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7.1 INTRODUCTION

Artificial neural networks (ANNs) are neural computation systems which were originally
proposed by McCulloch and Pitts (1943) and Metropolis et al. (1953). ANNs were widely
used in the 1980s thanks to significant developments in computational techniques based
on self-organizing properties and parallel information systems. Rumelhart et al. (1986) pro-
posed a new learning procedure, backpropagation (BP), for networks of neuronlike units.
The procedure repeatedly adjusts the weights of the connections in the network so as to min-
imize a measure of the difference between the actual output vector of the network and the
desired output vector. This study contributed to the widespread use of ANNs in various
research fields consequent to the development of the error BP rule in parallel distributed
information processing frameworks. ANNs were also used extensively in the late 1980s to
interpret complex and nonlinear phenomena in machine intelligence (Lippmann, 1987;
Wasserman, 1989; Zurada, 1992; Haykin, 1994).

The development of ANNs was inspired by the characteristic functioning of the human
brain, but they are only remotely related to their biological counterparts. ANNs do not
approach the complexity of the brain, but there are two key similarities between biological
neural networks and ANNs. First, the building blocks of both networks are simple computa-
tional devices that are highly interconnected. Second, the connections between neurons
determine the function of the network. A human brain consists of approximately 1010 neu-
rons, computing elements, which communicate through a connection network (approxi-
mately 104 connections per element). ANNs function as parallel distributed computing
networks and are analogous to biological neural systems in some basic characteristics
(Fig. 7.1) (Wasserman, 1989; Lek and Park, 2008). As shown in Fig. 7.1B, there are many input
signals [X ¼ (x1,x2,.,xn)] to neurons. Each input is given a relative weight
[W ¼ (w1,w2,.,wn)] which affects the impact of that input. This is analogous to the varying
synaptic strengths of the biological neuronsdsome inputs are more important than others
in the way they combine to produce an impulse. Weights are adaptive coefficients within
the network that determine the intensity of the input signal. The output signal of a neuron
is produced by the summation block, corresponding roughly to the biological cell body,
which adds all of the weighted inputs algebraically (Wasserman, 1989; Zurada, 1992).
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FIGURE 7.1 Schematic diagrams of (A) a biological neuron and (B) an artificial neuron as a basic processing
element in a network. Each input value (xi) is associated with a weight (wji), and the output value (Xj) can be
transmitted to other units. Arrows indicate the direction of information flow.
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ANNs are able to adjust their inner structures to provide optimal solutions, given enough
data and proper initialization. If appropriate inputs are applied to an ANN, it can acquire
knowledge from the environment, mimicking the functioning of a brain, and users can later
recall this knowledge.

Several different types of ANNs have been developed, but two main categories can be
easily recognized, according to their learning process (Lek and Park, 2008):

1. Supervised learning: This category utilizes a “teacher” who, in the learning phase, “tells”
the ANN how well it performs or what the correct behavior should be.

2. Unsupervised learning: This category of ANNs autonomously analyzes the properties of
the dataset and learns to reflect these properties in its output.

Both categories of ANNs have been used in ecology, with special attention to self-
organizing map (SOM) for the unsupervised learning and multilayer perception (MLP)
with a BP algorithm for the supervised learning.

7.2 MULTILAYER PERCEPTRON

7.2.1 Structure of MLPs
Multilayer perceptrons (MLPs) with BP learning algorithms, also called multilayer feed-

forward neural networks, are very popular and are used more than other neural network
types for a wide variety of problems. MLPs are based on a supervised procedure, i.e., the net-
work builds a model based on examples in data with known outputs. An MLP has to extract
this relation solely from the presented examples, which together are assumed to implicitly
contain the necessary information for this relation.

