is an apparent asymmetry in this definition between populations 1 and 2, the
definition of conditional probability implies that (5.5.1) must also hold with labels 1 and 2 reversed.

® This is an instance of what is called a “hard-core” process in the literature (as for example in Ripley,
1977, section 3.2 and Cressie, 1995, section 8.5.4).
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n.

(652)  E{NIC,()F=E| X7 1,(dy)]

of population 2 events within distance h of any population 1 event, s,. This in turn

implies from (5.3.2) that the cross K-function should remain the same for all such shifts
(remember that cross K-functions are expected values). Hence if one were to randomly
sample shifted versions of the given pattern and construct the corresponding statistical
population of sample cross K-functions, then this population could be used to test for
spatial independence in exactly the same way that the CSR hypothesis was tested using
K-functions. This testing scheme is in principle very appealing since it provides a direct
test of the spatial independence hypothesis that preserves the marginal distribution of
both populations.

5.5.2 Problem of Edge Effects

But in its present form, such a test it is not practically possible since we are only able to
observe these processes in a bounded region, R. Thus any attempt to “shift” the pattern
for population 2 will require knowledge of the pattern outside this window, as shown in
Figures 5.4 and 5.5 below. Here the black dots represent unknown sites of population 2
events. Hence any shift of the pattern relative to region R will allow the possible entry of
unknown population 2 events into the window defined by region R.
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Figure 5.4. Pattern for Population 2 Figure 5.5. Randomly Shifted Pattern

However, it turns out that under certain conditions one can construct a reasonable
approximation to this ideal testing scheme. In particular, if the given region R is
rectangular, then there is indeed a way of approximating stationary point processes
outside the observable rectangular window. To see this, suppose we start with the two
point patterns in a rectangular boundary, R, as shown in Figure 5.6 below (with pattern 1
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= white dots and pattern 2 = black dots).” If these patterns are in fact generated by
stationary point processes on the plane, then in particular, the realized pattern,

S; =(s;;: j=1..,n,), for population 2 (shown separately in Figure 5.7 below) could
equally well have occurred in any shifted version of region R.

A

Figure 5.6. Rectangular Region
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Figure 5.7. Population 2

But since the rectangularity of R implies that the entire plane can be filled by a “tiling” of
disjoint copies of region R (also called a “lattice” of translations of R) and since this same
point pattern can be treated as a typical realization in each copy of R, we can in principle
extend the given pattern in region R to the entire plane by simply reproducing this pattern
in each copy of R [as shown partially in Figure 5.8 below].? We designate this infinite

version of pattern S by S?.

Figure 5.8. Partial Tiling

" This example is taken from Smith (2004).

F o'. . o o'. . T o'. . o
l. .‘J - .. .‘J - .. .‘J -
e e ® e e ® e e M
Il .:;‘ L .:(‘ .:(‘
- L
Fo o gunan's S.l,l.l“li-.-ilt'. neg s’
F :o L F ) .« " L P v L
- - A . - . L
l'...: ., o"'u": . o~".n : b, o.'
i . ...' . . a° T . LI LI
PR B0 IR L RS SR
| arm - 0 -
. o ..-. . .. P . B .'
KT 4 LY ol
te o-‘... # te o'... #| te o:..... #
w . 2" LN PO £ o0
n o o
3'0.0"0.: * ’o.o“:: * 3'0.0':0.: *
3’- - D".. . D".. I -
. v &, 2 ol 0 e .
'n : -~ o"'u": . . "n": b, . .
i . .." o . 2 ol oo g,
wf E, . - % LI w % m".e
M A ol . ol )
| arm - 0 -
‘ L Ll L Ll L
....ltu’ . -... .tul . .. .::tul *
‘-.o"o M * oare, M ‘met e, M
LA JONY I £ 22
4 .o.' i S * Hd "t . *]
. . .
’.’ "ll.'ls’-.lil‘l.l'll = u'n o .' -
. . .
e 0 ‘. o e S ‘. o e S ‘. .
..':: " .' - ..: " .' - .':: " .' Ll
st Felsy fefet oo

Figure 5.9. Random Shifts

& Such replications are also called “rectangular patterns with periodic boundary conditions” (see for

example Ripley, 1977 and Diggle, 1983, section 1.3).
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In this way, we can effectively remove the “edge effects” illustrated in Figure 5.5 above.
Moreover, while the “replication process” that generates §§ must of course exhibit

stronger symmetry properties than the original process for population 2, it can be shown
that this process shares the same mean and covariance structure as the original process.
Moreover, it can also be shown that under the spatial independence hypothesis, the cross
K-function yielded by this process must be the same as for the original process.® Hence
for the case of rectangular regions, R, it is possible to carry this replicated version of the
“ideal” testing procedure described above.

5.5.3 Random Shift Test

To make this test explicit, we start by observing that it suffices to consider only local
random shifts. To see this, note first that if point pattern 1 in Figure 5.6 is designated by

SY=(s]:i=1,..,n), then shifting S? relative to S on the plane is completely equivalent
to shifting S? relative to S?. Hence we need only consider shifts of S?. Next observe by

symmetry that every distinct rectangular portion §§ that can occur in shifted versions of

R (such as the pattern inside the blue box of Figure 5.8) can be obtained at some position
of R inside the red dotted boundary shown Figure 5.8. Hence we need only consider

random shifts of S? within this boundary. Again, the blue box in Figure 5.8 represents

one such shift (where the white dots for population 1 have been omitted for sake of visual
clarity). Hence to construct the desired random-shift test, we can use the following
procedure:

(i) Simulate N random shifts that will keep rectangle R inside the feasible region in
Figure 5.9. Then shift all coordinates in S by this same amount.

