FUNCTIONAL ANALYSIS

The rise and spread of functional analysis in the 20th century had two
main causes. On the one hand it became desirable to interpret from a
uniform point of view the copious factual material accumulated in the
course of the 19th century in various, often hardly connected, branches of
mathematics. The fundamental concepts of functional analysis were
formed and crystalized under various aspects and for various reasons.
Many of the fundamental concepts of functional analysis emerged in a
natural fashion in the process of development of the calculus of variations,
in problems on oscillations (in the transition from the oscillations of
systems with a finite number of degrees of freedom to oscillations of
continuous media), in the theory of integral equations, in the theory of
differential equations both ordinary and partial (in boundary prablems,
problems on eigenvalues, etc.) in the development of the theory of
functions of a real variable, in operator calculus, in the discussion of
problems in the theory of approximation of functions, and others.
Functional analysis permitted an understanding of many results in these
domains from a single peint of view and often promoted the derivation
of new ones. In recent decades the preparatory concepts and apparatus
were then used in a new branch of theoretical physics—in quantum
mechanics.

On the other hand, the investigation of mathematical problems
connected with quantum mechanics became a crucial feature in the further
development of functional analysis itself: It created, and still creates at
the present time, fundamental branches of this development.

Functional analysis has not yet reached its completion by far. On the
contrary, undoubtedly in its further development the questions and
requirements of caontemporary physics will have the same significance for
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228 XIX. FUNCTIONAL ANALYSIS

it as classical mechanics had for the rise and development of the differential
and integral calculus in the 18th century.

It is impossible here to include in this chapter all, or even only all the
fundamental, problems of functional analysis. Many important branches
exceed the limitations of this book. Nevertheless, by confining ourselves
to certain selected problems, we wish to acquaint the reader with some
fundamental concepts of functional analysis and to illustrate as far as
possible the connections of which we have spoken here. These problems
were analyzed mainly at the beginning of the 20th century on the basis
of the classical papers of Hilbert, who was one of the founders of functional
analysis. Since then functional analysis has developed very vigorously
and has been widely applied in almost all branches of mathematics; in
partial differential equations, in the theory of probability, in quantum
mechanics, in the quantum theory of fields, etc. Unfortunately these further
developments of functional analysis cannot be included in our account.
In order to describe them we would have to write a separate large book,
and therefore, we restrict ourselves to ane of the oldest problems, namely
the theory of eigenfunctions.

§1. n-Dimensional Space

In what follows we shall make use of the fundamental concepts on
n-dimensional space. Although these concepts have been introduced in
the chapters on linear algebra and on abstract spaces, we do not think it
superfluous to repeat them in the form in which they will occur here.
For scanning through this section it is sufficient that the reader should
have a knowledge of the foundations of analytic geometry.

We know that in analytic geometry of three-dimensional space a paint is
given by a triplet of numbers (f, , fz , f3), which are its coordinates. The
distance of this point from the origin of cecordinates is equal to
VFi+fi4 r2. If we regard the point as the end of a vector leading to it
from the origin of coordinates, then the length of the vector is also equal
to 4/ i+t 12 The cosine of the angle between nonzero vectors leading
from the origin of coordinates to two distinct points A( /7,5 .fs) and
B(g, , ;. gy) is defined by the formula

181 + 1382 + /a8 _
VA+hA Vel +8 +8

From trigonometry we know that | cos ¢ | << 1. Therefore we have the

i It
ey \f181 + /o= + fags
VIR +13vVe + 2% + 88

cos¢ =

T |
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and hence always
(18, +Sog H/EP <P+ 24+ + 28+ g0 (H

This last inequality has an algebraic character and is true for arbitrary
six numbers ( /1, fz , f2) and (2, , g2 , &), Since any six numbers can be the
the coordinates of two points of space. All the same, the inequality (1)
was obtained from purely geometric considerations and is closely con-
nected with geometry, and this enables us to give it an easily visualized
meaning.