AnMLP comprises three layers (input, hidden, and output) with nonlinear computational
elements (also called neurons and processing units). The information flows from input layer
to output layer through the hidden layer (Fig. 7.2). All neurons from one layer are fully
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FIGURE 7.2 Three-layered feed-forward neural network with one input layer, one (or more) hidden layer(s), and
one output layer: X, independent variables; Y, dependent variables; and Y0, values computed from the model.
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connected to neurons in the adjacent layers. These connections are represented as weights
(connection intensity) in the computational process. The weights play an important role in
propagation of the signal in the network. They contain the knowledge of the neural network
about the problemesolution relation. The number of neurons in the input layer depends on
the number of independent variables in the model, whereas the number of neurons in the
output layer is equal to the number of dependent variables. The number of output neurons
can be single or multiple. In ecological modeling, environmental variables are generally
given to the input layer as independent variables to predict biological variables, which are
given to the output layer as target values corresponding to the given input values. Further,
both the numbers of hidden layers and their neurons are dependent on the complexity of
the model and are important parameters in the development of the MLP model.

7.2.2 Learning Algorithm
An MLP is trained/learned to minimize errors between the desired target values and the

values computed from the model. If the network gives the wrong answer, or if the errors are
greater than a given threshold, the weights are updated to minimize them. Thus, errors are
reduced and, as a result, future responses of the network are likely to be correct. In the
learning procedure, datasets of input and desired target pattern pairs are presented sequen-
tially to the network. The learning algorithm of an MLP involves a forward-propagation step
followed by a backward-propagation step. MLP algorithms are discussed extensively in the
literature, including by Rumelhart et al. (1986) and Lin and Lee (1996) for fundamental
concepts, and Lek and Guégan (2000) and Park et al. (2003) for ecological application.

An MLP learns with a algorithm in the following two phases (Lek and Guégan, 2000;
Lek and Park, 2008):

7.2.2.1 Forward Propagation

The forward-propagation phase begins with presentation of an input pattern to the input
layer. As in biological neural systems, in which dendrites receive signals from neurons and
send them to the cell body (Fig. 7.1), an MLP receives information through input and output
neurons and summarizes the information. MLP training is based on an iterative gradient
algorithm to minimize error between the desired target and the computed model output.

The net input to neuron j of the hidden layer for pattern p (NETp,j) is calculated as the sum-
mation of each output of the input layer (xp,i; input value) multiplied byweight (vp,ji). An acti-
vation function is applied to calculate the output of neuron j of the hidden layer (zp,j) and the
output of neuron k of the output layer (op,k) as follows (Chon et al., 2000):

f ðNETÞ ¼ 1

1þ expð� lNETÞ (7.1)

where l is an activation function coefficient, and NET is expressed either in zp,j or op,k
as follows:

zp;j ¼ f

 X
i

xp;ivp;ji

!
(7.2)
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op;k ¼ f

0
@X

j

zp;jwp;kj

1
A (7.3)

where vp,ji and wp,kj are the weight of the connections between neuron i of the input layer and
neuron j of the hidden layer, and that between neuron j of the hidden layer and neuron k of
the output layer for pattern p, respectively. Weights are initialized as small random numbers.

Various transfer functions, such as linear functions, threshold functions, and sigmoid
functions, can be used (Fig. 7.3). A sigmoid function is often used, because of its nonlinearity.

The learning algorithmmodifies the weights (vp,ji andwp,kj) to minimize the error. The sum
of the errors (Ep) in each neuron in pattern p is calculated as follows:

Ep ¼ 1

2

X
k

�
dr;k � or;k

�2
(7.4)

TE ¼
X
r

Er (7.5)

where dp,k is the target value corresponding to pattern p at neuron k, and TE is the total error
during one iteration.

The forward-propagation phase continues as activation level calculations propagate for-
ward to the output layer through the hidden layer(s). In each successive layer, every neuron
sums its inputs and then applies a transfer function to compute its output. The output layer
of the network then produces the final response, i.e., the estimated target value.