(i) If S7' = (s, : j=1..,ny") denotes the pattern for population 2 occurring in random
shift m=1,..,N of rectangle R (which will usually be of a slightly different size than
S;), then a sample cross K-function, Rl“;(h) , can be constructed from S and SJ'. In
particular if the relevant set of distance radii is chosen to be D={h,:w=1.,W},

then the actual values constructed are {K{‘;(hw) ‘w=1.,W}

(iii) Finally, if the observed sample cross K-function, Kfz(h), is constructed in the

same way from S and S? (where the latter pattern is equivalent to the “zero shift”
denoted by the central box in Figure 5.8), then under the spatial independence
hypothesis, (5.5.1), each observed value, KJ,(h,), should be a “typical” sample from

the list of values [Kl";(hw) :m=0,1,..,N]. Hence (in a manner completely analogous
to the single-population tests of CSR), if we now let M denote the number of

° See the original paper by Lotwick and Silverman (1982) for proofs of these facts.
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simulated random shifts, m=1,..,N, with R;‘;(hw)z Kl"z(hw), then the estimated

probability of obtaining a value as large as Kfz(hw) under this spatial independence
hypothesis is given by the attraction p-value,

M?+1

5.5.3 P (h)=
( ) attractlon( W) N +1

where small values of P, ..(h,) can be interpreted as implying significant

attraction between populations 1 and 2 at scale h,,.

(iv) Similarly, if M° denotes the number of simulated random shifts, m=1,.., N,
with K;g (h,) < Kfz(hw) , then the estimated probability of obtaining a value as small

as Kfz(hw) under this spatial independence hypothesis is given by the repulsion
p-value,

~ M°+1
554 P usion(N) = —
( ) repulsmn( w) N +1

where small values of P

repulsion

repulsion between populations 1 and 2 at scale h,, .

(h,) can be interpreted as implying significant

5.5.4 Application to the Forest Example

This testing procedure is implemented in the MATLAB program, k12_shift_plot.m, and
can be applied to the Forest example above as follows. The forest data appears in the
ARCMARP file, Forest. mxd, and was exported to the MATLAB workspace, forest.mat.
The coordinate locations of the n, =21 oaks and n, =43 maples are given in matrices,

L1 and L2, respectively. An examination of these locations in ARCMAP (or in Figure
5.1 above) suggested that a reasonable range of radial distances to consider is from 10 to
330 feet, and the set of (14) distance values, D = [10:20:270],'° was chosen for analysis.
The rectangular region, R, in Figure 5.1 is seen in ARCMAP to be defined by the
bounding values, (xmin =-10, xmax = 589, ymin = 20, ymax = 577). Using these
parameters, the command,;

>> PVal = k12_shift_plot(L1,L2,xmin,xmax,ymin,ymax,999,D);
yields a vector of attraction p-values (5.5.3) at each radial distance in D based on 999

simulated random shifts of the maples relative to the oaks. Recall that in this example, an
inspection of Figure 5.1 suggested that there are “island clusters” of oaks in a “sea” of

1% In MATLAB this yields a list D of values from 10 to 330 in increments of 20. (See also p.5-23 below.)
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maples. Hence, in terms of attraction versus repulsion, this suggests that there is some
degree of repulsion between oaks and maples. Thus one must be careful when
interpreting the p-value output, PVal, of this program.

Recall that as with clustering versus dispersion, unless there are many simulated cross K-

function values exactly equal to Kfz(hk) , we will have Isrep,usion(hk) ~1- Isamaction(hk) :

Hence one can identify significant repulsion by plotting Isattracﬁon(hk) for k=1,...,K and

looking for large p-values. This plot is given as screen output for k12_shift_plot.m, and
is illustrated in Figure 5.10 below for a simulation with N =999:

repulsion
0.9

P-Value

. 0.1
attraction

Radius

Figure 5.10 Random Shift P-Values

Here the red dashed line on the bottom corresponds to a attraction p-value of .05, so that
values below this level denote significant attraction at the .05 level. Similarly the red
dashed line at the top corresponds to an attraction p-value of .95, so that values above this
line denote significant repulsion at the .05 level. Hence there appears to be significant
repulsion between oaks and maples at scales 30<h<150. This is seen to be in
reasonable agreement with a visual inspection of Figure 5.1 above.

But while this test is reasonable in the present case, this
is in large part due to the presence of a rectangular
region, R. More generally, in the cases such as large
forests where analyses of “typical” rectangular regions
usually suffice, this is not much of a restriction. But for
point patterns in regions, R, such as the elongated island R
shown in Figure 5.10, it is clear from the figure that any
attempt to reduce R to a rectangle might remove most

of the relevant pattern data. Figure 5.10 Island Example
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This island example also raises another important limitation of the random-shift approach
when comparing point patterns. Recall that this approach treats the given region, R, as a
sample “window” from a much larger realization of point patterns, so that the hypothesis
of stationarity is at least meaningful in principle. But the shoreline of an island is physical
barrier between very different ecological systems. So if the point patterns were trees (as
in the oak-maple example) then the shoreline is not simply an “edge effect”. Indeed the
very concept of stationarity is at best artificial in such applications.

5.6. Random-Labeling Approach to Spatial Independence

An approach which overcomes many of these problems is based on an alternative
characterization of multiple-population processes. Rather than focusing on the individual
processes generating patterns S, = (s, :i=1..,n) and S,=(s,;:j=1..,n,) above, one

can characterize this realized joint pattern in and entirely different way. Suppose we let
n=n,+n, denote the total number of events generated, and associate with each event,
i=1..,n,apair (s;,m) where s, eR is the location of event i inR, and m, €{1,2} isa
marker (or label) denoting whether event i is of type 1 or 2. Stochastic processes
generating such pairings of joint locations and labels for each event are called marked
point processes.’’ The Forest example above can be regarded as the realization of a
marked point process where the number of events is n=21+43=64, and the possible
labels for each event are *“oak” and “maple”. Clearly each realized set of values,
[(s;,m):i=1..,n], yields a complete description of a joint pattern pair (S,,S,) above.
The key advantage of this particular characterization is that it allows the location process
to be separated from the distribution of event types.