In the analytic formulation of a number of geometric relations, it often
turns out that the corresponding facts remain true when the triplet of
numbers is replaced by n numbers. For example, our inequality (1) can be
generalized to 2n numbers (f, , /2, . /%) and (g, , g5, ', £,)- This means
that for arbitrary 2» numbers (f;,/%z, /o) and (g,.8, . g, an
inequality analogous to (1) is true, namely:

(g + i+ + @ ST+ 2+ +HfD @ +88 4+ - + g2
(1)

This inequality, of which (1) is a special case, can be proved purely
analytically.* In a similar way many other relations between triplets of
numbers derived in analytic geometry can be generalized to # numbers.
This connection of geometry with relations between numbers (numerical
relations) for which the cited inequality is an example becomes
particularly lucid when the concept of an n-dimensional space is intro-
duced. This concept was introduced in Chapter XVI. We repeat it here
briefly.

A collection of n numbers (£, , fa, -, f5) 15 called a point or vector of
n-dimensional space (we shall more often use the latter name). The vector
(fi1./z, .fo) will from now on be abbreviated by the single letter f.

Just as in three-dimensional space on addition of vectors their compo-
nents are added, so we define the sum of the vectors

f={j1!f2!'"!f;l} and g={31 182, Ent

as the vector {f; + 8.,/ + &, . fo + £} and we dencte it by F+ g.
The product of the vector f = {1, /s, . fu} by the number A is the
vector Af = {Af, A, -, Aol
The length of the vector f = { 1, fa = ,J.}. like the length of a
vector in three-dimensional space, is defined as v/f? + /7 + - 4+ f%.

* See Chapter XV¥1.
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The angle ¢ between the twa vectors f = {f,,/z, . .t and g = {g,,
£, o) in n-dimensional space is given by its cosine in exactly the same
way as the angle between vectors in three-dimensional space. For it is
defined by the formula*

figr + foa + - + fuBo .
VAR + - +AVE+g+ - + &

cos¢p =

)

The scalar product of two vectors is the name for the product of their
lengths by the cosine of the angle between them. Thus, if f = {f; .z, . fa}
and g ={g,. &, ", 2., then since the lengths of the vectors are

Vi i+ + /% and Vgl + gk + - + g2, respectively, their scalar
product, which is denoted by (f, g), is given by the formula

(8 =18 + g+ + 1 a8n- 3)

In particular, the condition of orthogonality (perpendicularity) of two
vectors is the equation cos ¢ = 0; i.e.,, (f,2) = 0.

By means of the formula (3) the reader can verify that the scalar product
in n-dimensional space has the following properties:

l. (f,8) = (&1

2. (M g) = A/ 8

3. (fig1+8)=(fg)+ ([ g

4. (f,f) =0, and the equality sign holds for f = 0 only, i.e., when
fl =f2 =" =fn = 0.

The scalar product of a vector f with itself ( £, /) is equal to the square
of the length of £,

The scalar product is a very convenient tool in studying #-dimensional
spaces. We shall not study here the geometry of an n-dimensional space
but shall restrict ourselves to a single example.

As our example we choose the theorem of Pythagoras in n-dimensional
space: The square of the hypotenuse is equal to the sum of the squares of
the sides. For this purpose we give a proof of this theorem in the plane
which is easily transferred to the case of an a#-dimensional space.

Let £ and g be two perpendicular vectors in a plane. We consider the
right-angled triangle constructed on fand g (figure |). The hypotenuse
of this triangle is equal in length to the vector / 4+ g. Let us write down in
vector form the theorem of Pythagoras in our notation. Since the square
of the length of a vector is equal to the scalar product of the vector with

* The fact that | cos¢ | < | follows from the inequality {1').
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itself, Pythagoras’ theorem can be written in the language of scalar products
as follows:

(f+e/f+8=(L)+(8)

The proof immediately follows fram the properties of the scalar product.
In fact,
(f+ef+=UN+L8+&))+ &8,

and the two middle summands are equal to zero owing to the orthogonality
of fand g.