7.2.2.2 Backward Propagation

The error value associated with each neuron reflects the amount of error associated with
that neuron. Consequently, the neuron is backpropagated for the appropriate weight adjust-
ment. The weights at output neurons are updated as follows (Chon et al., 2000):

dp;kðoÞ ¼ op;k
�
1� op;k

��
dp;k � op;k

�
(7.6)
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FIGURE 7.3 Three types of transfer functions commonly used in ANN models.
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Dwp;kjðtþ 1Þ ¼ hdp;kðoÞop;k þ aDwp;kjðtÞ (7.7)

wp;kjðtþ 1Þ ¼ wp;kjðtÞ þ Dwp;kjðtþ 1Þ (7.8)

where dp,k(o) is the error signal at neuron k of the output layer for pattern p, h is the learning
rate coefficient, and a is the momentum coefficient.

Proper learning rate and momentum coefficient are chosen from experience. Both values
have a range between zero and one. A large value for h can lead to instability in the network
and unsatisfactory learning, whereas an overly small value can lead to excessively slow
learning. Typically, the learning rate is varied to produce efficient learning in the network.
For example, to obtain a better learning performance, the value of hmay be high at the begin-
ning and then decreases during the learning session. The momentum coefficient is defined to
avoid oscillating weight changes. It contributes the impact of previous weights to calculate
the current weight.

Adjustment of weights at the hidden layer is conducted in a similar manner to that at the
output layer except for the error signal (d), which is produced by summing all such products
and then multiplying the derivative of the squashing function as follows (Wasserman, 1989):

dp;jðhÞ ¼ zp;j
�
1� zp;j

�X
k

dp;kðoÞwp;kj (7.9)

where dp,j(h) is the error signal at neuron j of the hidden layer for pattern p.
The learning algorithm can be summarized as shown in Box 7.1 (Lin and Lee, 1996; Chon

et al., 2000); the details of the algorithm can be found in Rumelhart et al. (1986), Lippmann
(1987), Wasserman (1989), Zurada (1992), Lin and Lee (1996), Lek and Guégan (2000), and
Chon et al. (2000).

7.2.3 Validation of Models
In the development of data-driven models, the dataset has to be split into two subsets

which are respectively used for training and validation/testing. The proportion may be 1:
1, 2:1, 3:1, etc. for these two sets (Fig. 7.4). However, the training set still has to be large
enough to be representative of the problem and the test set has to be large enough to facilitate
correct validation of the network. This procedure of partitioning the data is called k-fold cross-
validation, sometimes also called the hold-out procedure (Utans and Moody, 1991; Efron and
Tibshirani, 1995; Kohavi and Wolpert, 1996; Friedman, 1997; Lek and Guégan, 2000).

Both datasets contain input/output pattern pairs taken from real data. The training set is
used to train the network, whereas the test set is used to assess the performance of the
network. The training phase can be time-consuming depending on such factors as the
network structure (numbers of input and output neurons, number of hidden layers, and
number of neurons in each of the hidden layers), the number of samples in the training
set, and the number of iterations.

The learning process of themodel is followed by a test phase to ascertain the performance of
the model and the model properties. In the test phase, the input data are fed into the network
and the desired target values are compared with values computed by the network. The agree-
ment or disagreement of these two sets is used to evaluate the performance of the model.
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The test phase is conducted in two steps (validation and test) when an appropriate model
has to be selected from rival approaches. In this case, the dataset is subdivided into three dif-
ferent parts: training, validation, and testing. The models are evaluated using the validation
dataset, and the best performing model is selected. Then, the accuracy of the selected model
is estimated.

If the number of samples is not sufficient to permit splitting of the dataset into represen-
tative training and test sets, other strategies, such as cross-validation, may be used. In such a
case, the dataset is divided into two parts with n�1 samples in one part and one sample in the
other. The MLP is then trained with n�1 samples and tested with the last sample. The same
network structure is repeated to use every sample in the n procedures. The results of these
tests together facilitate determination of the performance of the model. This is called the
leave-one-out or Jackknife procedure (Efron, 1979; Kohavi, 1995). This strategy is often used
in ecology when only a small database is available (Lek and Guégan, 2000).

BOX 7.1BOX 7.1

L E A RN I N G A L GO R I T HM I N AN M L P

Step 0 (Input):

• Input a set of training pairs to the network.

