TPs – Aulas 2, 3 e 4

- Uso do portal cor do oceano
- Realização de um ppt pelos alunos, individual ou em grupo com o objetivo de 1) ser usado mais tarde pelos alunos, com especial relevancia para o MOG, e 2) servir como material complementar de avalição

Indice deste ppt:

- Objetivos desta série de aulas
- Base teórica (ver tb aula de 5-3-2020), slides 4-10
- Trabalho autónomo dos alunos. Apresentação dos Exercicios, slides 12-15
- Explicação sobre os Exercícios, com exemplos, slides seguintes

Aulas TP2 – Uso de portal de cor do oceano

- Objetivos e competências a adquirir
- Utilização do portal <u>https://www.oceancolour.org/portal/</u>
- Perceber a variabilidade espacial da Clorofila
- Perceber a variabilidade temporal a nível sazonal e inter-anual
- Caracterizar padrões temporais em zonas com upwelling e zonas offshore
- Ficar com uma ferramenta que podem usar mais tarde
- Treinar fazer gráficos no excel.
- Interpretar os gráficos, em função da matéria dada na Teórica

Satélite da ESA para observação do oceano: SENTINEL 3

- Qual a relação entre Fitoplâncton, Clorofila e Deteção Remota de Cor do Oceano pelos satélites?
- Clarificando:
- A Clorofila a é o principal pigmento, mas não o único, que se encontra dentro das células de fitoplancton
- Fitoplancton: organismos microscópicos unicelulares, fotossintéticos.
- A concentração de Clorofila a é proporcional à biomassa das células de Fitoplâncton.
- É o índice de biomassa universalmente utilizado.
- Os sensores de cor dos satélites medem a concentração em Clorofila a, porque têm bandas no visível. Ver slides seguintes

Biblio: Guia de Deteção Remota

satélite em órbita quase-polar Ex: Sentinel 3

Projeto Ocean Colour Climate Change Initiative

Base teórica (ver tb aula de 5-3-2020),

Ocean Colour Climate Change Initiative Project: ir ao site do projeto ser quiserem saber mais

http://www.esa-oceancolour-cci.org/sites/default/files/OC_CCI_TimeSeries_Video.gif

Base teórica (ver tb aula de 5-3-2020),

У

07

BASE TEÓRICA DA COR DO OCEANO

- Absorção da luz pelos pigmentos resulta em espectros de absorção proporcionais à sua concentração. O que é a base da deteção remota da Cor.
- Quanto maior a Absorção, menor a reflexão.
 Sensor de cor do satélite mede a reflectância.

50рh і А

RELAÇÃO EMPÍRICA ENTRE CHLA E RATIO BANDAS AZUL/VERDE

Primeiros algoritmos foram desenvolvidos empiricamente, relacionando a concentração em Clorofila a com a razão entre as bandas 445 nm e 550 nm

Trabalho autónomo

- Objetivo deste trabalho: produzir um power point com os print screen do que foram fazendo e fazer os 3 exercicios definidos.
- O power point deverá ser convertido em pdf e entregue à vossa docente da TP, até 2-4-2020 17h.
- TP21, Dr^a Ana Luz, <u>acluz@fc.ul.pt</u>
- TP22, Prof^a Vanda Brotas, <u>vbrotas@fc.ul.pt</u>
- TP23, Dr^a Ana Brito, <u>acbrito@fc.ul.pt</u>
- O trabalho pode ser em grupo (de preferencia) ou individual
- O power point deve ter o mínimo de 20 e o máximo de 50 slides
- Ao enviar o trabalho para a docente, pf referenciar com os vossos numeros de aluno. Ex para grupo de 3 alunos:
- 54231_55555_55321_Portal

 Clicar em 3 pontos diferentes, de prefencia em 3 pontos bem distanciados (ex: zona costeira, zona offshore, altas latitudes, etc). Ver qual o valor de Clorofila a, ex. No slide seguinte.