This is particularly relevant in situations where

the location process is complex, or where the set f;’ oo °oe 0o®®

of feasible locations may involve a host of WS % o o 9 °
unobserved restrictions. As a simple illustration, ° ° o ° j.
suppose that in the Forest example there were in . ) ey

fact a number of subsurface rock formations, ° 0® > S 0®
denoted by the gray regions in Figure 5.11, that o O ° - . .
prevented the growth of any large trees in these % o, © o
areas. Then even if these rock formations are o W . ° °
not observed (and thus impossible to model), the ® o T o o ° o
observed locations of trees must surely avoid ® o o o ©°
these areas. Hence if one were to condition on - ° o °

these observed locations, then it would still

possible to analyze certain relations between

oaks and maples without the need to model all Figure 5.10 Location Restrictions
feasible locations.

1 The following development is based on the treatment in Cox and Isham (1980). For a nice overview
discussion, see Diggle (2003.pp.82-83), and for a deeper analysis of marked spatial point processes, see
Cressie (1993, section 8.7).
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More generally, by conditioning on the observed set of locations, one can compare a wide
variety of point populations without the need to identify alternative locations at all. Not
only does this circumvent all problems related to the shape of region, R, but it also avoids
the need to identify specific land-use constraints (such street networks or zoning
restrictions) that may influence the locations of relevant point events (like housing sales
or traffic accidents).

5.6.1 Spatial Indistinguishability Hypothesis

To formalize an appropriate notion of spatial independence for population comparisons in
the context of marked point processes, we start by considering the joint distribution of a
set of n marked events,

(5.6.1) Pri(s;,m,):i=1.,n]=Pr[(s,..,s,), (m,...m)]

= PrI(Meam,) ] (58,1 PI(S; .. 5,)

where Pr(s,..,s,) denotes the marginal distribution of event locations, and where
Pr{(m,...m.)|(s,...S,)] denotes the conditional distribution of event labels given their
locations.” If Pr(m,,..,m ) denotes the corresponding marginal distribution of event

labels, then the relevant hypothesis of spatial independence for our present purposes
asserts simply that event labels are not influenced by their locations. i.e., that

(5.6.2) Pri(m,..m)|(s,..,s,)] =Pr(m,...m,)

for all locations s,,..,s, € R and labels m,,..,m {1, 2}. In the Forest example above, for

instance, the hypothesis that there is no spatial relationship between oaks and maples is
here taken to mean that the given set of tree locations, (s,,..,S,), tell us nothing about
whether these locations are occupied by oaks or maples. Hence the only locational
assumption implicit in this hypothesis is that any observed tree location could be
occupied by either an oak or a maple. Note also that this doesn’t mean that oaks and
maples are equally likely events. Indeed if there are many more maples than oaks, then
all of this information is captured in the distribution of labels, Pr(m,..,m,).

As with the random shift approach (where the marginal distributions of each population
were required to be stationary), we do require one additional assumption about the
marginal distribution of labels, Pr(m;,..,m,). Note in particular that the indexing of

events, 1,2,..,n, only serves to distinguish them, and that their particular ordering has no

12 For simplicity we take the number of events, n, to be fixed. Alternatively, the distributions in (5.6.1) can
all be viewed as being conditioned on n.
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relevance whatsoever.® Hence the likelihood of labeling events, (m;,..,m.), should not

depend on which event is called “1”, and so on. This exchangeability condition can be
formalized by requiring that for all permutations (z,,..,z,) of the subscripts (1,..,n) 1

(5.6.3) Pr(m,,...m_)="Pr(m,..,m,)

m

These two conditions together imply that the point processes generating populations 1
and 2 are essentially indistinguishable. Hence we now designate the combination of
conditions, (5.6.2) and (5.6.3) as the spatial indistinguishability hypothesis for
populations 1 and 2. This hypothesis will form the basis for many of the tests to follow.

5.6.2 Random Labeling Test

To test the spatial indistinguishability hypothesis, [(5.6.2),(5.6.3)], our objective is to
show that for any observed set of locations (s,,..,s,) and population sizes n, and n, with

n,+n, =n, all possible labelings of events must be equally likely under this hypothesis.

This in turn will give us an exact sampling distribution that will allow us to construct
Monte Carlo tests of (5.6.2).

To do so, we begin by observing that in the same way that stationarity of marginal
distributions was inherited by conditional distributions in (5.5.1) above, it now follows
that exchangeability of labeling events in (5.6.3) is inherited by the corresponding
conditional events in (5.6.2). To see this, observe simply that for any given set of
locations (s,,..,s,) and subscript permutation (z,,..,7z,) it follows at once from (5.6.2)

and (5.6.3) that

(5.6.4) Pri(m,...m_ )[(s,,...s,)] = Pr(m_,..m, )
= Pr(m,..,m,) = Pr{(m,...m)|(s,,...S,)]

To complete the desired task, it is enough to observe that for any two labelings,
(m,,..,m,) and (m;,..,m;) consistent with n, and n, we must have

(5.65)  (m,..m)=(m,,..,m)

for some permutation, (z,,..,7,). Hence if the conditional distribution of such labels
given both (s,,..,s,) and (n,,n,) is denoted by Pr[-|(s,,..,s,),n,n,], then it follows that:

3 However, if one were to model the immergence of new events (such as new disease victims or new
housing sales), then this ordering would indeed play a significant role.