Step 1 (Initialization):

• Initialize the weights to small random

values.

• Set parameters such as learning rate,

momentum coefficient, and TEmax

(maximum tolerable error).

Step 2 (Training loop):

• Apply the network input pattern to the

input layer.

Step 3 (Forward propagation):

• Propagate the signal forward through the

network.

• Calculate the network output vector.

Step 4 (Measurement of output error):

• Calculate the errors for each of the outputs,

the difference between the desired target,

and the network output.

Step 5 (Error backpropagation):

• Propagate the errors backward to adjust

the weights in a manner that minimizes

the error.

Step 6 (One iteration loop):

• Check whether the entire set of training

data has been cycled once.

• Repeat Steps 2 through 5 for the entire

training dataset.

Step 7 (Check total error):

• Check whether the current total error (TE)

is acceptable.

• If TE < TEmax, then terminate the training

process and output the final weights;

otherwise, repeat Steps 2 through 6 until

the total error for the entire system is

acceptably low, or the predefined number

of iterations is reached.
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7.2.4 Data Preprocessing
Ecological data are bulky, nonlinear, and complexdwith noise, redundancy, internal rela-

tions, and outliers. Therefore, data-driven models are influenced by the characteristics of
their datasets, although most models cover nonlinearity and complexity. To avoid these dif-
ficulties, datasets for learning the network should be carefully prepared by dealing with
missing values, outliers and extremes, transformation, etc. Missing values are often replaced
with mean values of the variables or estimated values from prediction models. Outliers and
extremes are evaluated with box plot approaches.

Data transformation can be conducted in various ways according to the nature of the data
variables. This is particularly important when variables have high variation and different
units. In ecological modeling, (1) logarithmic transformation is most commonly used. This is
especially useful when there is a high degree of variation within variables or a high degree
of variation among attributes within a sample. To avoid the problem of log (0) being unde-
fined, the number one (1) is added to all data points before applying the transformations.
Meanwhile, (2) standardization (also called variance normalization) is very useful for studying
environmental variables in ecological studies. It is a linear transformation carried out by scal-
ing the values with mean ¼ 0 and variance ¼ 1 and making the data dimensionless without
units. Another popular transformation is (3) range normalization (also called minemax
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FIGURE 7.4 (A) Randomization of sample order in the dataset preparation procedure. (B) Splitting of the dataset
into representative training and test sets. When the number of samples is sufficient, the dataset is divided into three
parts if the validation procedure is involved in the analysis. X and Y represent independent variables and dependent
variables, respectively.
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normalization)da linear transformation which scales the values between zero and one in the
range of the data.

Note that the same transformation should be applied to both training dataset and the test
dataset for meaningful results.

Details on the diverse transformation methods are available in McCune and Grace (2002)
and Legendre and Legendre (2012).

7.2.5 Overfitting
It is important to avoid overfitting (or overtraining) problems in the development of the

model because in such cases the model loses generalization and is no longer applicable to
other datasets which were not used to train the network. When a network is overfitted, it
has a good memory for specific data. In such a case, the network cannot learn the general fea-
tures inherently present in the training, but it can learn progressively more of the specific
details of the training dataset perfectly. Several rules have been developed by various
researchers regarding approximate determination of the required network parameters to
avoid overfitting. Two parameters are responsible for this phenomenon: number of epochs
and number of hidden layers (along with corresponding number of neurons for each hidden
layer) (Lek and Guégan, 2000). Determination of an appropriate number for each of these
parameters is the most crucial matter in MLP modeling. The optimum size of epochs, hidden
layers, or hidden nodes is determined by trial-and-error using the training and test datasets.
If the error in the training set decreases constantly according to the learning process, the error
in the test set can increase after minima values. The training procedure must be terminated
when the error in the test dataset is lowest. Otherwise, generalization of the model would no
longer be possible. Geman et al. (1992) provide an excellent summary of the issues affecting
generalization in neural networks.