In this proof we have only used the definition of the length of a vector,
the perpendicularity of vectors, and the properties of the scalar product.
Therefore nothing changes in the proof when we assume that fand g are
two orthogonal vectors of an s-dimensional space. And so Pythagoras’
theorem is proved for a right-angled triangle in »~-dimensional space.

. —————  —

ifthree pairwise orthogonal vectors f, g and 4 are given in n-dimensional
space, then their sum f + g + A is the diagonal of the right-angled paral-
lelepiped constructed from these vectors (figure 2) and we have the
equation

(f+e+hf+e+R=(L)+ (g8 + Oh,

which signifies that the square of the length of the diagonal of a paral-
lelepiped is equal to the sum of the squares of the lengths of its edges.
The proof of this statement, which is entirely analogous to the ane given
earlier for Pythagoras’ theorem, is left to the reader. Similarly, if in an
n-dimensional space there are k pairwise orthogonal vectors f2, f3, .-, f*
then the equation

(f+r+ -+ A+ M
=AM+ +H (A, @
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which is just as easy to prove, signifies that the square of the length
of the diaganal of a *“‘k-dimensional parallelelipiped™ in n-dimensional
space is also equal to the sum of the squares of the lengths of its
edges.

§2. Hilbert Space (Infinite-Dimensional Space)

Connection with n-dimensional space. The introduction of the concept
of n-dimensional space turned out to be useful in the study of a number of
problems of mathematics and physics. In its turn this concept gave the
impetus to a further development of the concept of space and to its applica-
tion in various domains of mathematics. An important role in the develop-
ment of linear algebra and of the geometry of n-dimensional spaces was
played by prablems of small oscillations of elastic systems.

Let us consider the following classical

A - example of such a problem (figure 3). Let A8

el y T~ be a flexible string spanned between the points
Aclo i ~~.g A and B. Let us assume that a weight is
¢ attached at a certain point C to the string. If

Fig. 3. it is moved from its position of equilibrium, it

begins to oscillate with a certain frequency w,
which can be computed when we know the tension of the string, the mass
m and the position of the weight. The state of the system at every instant
is then given by a single humber, namely the displacement y, of the mass
m from the position of equilibrium of the string.

Now let us place # weights on the string AB at the points C, , C;, -, C,, .
The string itself is taken to be weightless. This means that its mass is so
small that compared with the masses of the weights it can be neglected.
The state of such a system is given by n numbers y,, y., ', ¥, equal to
the displacements of the weights from the position of equilibrium. The
collection of numbers y,, yg, ", ¥, can be regarded (and this turns out
to be useful in many respects) as a vector (J,, ¥z, ¥n) Of an n-
dimensional space.

The investigation of the small oscillations that take place under these
circumstances turns out to be closely connected with fundamental facts
of the geometry of n-dimensional spaces. We can show, for example,
that the determination of the frequency of the oscillations of such a system
can be reduced to the task of finding the axes of a certain ellipsoid in
n-dimensional space.

Now let us consider the problem of the small oscillations of a string
spanned between the points 4 and B. Here we have in mind an idealized
string, i.e., an elastic thread having a finite mass distributed continuously
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along the thread. In particular, by a homogeneous string we understand
one whose density is constant.

Since the mass is distributed continuously along the string, the position
of the string can no longer be given by a finite set of numbers y, , y5 . =, ¥ »
and instead the displacement p{x) of every point x of the string has to be
given. Thus, the state of the string at each instant is given by a certain
function p{x).

The state of a thread with # weights attached at the points with the
abscissas Xy, Xg, "y Xp, IS

represented graphically by a 2 o

broken line with n members 4 ot/ AN . ol 120 et g
(figure 4), so that when the \\#"z'

number of weights is in-

creased, then the number of FIG. 4.

segments of the broken line

increases correspondingly. When the number of weights grows without
bound and the distance between adjacent weights tends to zero, we obtain
in the limit a continvous distribution of mass along the thread, ie., an
idealized string. The broken line that describes the position of the thread
with weights then goes over into a curve describing the position of the
string (figure 5).