™ For example, possible permutations of (1,2,3) include (z,,7,,7,) = (2,1,3) and (7, 7,,7,) = (3,2,1).
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(5.6.6) Pri(mi,...m) [(s,-.,S,), 0,1 = Pri(m,,...m_ )[(s;,..,8,), 0,0, ]
= Pr{(m,...m)|(s,.-.S,),n;,Nn,]

Moreover, since these conditional labeling events are mutually exclusive and collectively
exhaustive, it also follows that this set of permutations must yield a well-defined
conditional probability distribution, i.e. that:

667) Y. Prlm,..m )| (5e8,) M) = 1

Finally, recalling that the number of permutations of (1,..,n) is given by n!, we may
conclude from (5.6.6) and (5.6.7) that for any observed event locations, (s,..,s,), and
event labels, (m;,..,m,), with corresponding population sizes, n, and n,, we have the
following exact conditional distribution for all permutations (z,,..,z,) of these labels
under the spatial indistinguishability hypothesis:*

(568) | Pri(m,,..m_)|(5,-5,), ;] = %

This provides us with the desired sampling distribution for testing this hypothesis. In
particular, the following procedure yields a random-labeling test of (5.6.2) that closely
parallels the random-shift test above:

(i) Given observed locations, (s;,..,S,), and labels (m,,..,m,) with corresponding
population sizes, n, and n,, simulate N random permutations [z,(7),..,7,(7)].
r=1.,N of (L.,n)," and form the permuted labels (M ey M; )y 7=1.,N
[which is equivalent to taking a sample of size N from the distribution in (5.6.8)].

(i) If S/ =(s;:i=1.,n) and S;=(s;;:j=1.,n,) denote the patterns for popu-
lations 1 and 2 obtained from the joint realization, [(s;,..,s,),(M_ ..M, )], and if

Kfz(h) denotes the sample cross K-function resulting from (S;,S,), then choose a
relevant set of distance radii, D ={h, :w=1,..,W}, and calculate the sample cross K-

function values, {Kl’z(hw) ‘w=1,.,W} foreach r=1,..,N.

5 1t should be noted that since m, €{1,2} foreach i =1,..,n, many permutations (m_,..,m_) will in fact

be identical. Hence the probability of each distinct realization is n !n,!/n!. But since it is easier to sample

random permutations (as discussed in the next footnote) we choose to treat each permutation as realization.
18 This is in fact a standard procedure in most software. In MATLAB, a random permutation of the
integers (1,..,n) is obtained with the command randperm(n).
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(iii) Finally, if the observed sample cross K-function, Kfz(h) , Is constructed from the
observed patterns, S? and S?, then under the spatial indistinguishability hypothesis
each observed value, Kfz(hw), should be a “typical” sample from the list of values
[Kl’z(hw):rzo,l,..,N]. Hence if we now let M? denote the number of simulated
random relabelings, z=1.,N, with Kfz(hw) > sz(hw), then the estimated

probability of obtaining a value as large as Kfz(hw) under this hypothesis is again
given by the attraction p-value in (5.5.3) above.

(iv) Similarly, if M° denotes the number of simulated random relabelings,
7=1.,N, with Kl’z(hw)s sz(hw), then the estimated probability of obtaining a

value as small as Kfz(hw) under this hypothesis is again given by the repulsion p-
value in (5.5.4) above.

Before applying this test it is of interest to ask why simulation is required at all. Since the
distribution in (5.6.8) is constant, why not simply calculate the values,

Pr[K ,(h,) > K% (h,)] for each w=1,..,.W ? The difficulty here is that since there is no

simple analytical expression for these probabilities, one must essentially enumerate the
sample space of relabelings and check these inequalities case by case. But even for
patterns as small as n, =10 =n, the number of distinct relabelings to be checked is seen

to be 20!/(10!x10'") =184,756. So even for small patterns, there are sufficiently many

distinct relabelings to make Monte Carlo simulation the most efficient procedure for
testing purposes.

Finally it is important to stress that while this random-labeling approach is clearly more
flexible than the random-shift approach above, this flexibility is not achieved without
some costs. In particular, the most appealing feature of the random shift test was its
ability to preserve many key properties of the marginal distributions for populations 1
and 2. In the present approach, where the joint distribution is recast in terms of a location
and labeling process, all properties of these marginal distributions are lost. So (as
observed by Diggle, 2003, p.83) the present marked-point-process approach is most
applicable in cases where there is a natural separation between location and labeling of
population types. In the context of the Forest example above, a simple illustration would
be the analysis of a disease affecting say maples. Here the two populations might be
“healthy” and “diseased” maples. So in this case there is a single location process
involving all maple trees, followed by a labeling process which represents the spread of
disease among these trees.'’

7 An example of precisely this type involving “Myrtle Wilt”, a disease specific to myrtle trees, is part of
Assignment 2 in this course.

ESE 502 1.5-15 Tony E.
Smith



NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

5.6.3 Application to the Forest Example

In a manner paralleling the random-shift test, this random-relabeling test is implemented
in the MATLAB program, k12 _perm_plot.m. If the observed locations of populations 1
and 2 are again denoted by L1 and L2, and if D again denotes the set of selected radial
distances, then a screen plot of attraction p-values for 999 simulations is now obtained by
the command (where the final argument, “1”, specifies that a random seed is to be used):

>> k12 perm_plot(L1,L.2,999,D,1);

If this test is applied to the Forest example with the somewhat larger set of radial distance
values, D =[10:20:330], then a typical result is shown in Figure 5.11 below:
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Figure 5.11 Random Relabeling P-Values

Here we see that the results are qualitatively similar to the random-shift test for short
distances, but that repulsion is dramatically more extreme for long distances. Indeed
significant repulsion now persists up to the largest possible relevant scale of 300 feet (=
Dmax/2). Part of the reason for this can be seen in Figure 5.12 below, where a partial
tiling of the maple pattern in Figure 5.1 is shown.
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Figure 5.12 New Maple Structure
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Even this small portion of the tiling reveals an additional hidden problem with the
random-shift approach. For while this replication process statistically preserves the
means of sample cross K-functions, the variance of these functions tends to increase. The
reason for this is that tiling by its very nature tends to create new structure near the
boundaries of the rectangle region, R.'® In the present case, the red ellipses in Figure 5.11
represent larger areas devoid of maples than those in R itself (created mainly by the
combination of empty areas in the lower left and upper right corners of R). Similarly the

blue ellipses represent new clusters of maples larger that those in R. The result of this
new structure in the present case is to make the tiled pattern, §§ of maples appear
somewhat more clustered at larger scales. This in turn yields higher levels of repulsion

between oaks (S?), and maples (S?) at these larger scales for most simulated shifts. The

result of this is to make the observed level of repulsion between S’ and S appear
relatively less significant at these larger scales, as reflected in the plot of Figure 5.10."