7.2.6 Sensitivity Analysis
Sensitivity analysis is used to evaluate the behavior of a model and to ascertain the depend-

ence of its outputs on its input parameters (Koda, 1993; Saltelli and Scott, 1997). Sensitivity
analysis can be used to determine the following: (1) resemblance of a model to the system
or processes being studied, (2) the main factors contributing to output variability, (3) the
importance of the model parameters, (4) whether there are regions in the space with factors
for which the model variation is maximum, (5) the optimal regions within the space of the
factors for use in a subsequent calibration study (global optimization), and (6) if and which
factors interact with each other (Saltelli et al., 2000).

MLPs are highly recognized for their high prediction power and applicability to extraction
of information from complex, nonlinear relationships (Lek et al., 1996). However, the mech-
anisms that occur within an MLP network are often ignored. Therefore, an MLP is often con-
sidered a blackbox. Various methods have been explored to illustrate the role of variables in
MLP models (Gevrey et al., 2003). They include (1) the Partial derivatives method, in which the
partial derivatives of the output are calculated according to the input variables (Dimopoulos
et al., 1995, 1999); (2) the Weights method, in which computation is carried out using the con-
nection weights (Garson, 1991; Goh, 1995); (3) the Perturbation method, which corresponds to a
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perturbation of the input variables (Scardi and Harding, 1999); (4) the Profile method, in which
one input variable is successively varied while the others are kept constant at a fixed value
(Lek et al., 1996); (5) the Classical stepwise method, in which the change in the error value is
observed when an addition (forward) or an elimination (backward) step of the input varia-
bles is performed (Balls et al., 1996; Maier and Dandy, 1996); (6) the Improved stepwise a
method, which uses the same principle as the Classical stepwise method, but the elimination
of the input occurs when the network is trained and the connection weights corresponding
to the input variable studied are also eliminated; and (7) the Improved stepwise b method,
which also involves the network being trained and fixed step by step with one input variable
at its mean value to note the consequences on the error. In their comparison of the methods,
Gevrey et al. (2003) reported that the Partial derivatives method was the most useful as it gives
the most complete results, followed by the Profile method, which gives the contribution
profile of the input variables. Conversely, Olden et al. (2004) compared different methods
by using Monte Carlo simulations with data exhibiting defined numeric relationships, and
showed that (8) a Connection weight approach that uses raw input-hidden and hidden-
output connection weights in the neural network provides the best methodology for
accurately quantifying variable importance. However, Fischer (2015) reported that Garson’s
weight method is preferable to the connection weight method (Olden et al., 2004). Recently,
Giam and Olden (2015) proposed a new (9) Permutational R2-based variable importance metric
that estimates the proportion of the total variance in the response variable which is uniquely
associated with each predictor variable in both linear and nonlinear data contexts.

To conduct sensitivity analysis in an MLP, the network first has to be trained.

7.3 MLPs IN ECOLOGICAL MODELING

Following the pioneering works on ANNs, learning algorithms were applied in diverse
ways in ecological modeling (Colasanti, 1991). Ever since MLPs were used to estimate biodi-
versity and the relationships between ecological community and their environment by
Komatsu et al. (1994) and Lek et al. (1995) in ecological modeling, MLPs have been exten-
sively implemented in various ecological studies, including nutrient flows (Nour et al.,
2006; Schmid and Koskiaho, 2006), population dynamics (Elizondo et al., 1994; Baran et al.,
1996; Aoki and Komatsu, 1997; Recknagel et al., 1997; Stankovski et al., 1998; Aussem and
Hill, 1999), community changes (Tan and Smeins, 1996; Park et al., 2001b), determination
of community types (Gevrey et al., 2004; Tison et al., 2005), remote sensing and GIS data anal-
ysis (Kimes et al., 1996; Keiner and Yan, 1998; Gross et al., 1999), effects of climate change
(Lusk et al., 2001; Pearson et al., 2002), habitat and suitability and evaluation of environmen-
tal variables (Lek et al., 1996; Wagner et al., 2000; Park and Chung, 2006), and prediction of
time series data (Chon et al., 2001).