N~

Fic. §.

So we see that there exists a close connection between the oscillations of
a thread with weights and the oscillations of a string. In the first problem
the position of the system was given by a point or vector of an »-
dimensional space. Therefore it is natural to regard the function f(x) that
describes the position of the oscillating string in the second case as a
vector or a point of a certain infinite-dimensional space. A whole series of
similar problems leads to the same idea of considering a space whase
points (vectors) are functions f{x) given on a certain interval *

T*Ag anoth;:r such problem let us consider the electrical oscillations set up in a
series of connected electrical circuits (figure 6).

T ™
N A
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This example of oscillation of a string, to which we shall return again
in §4, suggests to us how we shall have to intraduce the fundamental
concepts in an infinite-dimensional space,

Hilbert space. Here we shall discuss one of the most widespread
concepts of an infinite-dimensional space of the greatest importance for
the applications, namely the concept of the Hilbert space.

A vector of an n-dimensional space is defined as a collection of n
numbers £;, where { ranges from | to #. Similarly a vector of an infinite-
dimensional space is defined as a function f(x), where x ranges from a to b.

Addition of vectors and multiplication of a vector by a number is
defined as addition of the functions and multiplication of the function by
a number.

The length of a vector f in an #-dimensional space is defined by the

i-

Since for functions the role of the sum is taken by the integral, the length
of the vector f{x) of a Hilbert space is given by the formula

\/ I_: (x) dx. (5)

The distance between the points fand g in an n-dimensional space is
defined as the length of the vector f— g, i.e., as

,\/g(ﬁ — gt

Similarly the “‘distance™ between the elements f{¢) and g(7) in a functional

space is equal to
\/ f L) — g .

The state of such a series can be expressed by the set of n numbers w, , #y, -, i,
where &, is the voltage on the condensor of the #th circuit of the chain, The cellection
of the n numbers (w , -+, u,) is a vector of an p-dimensional space.

Now let us imagine a two-wire line, i.e., a line consisting of two conductors having
finite capacity and inductance, distributed along the line, The electric state of the line
is expressed by a certain function «{x), which gives the distribution of the voltage along
the line. This function is a vector of the infinite-dimensional space of functions given
on the interval (g, b).
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The expression f [AA)— g(1)) dt is called the mean-square deviation
of the functions f{¢) and g(¢). Thus, the mean-square deviation of two
elements of Hilbert space is taken to be a measure of their distance.

Let us now proceed to the definition of the angle between vectors. In an
r-dimensional space the angle ¢ between the vectors f = { f;} and g = {g;}
is defined by the formula

. i1 J18: _
VEILSVEL 8

cos ¢ =

In an infinite-dimensional space the sums are replaced by the corre-
sponding integrals and the angle ¢ between the two vectors / and g of
Hilbert space is defined by the analogous formula

SU1) 2(2) dt _
VP dV P g(e) ar

This expression can be regarded as the cosine of a certain angle ¢, provided
the fraction on the right-hand side is an absolute value less than one, i.e., if

E A g(t) dt | < \/ J: 0 dt J J: gi(?) dr. (7)

This inequality in fact holds for two arbitrary functions f{r) and g(t).
It plays an important role in analysis and is known as the Cauchy-
Bunjakovskii inequality. Let us prove it.

Let f{x) and g(x) be two functions, not identically equal to zero, given
on the interval (a, ). We choose arbitrary numbers A and g and form
the expresson

coseg =

(6)

|| 0r) — gty o

Since the function [Af(x) — pg(x)JE under the integral sign is nonnegative,
we have the following inequality

[ W) — gl ax > 0;
i.e.,

s f 10 g(x) dx < N f £ dx + u? f %) dx.