5.7. Analysis of Spatial Similarity

The two procedures above allowed us to test whether there was significant “attraction” or
“repulsion” between two patterns. This focuses on their joint distribution. Alternatively,
we might simply compare their marginal distributions by asking: How similar are the
spatial point patterns S, and S,? For instance, in the Forest example of Figure 5.1 we
started off with the observation that the oaks appear to be much more clustered than the
maples. Hence rather than characterizing this relative clustering as repulsion between the
two populations, we might simply ask whether the pattern of oaks, S, , is more clustered

than the pattern of maples, S, .

But while the original (univariate) sample K-functions, Rl(h) and Kz(h), provide
natural measures of individual population clustering, it is not clear how to compare these
two values statistically. Note that since the population values, K,(h) and K,(h), are
simply mean values (for any given h), one might be tempted to conduct a standard
difference-between-means test. But this could be very misleading, since such tests
assume that the two underlying populations (in this case S, and S,) are independently
distributed. As we have seen above, this is generally false. Hence the key task here is to

characterize “complete similarity” in a way that will allow deviations from this
hypothesis to be tested statistically.

Here the basic strategy is to interpret “complete similarity” to mean that both point
patterns are generated by the same spatial point process. Hence if the sizes of S, and S,

are given respectively by n, and n,, then our null hypothesis is simply that the

'8 For additional discussion of this point see Diggle (2003, p.6).

9 Lotwick and Silverman noted this same phenomenon in their original paper (1982, p.410), where they
concluded that such added structure will tend to “show less discrepancy from independence” and thus yield
a relatively conservative testing procedure.
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combination of these two patterns, S =[(s, :i=1,..,n),(s,;: j =1..,n,)], is in fact a single

population realization of size n=n, +n,, i.e.,, S=(s,..,s s,) - If this were true,

n O+

then it would not matter which subset of n, samples was labeled as “population 1”. It

should be clear from the above discussion that a natural way to formulate this hypothesis
is to treat the combined process as a marked point process.”® In this framework, the
relevant null hypothesis is simply that given observed locations, (s,..,s,) and labels
(m,,..,m.) with n, occurrences of “1” and n, occurrences of “2”, each permutation of

these labels is equally likely. But this is precisely the assertion in expression (5.6.8)
above. Hence in the context of marked point processes, the joint distribution of labels
(m,,..,m.) given locations (s,,..,s,) and population sizes, n, and n,, is here seen to be

precisely the spatial indistinguishability hypothesis.

However, the present focus is on the marginal distributions of populations 1 and 2 rather
than the dependency properties of their joint distribution. Hence the natural test statistics

are the sample K-functions, Rl(h) and Kz(h), for each marginal distribution rather than
the sample cross K-function. Note moreover that if both samples are indeed coming from
the same population, then Rl(h) and Kz(h) should be estimating the same K-function,
say K(h), for this common population. Hence if these sample K-functions were unbiased
estimates, then by definition the individual K-functions, K;(h) = E[Ki(h)], i=12, would
be the same. In this context, “complete similarity” would thus reduce to the simple null
hypothesis: H, : K,(h) = K,(h). However, as noted in section 4.3, this simplification is

only appropriate for stationary isotropic processes with Ripley corrections. Thus, in view
of the fact that hypothesis (5.6.2) is perfectly meaningful for any point process, we
choose to adopt a more flexible approach.

To do so, we first note that even in the absence of stationarity, the sample K-functions,
K,(h) and K,(h), continue to be reasonable measures of clustering (or dispersion)

within populations. Hence to test for relative clustering (or dispersion) it is still natural to
focus on the difference between these sample measures,”* which we now define to be

(5.7.0)  A(h)=K,(h)-K,(h)

Hence the relevant spatial similarity hypothesis for our present purposes is that the
observed difference obtained from (5.7.1) is not statistically distinguishable from the
random differences obtained from realizations of the conditional distribution of labels
under the spatial indistinguishability hypothesis [(5.6.2),(5.6.3)].

2 Indeed this is the reason why the analysis of joint distributions above was developed before considering
the present comparison of marginal distributions.

%! Note that one could equally well consider the ratio of these measures, or equivalently, the difference.of
their logs.

ESE 502 1.5-18 Tony E.
Smith



NOTEBOOK FOR SPATIAL DATA ANALYSIS Part I. Spatial Point Pattern Analysis

5.7.1 Spatial Similarity Test

If we simulate random relabelings in (5.6.8) to obtain a sampling distribution of A(h)

under this spatial similarity hypothesis, then the observed difference can simply be
compared with this distribution. In particular, if the observed difference is unusually large
(small) relative to this distribution, then it can reasonably be inferred that subpopulation 1
is significantly more clustered (dispersed) than subpopulation 2. This procedure can now
be formalized by the following simple variation of the random relabeling test, which we
designate as the spatial similarity test:

(i) Given observed locations, (s,..,s,), and labels (m,,..,m ) with corresponding
population sizes, n, and n,, simulate N random permutations [z,(7),..,7,(7)],
r=1.,N of (1.,n), and construct the corresponding the label permutations
(m m. ), 7=1.,N

m(r)

(i) If S =(s;:i=1.,n) and S; =(s;;:j=1..,n,) denote the population patterns
obtained from the joint realization, [(s,,..,s,),(M, .M, ,)], 7=1.,N, and if the
corresponding sample difference function is denoted by A”(h) = K7 (h)— K} (h), then
for the given set of relevant radial distances, D={h,6:w=1.,W}, calculate the
sample difference values, {A"(h,):w=1,..,W} foreach r=1,.,N.