Comprehensive overviews of ANN applications in ecological modeling have been com-
piled by Lek and Guégan (2000), Lek et al. (2005), and Recknagel (2006). There are also
many valuable papers in the Special Issues of Ecological Modeling: Volume 120 (2e3) in
1999, Volume 146 (1e3) in 2001, Volume 160 (3) in 2003, Volume 195 (1e2) in 2006, Volume
203 (1e2) in 2007, and also in the Special Issues of Ecological Informatics: Volume 1 (3) in
2006, Volume 2 (3) in 2007, and Volume 29 in 2015.
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7.4 ADVANTAGES AND DISADVANTAGES OF MLPs

7.4.1 Advantages of MLPs

1. MLPs only have a few parameters; thus, they can be used without prior knowledge, and
the algorithms can be implemented easily.

2. MLPs create the required decision function directly through the learning process with a
given dataset.

3. The learning process employed is adaptive and so MLPs can learn how to find the
solution directly from the data being modeled.

4. MLPs can be applied in a wide range of fields to find solutions.
5. MLPs are used for discrimination, pattern recognition, empirical modeling, and many

other tasks.
6. MLPs often provide more efficient results than conventional statistical methods when

applied to the same tasks.
7. Whereas traditional linear models are inadequate for modeling data containing nonlinear

characteristics, MLPs can represent both linear and nonlinear relationships.
8. Hybrid models that utilize both unsupervised and supervised learning algorithms also

exist.
9. MLPs are effective for feature extraction of structure or patterns from static data as well as

dynamic data (in both space and time), which are common in ecology.
10. These properties of MLPs can assist in the development of strategic tools for the

management of the ecosystem.

7.4.2 Disadvantages of MLPs

1. AnMLP’s network requires a large number of patterns and a large number of iterations for
effective learning.

2. The convergence of its learning process is dependent on the characteristics of the
dataset.

3. Defining the number of neurons and layers in the hidden layer of an MLP is difficult.
Consequently, many trials are required with different conditions to find the best
combinations.

4. New training overwrites the properties of the existing network if existing data are not
included in the new training process.

5. The network has to be retrained with both old and new data to reflect the properties of the
new data to the trained network.

6. The problem of objectivity exists with MLPs, because the network is based on random
effects and iterative calculations.

7. Different configurations of the network may have different convergences, depending on
the initial training.

8. Because an MLP is a blackbox, it does not provide causality for events occurring in the
system. However, some sensitivity analysis can help to evaluate the contribution of input
variables on the model output.
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7.4.3 Recommendations for Ecological Modeling

1. An MLP is a highly flexible function approximator for nonlinear and complex data which
are commonly observed in ecological studies.

2. Consequently, it is a powerful tool for ecological modeling, particularly when the model is
developed with limited information on the relationships between variables.

3. MLPs are applicable to both temporal and spatial data.
4. They can be useful for the prediction and discrimination of biological variables with their

environmental variables.
5. They are useful for the assessment of species habitat suitability in conservation as well as

restoration ecology.
6. They can be applied when large datasets are available.

7.5 EXAMPLE OF MLP USAGE IN ECOLOGICAL MODELING

7.5.1 Problem
Prediction of fish species richness in streams according to their environment gradients and

evaluation for the contribution of their environmental variables.

7.5.2 Ecological Data
Fish community data and their environmental variables were used to illustrate application

of MLP. The data were collected from 191 sample sites in the AdoureGaronne river network
in France (Park et al., 2006). In the dataset, 34 species were recorded, and species richness was
counted at each site. Among the environmental factors determining the spatial distribution of
stream fish species, the upstreamedownstream gradient is one of the key factors influencing
stream fish assemblages, reflecting an increase in fish species richness with increasing stream
size (Matthews, 1998). Water quality factors were not considered because the sampling sites
were not heavily polluted. Therefore, two environmental factors, reflecting the position of
each sampling site along the upstreamedownstream gradient, were chosen: altitude and
distance from source. In addition, the proportion (%) of various land use types in the basin
surface area of each sampling site was used: urbanized artificial surface area and forest area.
The proportion of agricultural area has a highly negative correlation with that of the forest
area. Therefore, it was excluded from the analysis. The characteristics of the variables used
in the model are given in Table 7.1.