For brevity we intraoduce the notation

b
Eﬂx} g(x) dx| = C, Lf*(x) dx = A, J:g’(x) dx — B. (8)
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In this notation the inequality can be rewritten as follows:*
2MC < XA + u?B. )

This inequality is valid for arbitrary values of A and p; in particular we

may set . B
SN

Substituting these values of A and g in (9), we obtailn

L

VAR

When we replace 4, B and C by their expressions in (8), we finally obtain
the Cauchy-Bunjakovskil inequality.

In geometry the scalar product of vectors is defined as the product of

their lengths by the cosine of the angle between them. The lengths of the
vectors fand g in our case are equal to

‘\/J:f’(x) dx and ,JJ: 2%x) dx,

and the cosine of the angle between them is defined by the formula

Jalx) g(x) dx
‘\/_[: ¥ x) dx ‘\/.[: 25 dx .

< 1

cos¢ =

When we multiply out these expressions, we arrive at the following formula
for the scalar product of two vectors of Hilbert space:

(fg) = ﬂﬂx) #(x) d. (11)

From this formula it is clear that the scalar product of the vector f with
itself its the square of its length.

If the scalar product of the nonzero vectors f and g is equal to zero, it
means that cos ¢ = 0, i.e., that the angle ¢ ascribed to them by our
definition is 90°. Therefore functions f and g for which

b
(£,8) = [ Mg dx =0,
are called orthogonal.
Pythagoras’ theorem (see §1) holds in Hilbert space as in an #-dimen-

* For C we have to take the modulus of the integral because of the arbitrary sign
of A or .
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sional space. Let fi(x), fz(x), -, fy(x) be N pairwise orthogonal functions

Jx) = filx) + folx) + - + fulx)

and their sum. Then the square of the length of f is equal to the sum
of the squares of the lengths of /; , fo, =, /v -

Since the lengths of vectors in Hilbert space are given by means of
integrals, Pythagoras’ theorem in this case is expressed by the formula

(oo (e [fmacs - (e om

The proof of this theorem does not differ in any respect from the one
given previously (§1) for the same theorem in n-dimensional space.

So far we have not made precise what functions are to be regarded as
vectors in Hilbert space. For such functions we have to take all those for
which f S4x)dx has a meaning. It might appear natural to confine
ourselves to continuous functions for which JHx) dx always exists.
However, the theory of Hilbert space becomes more complete and natural
if .|° F4x) dx is interpreted in a generalized sense, namely as a Lebesgue
mtegral (see Chapter XV).

This extension of the concept of integrals (and correspondingly of the
class of functions to be discussed) is necessary for functional analysis in
the same way as a strict theory of the real numbers is necessary for the
foundation of the differential and integral calculus. Thus, the generaliza-
tion of the ordinary concept of an integral that was created at the begin-
ning of the 20th century in connection with the development of the theory
of functions of a real variable turned out to be quite essential for functional
analysis and the branches of mathematics connected with it.

§3. Expansion by Orthogonal Systems of Functions

Definition and examples of orthogonal systems of functions. If in a
plane two arbitrary mutually perpendicular F T T T T T
vectars €, and e, of unit length are chosen
(figure 7), then every vector of the same
plane can be decomposed in the directions
of these two vectors, i.e., can be repre- 929 f
sented in the form

S = ae, + aes,

where ¢, and a; are the numbers equal &
to the projections of the vector f in the
direction of the axis of e; and e, . Since Fic. 7.

e e e e e —— — — —

TP

L

- X
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the projection of f on an axis is equal to the product of the length of f
by the cosine of the angle between fand the axis, we can write, remem-
bering the definition of the scalar product,

& = (.’; el)s
e = ([ ).

Similarly if in a three-dimensional space any three mutually perpendicular
vectors ¢, , ¢, , €; of unit length are chosen, then every vector f in this
space can be written in the form

= ae, 4 a:es 1+ aye;,

where
& = (.’; ek) (k == ]5 2! 3)'

In Hilbert space we can also consider systems of pairwise orthogonal
vectors of the space, i.e., functions ¢,(x), dy(x), -, dux), - .