(iii) Finally, if the observed sample difference function, A°(h) = K’(h)—KS(h), is
constructed from the observed patterns, S’ and S;, then under the spatial similarity
hypothesis, each observed value, A°(h,), should be a “typical” sample from the list
of values [A7(h,):7=0,1.,N]. Hence if we now let m° denote the number of
simulated random relabelings, = =1,..,N, with A"(h,)>A°(h,), then the probability
of obtaining a value as large as A°(h,) under this hypothesis is estimated by the
following relative clustering p-value for population 1 versus population 2:

m° +1
N +1

(572) IfSrflustered (h) =

(iv) Similarly, if m® denotes the number of simulated random relabelings, r =1,..,N,

with A"(h,) <A°(h,), then the probability of obtaining a value as small as A°(h,)

under this hypothesis is estimated by the following relative dispersion p-value for
population 1 versus population 2:

m° +1
N +1

(573) Isrﬁispersed (h) =
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5.7.2 Application to the Forest Example

This spatial similarity test is implemented in the MATLAB program, k2_diff_plot.m.
Here it is convenient to adopt the marked-point-process format by defining a single list of
locations, loc, in which the first nl1 locations correspond to population 1 and all
remaining locations correspond to population 2. Hence both of these populations are
identified by simply specifying nl. If D again denotes the set of selected radial distances
used for the Forest example above, then a screen plot of relative clustering p-values for
999 simulations is now obtained by the command:

>> k2_diff_plot(loc,n1,sims,D,1);

The output of a typical run is shown in Figure 5.13 below:
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Figure 5.13. Relative Clustering of Oaks

This confirms the informal observation above that oaks are indeed more clustered than
maples, for scales consistent with a visual inspection of Figure 5.1.

5.8 Larynx and Lung Cancer Example

While the simple Forest example above was convenient for developing a wide range of
techniques for analyzing bivariate point populations, the comparison of Larynx and Lung
cancer cases in Lancashire discussed in Section 1 is a much richer example. Hence we
now explore this example in some detail. First we analyze the overall relation between
these two patterns, using a variation of the spatial similarity analysis above. Next we
restrict this analysis to the area most relevant for the Incinerator in Figure 1.9. Finally, we
attempt to isolate the cluster near this Incinerator by a new method of local K-function
analysis that provides a set of exact local clustering p-values.
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5.8.1 Overall Comparison of the Larynx and Lung Cancer Populations

Given the Larynx Cancer population of n, =57 cases, and Lung Cancer population of
n, =917 cases, we could in principle use k2_diff_plot to compare these populations. But

the great difference in size between these populations makes this somewhat impractical.
Moreover, it is clear that the Larynx cancer population in Figure 1.7 above is of primary
interest in the present example, and that Lung cancers serve mainly as an appropriate
reference population for testing purposes. Hence we now develop an alternative testing
procedure that is designed precisely for this type of analysis.

Subsample Similarity Hypothesis

To do so, we again start with the hypothesis that Larynx and Lung cancer cases are
samples from the same statistical population. But rather than directly compare the small
Larynx population with the much larger Lung population, we simply observe that if the
Larynx cases could equally well be any subsample of size n, from the larger joint

population, n=n, +n,, then the observed sample K-function, Kl(h) , should be typical of

the sample K-functions obtained in this way. Hence, in the context of marked point
processes, the present subsample similarity hypothesis asserts that for any given

realization [(s,,..,S,),(m,,..,m )], the value Kl(h) obtained from the n, locations with
m, =1 is statistically indistinguishable from the same sample K-function obtained by
randomly permuting these labels.

Test of the Subsample Similarity Hypothesis

The corresponding test of this subsample similarity hypothesis can be formalized as
follows variation of the spatial similarity test procedure above:

(i) Same as for the spatial similarity test.

(i) If S/ =(s;:i=1..,n) denotes the population pattern obtained from the joint
realization, [(s,,..,s,), (M), M, ()], and if the corresponding sample K-function is
Kf(h), then for the given set of relevant radial distances, D={h, :w=1. W},
calculate the sample K-function values, {Kl’(hw) :w=1,.,W} foreach r=1,..,N.

(iii) Finally, if the observed sample K-function, Kf(h), is constructed from the
observed patterns, S) and S, then under the subsample similarity hypothesis, each
observed value, Kf(hw), should be a “typical” sample from the list of values
[K’(hw):r=0,l,..,N]. Hence if we now let m? denote the number of simulated
random relabelings, z=1,..,N, with Kf(hw)zkf(hw), then the probability of
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obtaining a value as large as Rf(hw) under this hypothesis is estimated by the
following clustering p-value for population 1:

m’ +1

(581) Pcilustered (h) - N +1

(iv) In a similar manner, if m® denotes the number of simulated random relabelings,
r=1.,N, with K/ (h,)<K’(h,), then the probability of obtaining a value as small

as Kf(hw) under this hypothesis is estimated by the following dispersion p-value for
population 1:

m° +1
N +1

(582) ISdilspersed (h) =

Hence under this testing procedure, significant clustering (dispersion) for population 1
means that the observed pattern of size n, is more clustered (dispersed) than would be

expected if it were a typical subsample from the larger pattern of size n. Note that while
this test is in principle possible for subpopulations of any size less than n, it only makes
statistical sense when n, is sufficiently small relative to n to allow a meaningful sample
of alternative subpopulations. Moreover, when n, is much smaller than n, the present