7.5.3 Data Preparation
Variables have various units and variations. Therefore, independent variables (environ-

mental variables) were transformed by variance normalization (standardization), resulting
in unitless dimensions, and dependent variables (species richness) were transformed by
using minemax normalization in the range zero to one. A dataset consisting of 191 samples
was split into two subdatasets comprising a training dataset with 111 samples and a testing
dataset with 80 samples.
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7.5.4 Model Training
An MLP model was trained with four inputs (independent) variables and one output

(dependent) variable. One hidden layer with three neurons was used. Thus, the model
had a 4-3-1 structure. Sum of square errors (SSEs)ddifferences between the desired target
value and the computed model output valuesdabruptly decreased after 100 iterations, fol-
lowed by oscillations (Fig. 7.5). Subsequently, the model stabilized at 490 iterations of the
learning process. Consequently, the training was terminated at 490 iterations.

7.5.5 Results from the Example
Fish species richness was appropriately predicted with their four environmental factors

through the learning process of MLP. The regression determination coefficients (R2) were
0.70 and 0.62 for the training dataset and the testing dataset, respectively (Fig. 7.6). The

TABLE 7.1 Characteristics of the Variables Used in the Model

Variable N Mean SD Range (MineMax)

Independent Altitude (m) 191 255.4 233.3 1.0 1190.0

Distance from source
(km)

191 91.9 94.4 2.0 438.0

Urban area (%) 191 1.0 1.2 0.0 10.6

Forest area (%) 191 49.4 28.7 0.1 100.0

Dependent Species richness 191 8.7 4.9 1.0 22.0
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FIGURE 7.5 Changes in sum of square errors during the learning process of the model.
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residualsdthe differences between desired output and calculated valuesdin the model were
distributed evenly around zero.

7.5.6 Contribution of Variables
Following prediction of species richness with environmental factors, the problem of eval-

uation of the contribution of each environmental factors now had to be solved. Although an
MLP is considered as a blackbox in the learning system, the contribution of its input variables
can be evaluated with several proposed methods. In this paper, we use a partial derivatives
method as an example.

The partial derivative values of model response mainly responded negatively to altitude,
indicating that species richness is negatively influenced by altitude (Fig. 7.7A). In contrast,
the partial derivatives were positive as a function of distance from source (Fig. 7.7B), reflect-
ing an increase in fish species richness with increasing stream size. In general, fish species
richness is higher downstream than upstream. This is well recognized in fish ecology.

The partial derivatives are positive at less than 2% of the urban area. The derivatives are
also positive at up to 40% of forest area but are negative at a higher proportion of the forest
area (Figs. 7.7C and D). These results are congruent with those for altitude and distance from
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FIGURE 7.6 Relationships between (A,C) observed (desired) outputs and (B,D) values calculated by the model
and their residuals. (A,B) Training dataset and (C,D) testing dataset.

7. ARTIFICIAL NEURAL NETWORKS: MULTILAYER PERCEPTRON FOR ECOLOGICAL MODELING136



source. Thus, they reflect the fact that fish species richness is lower at a high proportion of the
forest area with high altitude. Altitude has a negative correlation with distance from source,
but a positive correlation with proportion of forest area.

The relative contribution of each input variable was evaluated on the basis of the partial
derivatives of the model responses. Among four input variables, distance from source is
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FIGURE 7.7 Partial derivatives of the MLP model response with respect to each independent variable.
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the most important in the determination of fish species richness in the streams studied, pre-
senting a contribution of more than 55%. Altitude and forest areas show similar contribution,
with each at 18%, and urban areas have the lowest contribution with less than 8% contribu-
tion (Fig. 7.8).
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