Reportar este exercício no vosso ppt, com uma tabela, com as seguintes colunas: Latitude, Longitude, Data, Valor de Chla. Comentar a tabela em 2-3 linhas

- Extrair uma série temporal de dados de Chla numa região do oceano à vossa escolha.
- Escolham uma área pequena, para o ficheiro resultante não ser demasiado pesado
- Escolham uma área apenas de oceano. Por ex: não escolham toda a região dos Açores incluindo as ilhas. O algoritmo iria interpretas as ilhas como "oceano".
- Não escolham uma área de costa incluindo a terra, pelos mesmos motivos
- Não escolham lagos ou estuários, dado que os algoritmos foram definidos para água do oceano e não águas doces ou estuarinas

A) Perceber a relação entre as reflectancias na banda do azul e do verde

B) Fazer um gráfico com os valores de Produção Primária, para a zona escolhida. Perceber a relação com a Chla. Comparar a sazonalidade

• Explicação sobre os Exercícios, com exemplos

https://www.oceancolour.org/

d C Moodle Ciências

	1 111	4 V	
-			-
		2.4	10
22.2		2004	- 1 A

Composite Browser

Access a range of products composited in different periods. Data can be searched by time ranges, periods, products & wavelengths. Version one atasets available now.

Web GIS Portal

View, manipulate & analyse data. Version one datasets available now.

OPeNDAP

A freely available framework that simplifies all aspects of scientific data networking, making local data available to remote locations regardless of storage format.

FTP

Download large sets of data easily. Version one datasets available now.

About

This site provides satellite observations of ocean colour, focusing on the Ocean

Colour Climate Change Initiative project

Useful Links

- International Ocean Colour Coordinating Group
- ESA Ocean Colour
- NASA Ocean Color.

Contact Us

Contact us via: OC-CCI Processing Email

Tutorial to use the OC-CCI web gis portal

• Example: To have temporal series for Chla or other products in specific regions

Explicação sobre os Exercícios, com exemplos

A seguir, aparecem estas opções

Para fazer series temporais com período superior a 1 ano, Escolher Monthly

Têm de escolher uma versão. Escolham a ultima 4.2. Nota: as várias versões correspondem a várias fases do Projeto, em que se foram aperfeiçoando os algoritmos

Select a resolution:

Tem que ver com a resolução especial, ie, pixel de 1km, ou de 4km. Escolham 1º 4km (dado que com resolução 1 km, é muito mais lento)

 Clicar em 3 pontos diferentes. Ver qual o valor de Clorofila a, ex. No slide seguinte.

Reportar este exercício no vosso ppt, com uma tabela, com as seguintes colunas: Latitude, Longitude, Data, Valor de Chla

Click on a latitude/longitude to have the value for the product you want

- Extrair uma série temporal de dados de Chla numa região do oceano à vossa escolha.
- Escolham uma área pequena, para o ficheiro resultante não ser demasiado pesado
- Escolham uma área apenas de oceano. Por ex: não escolham toda a região dos Açores incluindo as ilhas. O algoritmo iria interpretas as ilhas como "oceano".
- Não escolham uma área de costa incluindo a terra, pelos mesmos motivos
- Não escolham lagos ou estuários, dado que os algoritmos foram definidos para água do oceano e não águas doces ou estuarinas

Cliquem no icon gráfico de barras. Escolham Draw poligon

Aparece o menu para: Select the interval Select which version (there are several versions. You should use the most recent one. Select the spatial resolution

Off Porto, Portugal - Bounding Box: -10,063,40,611,-9,382,41,435 Monthly data

26

Confidence: undefined

Provider: Plymouth_Marine_Laboratory

Chlorop

Outro exemplo, Canhão da Nazaré: Bounding box, longitude, latitude, longitude, latitude -9.833,39.955,-9.042,40.169

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phyton	olankton - Global								п	
Chlorophyll-a Concentration										2010 0
	. 1000	1 1000	1 0000	1 0000	1 000 f	1 00000	1 0000	1 0040	1 0040	2010-0

«

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration							
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Jan 2008	Jan 2010

Salvar como imagem E colocar no vosso ppt

Tomar nota das coordenadas Da bounding box. Fazer download: é um ficheiro csv

Copiar a imagem obtida para o vosso ppt.

Série temporal canhão da Nazaré, valores mensais

Para importar o ficheiro csv para excel. Não podem abrir o ficheiro no excel diretamente. Fazer Data, import data, e depois Defenir os intervalos para os dados virem arrumados em colunas. O menu dependa das versões do excel.