Monte Carlo test is considerably more efficient in terms of computing time then the full
spatial similarity test above

Application to Larynx and Lung Cancers

This testing procedure is implemented in the MATLAB program, k2_global_plot.m.
(Here “global” refers to the global nature of this pattern analysis. We consider a local
version later.) Before carrying out the analysis, it is instructive to construct a sample

subpopulation pattern, S;, for visual comparison with the observed pattern, S”, of

Larynx cancers. The MATLAB workspace, Larynx.mat, contains the full set of
n=57+917 =974 locations in the matrix, loc, where the n, =57 Layrnx cancer cases

are at the top. A random subpopulation of size n, can be constructed in MATLAB by the
following command sequence:

>> list = randperm(974);

>> sublist = list(1:57);

>>sub_loc = loc(sublist,:);

The first command produces a random permutation, list, of the indices (1,...,974) and the
second command selects the first 57 values of list and calls them sublist. Finally, the last
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command creates a matrix, sub_loc, of the corresponding locations in loc. While this
procedure is a basic component of the program, k2_global_plot.m, it is useful to perform
these commands manually in order to see an explicit example. This coordinate data can
then be imported to ARCMAP and compared visually with the given Larynx pattern as
shown in Figures 5.14 and 5.15 below:?

Fig.5.14. Observed Larynx Cases Fig.5.15. Sampled Larynx Cases

This visual comparison suggests that there may not be much difference between the
overall pattern of observed Larynx cancers and typical subsamples of the same size from
the combined population of Larynx and Lung cancers.

To confirm this by a statistical test, it remains only to construct an appropriate set of
radial distances, D, for testing purposes. Here it is instructive to carry out this procedure
explicitly by using the following command sequence:

>> Dist = dist_vec(loc);
>> Dmax = max(Dist);
>>d = Dmax/2;

>> D = [d/20:d/20:d];

The first command uses the program, dist_vec, to calculate the vector of n(n-1)/2

distinct pairwise distances among the n locations. The second command identifies the
maximum, Dmax, of all these distances, and the third command used the “Dmax/2” rule
of thumb in expression (4.5.1) above to calculate the maximum radial distance for the
test. Finally, some experimentation with the test results suggests that the p-value plot
should include 20 equally spaced distance values up to Dmax/2. This can be obtained by

%2 Note also that these subpopulations can be constructed directly in MATLAB. The relevant boundary file
is stored in the matrix, larynx_bd, so that subpopulation, sub_loc, can be displayed with the command,
poly_plot(larynx_bd,sub_loc). See Section 9 of the Appendix to Part | for further details.
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the last command, which constructs a list of numbers starting at the value, d/20, and
proceeding in increments of size d/20 until the number d is reached.

Given this set of distances, D, a statistical test of the subsample similarity hypothesis for
this example can be carried out with the command:

>> k2 _global_plot(loc,n1,999,D,1);
A typical result is shown in Figure 5.16 below:
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Figure 5.16. P-Values for Larynx Cases

Here we can see that, except at small distances, there is no significant difference between
the observed pattern of Larynx cases and random samples of the same size from the
combined population. Moreover, since the default p-values calculated in this program are
the clustering p-values in (5.8.1), the portion of the plot above .95 shows that Larynx
cases are actually significantly more dispersed at small distances than would be expected
from random subsamples. An examination of Figures 1.7 and 1.8 suggests that, unlike
Lung cancer cases which (as we have seen in Section 4.7.3) are distributed in a manner
roughly proportional to population, there appear to be somewhat more Larynx cases in
less populated outlying areas than would be expected for Lung cancers. This is
particularly true in the southern area, which contains the Incinerator. Hence we now
focus on this area more closely.

5.8.2 Local Comparison in the Vicinity of the Incinerator

To focus in on the area closer to the Incinerator itself, we start with the observation that
heavier exhaust particles are more likely to affect the larynx (which is high in the throat).
Hence while little is actually known about either the exact composition of exhaust fumes
from this Incinerator or the exact coverage of the exhaust plume, it seems reasonable to
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suppose that heavier exhaust particles are mostly concentrated within a few kilometers of
the source. Hence for purposes of the present analysis, a maximum range of 4000 meters
(~ 2.5 miles) was chosen.?® This region is shown in Figure 5.17 below as a circle of
radius 4000 meters about the Incinerator (which is again denoted by a red cross as in
Figure 1.9):

Figure 5.17. Vacinity of the Incinerator

If the coordinate position of the Incinerator is denoted by Incin,?* then one can identify
those cases that are within 4000 meters of Incin by means of the customized MATLAB
program, Radius_4000.m. Open the workspace, layrnx.mat, and use the command:

>> OUT = Radius_4000(Incin,Lung,Larynx);

Here Lung and Larynx denote the locations of the Lung and Larynx cases, respectively.
The output structure, OUT, includes the locations of Lung and Larynx cases within 4000
meters of Incin, along with their respective distances from Incin. Here it can be seen by
inspection that the number of Larynx cases is n1 = 7. The total number of cases in this
area is n = 75. The appropriate inputs for k2_global_plot above can be obtained from
OUT as follows:

>> loc_4000 = OUT.LOC;
>>nl_4000 = length(OUT.L1);

2 This is in rough agreement with the distance influence function, f(d), estimated by Diggle, Gatrell and

Lovett (1978, Figure 7), which is essentially flat for d > 4 kilometers.
2 This position is given in the ARCMAP layer, incin_loc.shp, as Incin = (354850,413550) in meters.
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Hence choosing D_4000 = [400:200:4000] to be an appropriate set of radial distances, a
test of the subsample similarity hypothesis for this subpopulation can be run for 999
simulations with the command:

>> k2_global_plot(loc_4000,n1_4000,999,D_4000,1);

Here a typical result is shown in Figure 5.18 below:
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Figure 5.18. P-Values for Incinerator Vicinity

This plot is seen to be quite different from the global plot of Figure 5.16 above. In
particular, there is now some weakly significant clustering at scales below 500 meters.
This suggests that while the global pattern of Larynx cases exhibits no significant
clustering relative to the combined population of Larynx and Lung cases, the picture is
quite different when cases are restricted to the vicinity of the Incinerator. In particular,
the strong cluster of three Larynx cases nearest to the Incinerator in Figure 5.17 would
appear to be a contributing factor here.