Such systems of functions are called orthoganal and play an important
role in analysis. They occur in very diverse problems of mathematical
physics, integral equations, approximate computations, the theory of
functions of a real variable, etc. The ordering and unification of the
concepts relating to such systems formed one of the motivations that led
at the beginning of the 20th century to the creation of the general concept
of a Hilbert space.

Let us give a precise definition. A system of functions

(%), dox), -, Pax), -

is called orthogonal if any two functions of the system are orthogonal, i.e.,
if

f $i(X) dul¥) dx = O for ik (13)

In three-dimensional space we required that the vectors of the system
should be of unit length. Recalling the definition of length of a vector we
see that in the case of Hilbert space this requirement can be written as
follows:

f S dx = L. (14)

A system of functions satisfying the conditions (13) and (14) is called
orthonormal.
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Let us give examples of such systems of functions.
. On the interval (—m, =) we consider the sequence of functions
1, cos x, sin x, cos 2x, sin 2x, -+, cos nx, sin nx, .

Any two functions of this sequence are orthogonal to each other. This can
be verified by the simple computation of the corresponding integrals.
The square of the length of a vector in Hilbert space is the integral of the
square of the function. Thus, the squares of the lengths of the vectors of
the sequence

I, cos x, sin x, cos 2x, sin 2x, ---, cos nx, sin ax, '

are the integrals

r dx = 2m, f cost nx dx = =, r sin? ax dx = =,

-

i.e., the vectors of our sequence are orthogonal, but not normalized. The
length of the first vector of the sequence is equal to 4/Z#, and all the others
are of length 4/ When we divide every vector by its length, we obtain the
orthonormal system of trigonometric functions

| cosx sinx cos2x sin2x  cosax sinax
Vor ' Vo Ve Ve T va T Vw T Ve

This system is historically one of the first and most important examples of
orthogonal systems. It appeared in the works of Euler, D. Bernoulli, and
d’Alembert in connection with problems on the oscillations of strings.
The study of it plays an essential role in the development of the whole of
analysis. *

The appearance of the orthogonal system of trigonometrical functions
in connection with problems on oscillations of strings is not accidental.
Every problem on small oscillations of 2 medium leads to a certain system
of orthogonal functions that describe the so-called characteristic oscil-
lations of the given system (sec §4). For example, in connection with
problems on the oscillations of a sphere there appear the so-called spherical
functions, in connection with problems on the oscillations of a circular
membrane or a cylinder there appear the so-called cylinder functions, etc.

2. We can give an example of an orthogonal system of functions in

* See Chapter X11, §1.
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which every function is a polynomial. Such an example is the sequence of
Legendre polynomials

Pﬂ(x) =

1 dn(x® — 1)
2np) den

i.e., P,{x)is (apart from a constant factor) the nth derivative of (x> — 1)
Let us write down the first few polynomials of this sequence:

Pox) = 1;
Py(x) = x,
Py(x) = 1(3x2—1);
Pix) = 1(5x® — 3x).

Obviously P, (x) is a polynomial of degree ». We leave it to the reader to
convince himself that these polynomials are an orthogonal sequence on
the interval (—I, 1).

The peneral theory of orthogonal polynomials (the so-called orthogonal
polynomials with weights) was developed in the second half of the 19th
century by the famous Russian mathematician P. L. CebySev.