		- 🔁 -	Ŧ					Livro1	- Excel						Vanda B	rotas [
Ficheir	o Base	Inserir	Esquema de Págin	a Fórmulas	Dados Re	ever Ver	♀ Diga-me o	que pretend	e fazer									R	Partill
			Mostrar Consultas		🖢 Ligações	A ZA		Limpar				2		grupar - +					
Obter I	Assistente o	de Import	ações de Texto - Pas	so 2 de 3					? ×		Anális	ede Folh	ade 🚌 c.	esagrupar 👻 📑					
Exterr	Este ecrã per	mite-lhe de	finir os delimitadores d	os dados. Na pré	-visualização abai	ixo, pode ver con	no o texto será a	fetado.			Hipóte	eses • Previ	sões 🔠 St		_				
_	Delimitador	es								e Dados		Previsao		Resumo	1 ₂₄				
A1	✓ <u>T</u> abulad	ção																	
	✓ Ponto e	e vírgula	Considerar <u>d</u> elin	nitadores consecu	itivos como um s	ó					1	м	N	0	Р	0	R	S	
1	✓ Vír <u>gu</u> la		Qualificador do tort								-								
2	<u> </u>																		
3	✓ <u>O</u> utro:	Т																	
4																			
5										_									
0 7																			
8	Pré-visuali <u>z</u>	ação dos d	ados																
9																			
10	date	min	max	mean	std				^										
11	1997-09-	-04 00:0	0:00 $0.1170494100:00$ 0.159348160	939 0.299808	979034 0.196	05460763 0	.08984949439	976											
12	1997-11-	-01 00:0	0:00 0.225590541	959 0.540334	34391 0.292	606443167 0	.05276709049	994											
13	1997-12-	-01 00:0	$0:00 \ 0.290921121$ $0:00 \ 0.245376303$	792 0.466212	242842 0.324	069231749 0	.04986229166	539											
14	1998-02-	-01 00:0	0:00 0.439801841	974 0.752462	029457 0.575	307130814 p	.04544386263	766	>										
15									-										
17					Cancelar	< <u>A</u> nterio	r Segu <u>i</u> r	nte >	<u>C</u> oncluir										
18																			
19																			
20																			
21																			
22	Fol	ha1	(_)								: 4								
Pronto	101		0												ETH (a	31		+ 10

Fazer o gráfico em excel, exemplo para a zona junto ao Porto

з 🔊 💉 🤳	mpar - Edi	ção				ESTRUTURA	FORM	ATAR					
Dinâmicas Tabela nendadas	llustrações	🛍 Loja 🎝 As Minhas Aplicações 🔻	Gráficos Recomendados	• ∎ • ∎ • ∭ • ▲ • ● • ⊵ •	PivotCha	t Vista Avançada	Gráfico de Linhas	Gráfico de Colunas	Perda/ Ganho	Segmentação de Dados	Linha Cronológica	Hiperligação	
elas		Suplementos		Gráficos		Relatórios	Gráf	ic					

$\therefore f_x$

Introduzir o desvio padrão

Ultimo slide aula de 5 março 2020 Concluir o gráfico incluindo o desvio padrão

Exercício 2 - continuação

- Comentários a fazer sobre os vossos dados:
- Qual o valor médio máximo e minimo. Nota: não são os valores da tabela das colunas máximo e minimo, mas sim os valores máx e min da coluna da "mean"
- Faça a descrição das figuras. Qual o mês/meses com maior biomassa?
- Variação sazonal é evidente? Ou há grande variabilidade nos dados? Explicar o porquê, relacionando com os conhecimentos adquiridos nas aulas teóricas
- O ciclo sazonal é regular?
- Comente a variabilidade inter-anual. Quais os anos com maior biomassa e quais os anos com menor biomassa?