5.8.3 Local Cluster Analysis of Larynx Cases

This leads to the third and final phase of our analysis of this problem. Here we consider a
local analysis of clustering which is a variation of the local K-function analysis in Section
4.8 above. We again adopt the spatial indistinguishability hypothesis that Larynx and
Lung cases are coming from the same point process, but now focus on each individual
Larynx case by considering the conditional distribution of all other labels given this
Larynx case.

To motivate this approach, we start by considering an enlargement of Figure 5.17 in
Figure 5.19 below that focuses on the cluster of three Larynx cases closest to the
Incinerator. Here we choose upper most case, labeled s, in the figure, and consider a
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circular region of radius h =400 meters about this case. There are seen to be six other
cases within distance h of s;, of which two are also Larynx cases. Hence it is of interest

to ask how likely it is to find at least two other Larynx cases within this small set of cases
near s;.

Figure 5.19. Neighborhood of Larynx Case

To determine the probability of this event, we start by removing the 4000-meter
restriction and return to the full population of cancer cases, n=n+n,=974 with

n, =57 . If we again adopt the null hypothesis of subsample similarity (so that Larynx
cases could equally well be any subsample of size n, from the full population of n

cases), then under this hypothesis one can calculate the exact probability of this event. To
start with, if there are ¢ other cases within distance h of case, s;;, and c, of these belong

to population 1, then under the subsample similarity hypothesis, this event can be
regarded as a random sample of size ¢ from the population of n—1 other cases which
contains exactly c, of the n,—1 other population 1 cases. Hence the probability of this

event is given by the general hypergeometric probability:

(k). (i e )
(583) p(k|m K,M) = KA M=K)LKIK=IL(M=K)IM —K —m+k)!

(n) ()

where in the present case, k =c,,K =n, -1 m=c, and M =n-1. Finally, to construct the
desired event probability as stated above, observe that if we let the random variable, C,,
denote the number of population 1 cases within distance h of s, then the chance of
observing at least c, cases from population 1 is given by the sum:
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(5.8.4) P(c,|c,n,n)=Prob(C, >c¢ |c,n,n) = ZLQ p(klc,n -1,n-1)

It is this cumulative probability, P(c,|c,n,,n), that yields the desired event probability.
In the specific case above where ¢, =2,¢=6,n =57, and n=974, we see that this
probability is given by

(5.8.5) P(2|6,57,974) = .042

Hence if the subsample similarity hypothesis were true, then it would be quite surprising
to find at least two Larynx cases with this subpopulation of six cases. In other words, for
the given pattern of Larynx and Lung cases, there appears to be significant clustering of
Larynx cases near s; at the h=400 meter scale.

Thus to construct a general testing procedure for local clustering (or dispersion) of
Larynx cases, it suffices to calculate the event probabilities in (5.8.4) for every observed
Larynx location, s, at every relevant radial distance, h. This procedure is implemented
in the MATLAB program, k2_local_exact.m.?® In the present case, if we consider only
the single radial distance, D = 400, and again use the location matrix, loc, then the set of
clustering p-values at each of the nl = 57 Larynx locations is obtained with the
command:

>> [P,C,C1] = k2_local_exact(loc,n1,400);

Here P is the vector of p-values at each location, and C and C1 are the corresponding
vectors of total counts, ¢, and population 1 counts, c,, at each location.

To gain further perspective on the significance of the cluster in Figure 5.19 above, one
can compare distances of cases to the Incinerator with the corresponding p-values as
follows:

>> L =[Incin;Larynx]; P dist
>> dist_L = dist_vec(L); 0.0094077 693.80
. . 0.029091 910.34
>> dist = dist_L(1:57); 0.042038  1002.90
>> COMP = [P dist]: 0.29995  12512.00
0.34049 14858.00
>> COMP = sortrows(COMP,1); 0.41478 13744.00
0.48083 14982.00
>> COMP(1:7,7)

% In the MATLAB directory for the class, there is also a Monte Carlo version of this program, k2_local.m.
By running these two programs for the same data set (say with 999 simulations) you can see that exact
calculations tend to be orders of magnitude faster than simulations — when they are possible.
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The first command stacks the Incinerator location on top of the Larynx locations in a
matriX, L. The second and third commands then identify the relevant distances (i.e., from
Incin to all locations in Larynx ) as the first 57 distances, dist, produced by dist_vec(L).
The fourth and fifth commands combine P with dist in the matrix, COMP, and then sort
rows of COMP by P from low to high. Finally the last command displays the first seven
rows of this sorted version of COMP, as shown in the box on the right.

The first three rows (in red) are the three closest Larynx cases to the Incinerator, as can
be verified in ARCMAP (and can also be seen in Figure 5.17 above).?® Moreover, the
ordering of p-values shows that these are the only three locations that exhibit significant
clustering. Hence this result suggests that there may indeed be some relation between the
Incinerator and nearby Larynx cases.

%6 Note that the case just below these three is almost as close to the Incinerator as one of these three. But
this case has only a single Lung case within 400 meters, and hence exhibits no clustering at this scale.
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