Gráfico idêntico, outro exemplo, mas + offshore

Objetivo Exercício 3:

A - Perceber a relação entre as reflectancias na banda do azul e do verde

Base teórica: ver aula dia 5 Março e ver os 2 slides seguintes

3º Exercício

A) Perceber a relação entre as reflectancias na banda do azul e do verde

 B) Fazer um gráfico com os valores de Produção Primária, para a zona escolhida. Perceber a relação com a Chla. Comparar a sazonalidade

Exercicio 3. Reflectancias

No menu Indicators Escolher Sea Surface Reflectance And Characterisatiom E Remote sensing reflectance

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration							
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Jan 2008	Jan 20 ^r

1

へ 🗆 🎞 🕠

(22)

18/03/2020

🌀 Loop Vanda	a Brotas	× 🖕 🛚	lovo sepa	rador	×	COVID-19: FCCN dispe	🗙 🛛 🛐 Colibri V3 -	Videoconf 🗙 🔰	CCI-OC Data Portal	×Ŭ	CCI-OC Data Portal	× +			Ð	×
← → C	۵		https://w	/ww.ocea	ncolou	r.org/portal/			80% … 💟		Q Pesquisar	⊥	I II\	•	٢	Ξ
A Mais acedido	os m Co	omeçar aqui	CCI-	OC Data P	ortal 🗧	🕻 World-leading scientif	C Gestão · Docente	😵 Files - Dropbox	K C Faculdade de Ciê	ências	Conta Microsoft P	agi 🔆 Po	ortwims			»
			57 Z		1	and the second					the second			-	1	
🖓 Indicators 🔌	😂 Layers	ბტბ	M 🖻	0 (←		and the first	74. X	And a			A Day A	2000 km	Q	X	Q	Q
Remote Sensing	Reflectanc	e - OC-CCI		^									100			
© 👬 (i				Ē					Serie	~ *		2 mail		Circle		
Scale - sr-1		20	010-05-01 0	00:00:00	Ĩ.			Last to	Start Strange		The Mark	No.	and the second			
26404 6040	2 1	180.2	1760.2	2340.2					CA MARK	Soull in	A A COM		×,	and the second	-	Maria
Indicator Type	Sea Surfa Characte	risation	ce and	2.346-2			and and	A THE	Ser Lin	Telen				5		
Interval	Monthly												1.18	-		
Version	Version 4	1.2				· · · · ·	A AN				1.50/					
Wavelength	443 nm						ats Sta					1 Martin				
Bounding box	89.98 N,	179.9 <mark>8</mark> E, -89.	98 S, -179.9	98 W			A second and									
Date range	1997-09- 2019-12-	04T00:00:00.0 01T00:00:00.0	000Z <mark>to</mark> 000Z						8			12				
Abstract	Sea surfa ratio of w irradianc	ace reflectance vater-leaving e at 443 nm.	e defined a radiance to	as the o surface	,		S. C			Q						
About				🔩 Share			21-1		40							
Sentinel-2 cloudless by EO	X IT Services G	<u>mbH</u> (Contains m	odified Copern	nicus Sentinel da	ata 2016)		Con Street		The state			2	19			and in
Timeline - Click a	and drag to	move, use v	our mouse	scroll whee	el to zoor	m. click to select a date or ente	er your required date in th	ne date field on the righ	nt							

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration Remote Sensing Reflectance									« < > » 2010-05-06 14:00
Escreva aqui para	Jan 1998 procurar	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Jan 2008	Jan 2010	Jan 2012	」 「「」 」 「」 「」 (³⁾⁾ 18/03/2020

22

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration Remote Sensing Reflectance 1 1996 Jan 1998 Jan 2000 Jan 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012

⊟i

Πz

へ 🗆 🖫 🖤

(22)

18/03/2020

Voltar ao menu Indicators. Mantem-se o mesmo poligono

Fazer Make New Plot

Repetir o procedimento que fizeram, guardar esta figura, fazer download dos dados, importer o csv para o excel, colocar numa coluna identificada como Rrs 443nm

Primary Productivity Of Phytoplankton - Global										4
Chlorophyll-a Concentration									2010-05-06 14:00	
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Jan 2008	Jan 2010	Jan 2012	2010 05 00 11.00	

Ц

10:58

18/03/2020

22

へ 🗆 🎞 🖤

Ζz

A partir dos dados de reflectancia a 443nm e 555nm, fazer um gráfico deste tipo

Exemplo dos valores das reflectancias para a zona da Madeira

> Valores de reflectancia Obtidos para a mesma Área perto da Madeira

RRS 443 – banda azul RRS 555 – banda verde

RRS 443, varia Sazonalmente, RRS 443 > quanto < é A Clorofila

RRS 555 – a sua Variabilidade é quase Nula Só alterando a escala é Que se vê a sua variação

44

Base teórica para o Exercício 3. B) Produção Primária, como é estimada?

- O modelo utilizado para calcular a Produção Primária (PP), usa 1) os dados de Chla, 2) dados de radiação luminosa ao longo do perfil vertical da coluna de água e 3) os parametros da curva Fotossintese – Radiação Luminosa (da qual falei na aula de dia 17-3 para os ecossistemas terrestres. O modelo da curva é identico para os organismos marinhos, ver figura),
- ou seja, Pmax-valor máximo de PP para uma comunidade
- $E \alpha$ declive inicial da curva.
- Ver aula T de 5 março.

3º Exercício

- > A) Perceber a relação entre as reflectancias na banda do azul e do verde
- B) Fazer um gráfico com os valores de Produção Primária, para a zona escolhida. Perceber a relação com a Chla. Comparar a sazonalidade

Valores de Produção Primária

- Voltar aos Indicators
- Clicar no Biological, aparece Primary

Producitivity of Phytoplankton, clicar

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration Remote Sensing Reflectance

Produtividade Primária

 A série temporal Acaba em 2011, Ver barra de tempo Na base da página Assim, redefinir o Periodo de tempo: 1997-2011

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phytoplankton - Global Chlorophyll-a Concentration Remote Sensing Reflectance Remote Sensing Reflectance										
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 20	004	Jan 200	16	Jan 2008	Jan 201	0
Escreva aqui par	a procurar	Ĭ	8	•	x			e 🤹	€ _	1 2 47

H 11 4 + 0 ⊡ 00 + ✓ Indicators Search Layers 000 E للشلم Scale - mgC m-2 d-1 2010-10-01 00:00:00 6.63e+2 1.28e+3 1.89e+3 2.50e+3 5.00e+1 ANALYSIS To refine the data before analysis you can: DRAW Draw a selection box on the map 🛱 Draw Polygon 🖧 Draw Irregular Polygon Or enter coordinates -9.833,39.955,-9.042,40.169 UPLOAD Login and upload a file Download netCDF Make new plot **Clear Selection** Share entinel-2 cloudless by EOX IT Services GmbH (Contains modified Copernicus Sentinel data 2016)

🗘 Mais acedidos 👖 Começar aqui 🕕 CCI-OC Data Portal 🌞 World-leading scientif... 🖸 Gestão · Docente 😻 Files - Dropbox 🚺 Facu

□ ■ https://www.oceancolour.org/portal/

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phytoplankton - Global						
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Ja

∐i

G

←

<u>ش</u>

80%

Notem que a bounding box definida Fica guardada, e que todos as figuras Vão ser para essa zona.

Timeline - Click and drag to move, use your mouse scroll wheel to zoom, click to select a date or enter your required date in the date field on the right

Primary Productivity Of Phytoplankton - Global						
1 1996	Jan 1998	Jan 2000	Jan 2002	Jan 2004	Jan 2006	Jan :

Plymouth_Marine_Laboratory: Primary Productivity of Phytoplankton

Fazer o download dos dados para excel.

Comentar a relação entre os valores de Chla que encontraram e os valores obtidos para PP. A sazonalidade é semelhante?

Bibliografia

- Site projeto SOPHIA: https://www.sophia-mar.pt/pt/recursos_pedagogicos/1
- Tutorial 5, em video: <u>https://youtu.be/O4eOvK_vCRI</u>
- <u>https://www.sophia-mar.pt/pt/recursos_pedagogicos/1</u> Guias pedagógicos
- Sutcliffe, A., Brito, A.C., Sá, C., Sousa, F., Boutov, D., Brotas, V. 2016. Observação da Terra: Uso de imagens de temperatura da superfície do mar e cor do oceano para a monitorização de águas costeiras e oceânicas. DGRM, Lisboa, Portugal. E-book disponível em <u>www.sophia-mar.pt</u>. Cap 3
- Pdf da aula Teórica de 5 março 2020