Expansion by orthogonal systems of fumctions. Just as in three-
dimensional space every vector can be represented in the form of a
linear combination of three pairwise orthogonal vectors e, , €, , €, of unit
length

J = ae, + age; + agey,

so in a functional space there arises the problem of the decomposition of
an arbitrary function fin a series with respect to an orthonormal system
of functions, i.e., of the representation of fin the form

f1x) = ada(x) + aydo(x) + - + apdpu(x) + . (15)

Here the convergence of the series (15) to the function £ has to be under-
stood in the sense of the distance between elements in Hilbert space. This
means that the mean-square deviation of the partial sum of the series

Salt) = 2, ()
Foa |
from the function f{z) tends to zero for n — < i.e.,

tim [ 1) — sl ae = o. (16)

This convergence is usually called “convergence in mean.”
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Expansions in various systems of orthogonal functions often occur in
analysis and are an important method for the solution of problems of
mathematical physics. For example, if the orthogonal system is the
system of trigonometric functions on the interval (—r, =)

I, cos x, sin x, cos 2x, sin 2x, **, COS Mx, 51N AxX, ***,

then this expansion is the classical expansion of a function in a trigonomet-
ric series*

Rx) = @y + a, c0s x + by sin x + a; cos 2x + by sin 2x 4 -,

Let us assume that an expansion (15) is possible for every function f of
a Hilbert space and let us find its coefficients @, . For this purpose we
multiply both sides of the equation scalarly by one and the same function
¢, of our system. We obtain the equation

(.ﬁ 'ﬁm) = & (¢1 "ﬁm) + ﬂz(‘f’a * ¢m} + - 4 am(#ﬂ - ‘ﬁ'm)
+ am+l(¢m+1 ’ ¢m) +

in virtue of the fact that (¢,, , $,) = 0 for m 7= n and (¢, , §.,) = 1, this
determines the value of the coefficient a,,

Ay — (f; ém] {m - l: za )

We see that, as in ordinary three-dimensional space (see the beginning of
this section), the coefficients a,, are equal to the projections of the vector
fin the direction of the vectors ¢, .

Recalling the definition of the scalar product we see that the coeflicients
of the expansion of f(x) by the normal orthogonal system of functions

%(x)' #(x)' “ae ¢n{x)‘ P

Ax) = axy(x) + axdslx) + - + auo(x) + - (17
are determined by the formulas
an = [ f)$a) . (18)

As an example let us consider the normal orthogonal trigonometric
system of functions mentioned previously:

l cosx sinx cos2x sin2x
Vir 'V Ve Ve ' vVw

* Such a decomposition often oceurs in various problems of physics in the decom-
position of an oscillation into its harmonic constituents, See Chapter VI, §5.
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Then

fix) = % +2a,,cosnx+b,,sinnx,

A=l

where

a4y = & J.:f(x) dx, a, = & _[:ﬂx) c0s nx dx,

1 .
b, = p— K“ﬂx) sin nx dx.

So we have obtained the formula for the computation of the coefficients
of the expansion of a function in triponometric series, assuming of course
that this expansion is possible.*

We have established the form of the coefficients of the expansion (18)
of the function f{x) by an orthogonal system of functions under the as-
sumptions that this expansion holds, However, an infinite orthogonal
system of functions ¢ , ¢, =, ¢, , -~* may turn out to be insufficient for
every function of a Hilbert space to have such an expansion..For such an
expansion to be possible, the system of orthogonal functions must satisfy
an additional condition, namely the so-called condition of completeness.

An orthogonal system of functions is called compiete if it is impossible
to add to it even one function, not identically equal to zero, that is
orthogonal to all the functions of the system,

It is easy to give an example of an incomplete orthogonal system. For
this purpose we choose an arbitrary orthogonal system, for example that
of the trigonometric functions, and remove one of the functions of the
system, for example cos x, The remaining infinite system of functions

I, sin x, cos 2x, sin 2x, **, cOs nx, sin nx, '

is orthogonal as before, but of course it is not complete, since the function
cos x which we have excluded is orthogonal to all the functions of the
system,

If a system of functions is incomplete, then not every function of a
Hilbert space can be expanded by it. For if we attempt to expand by such
a system a nonzero function fi(x) that is orthogonal to all the functions of
the system, then by (18) all the coefficients turn out to be zero, whereas the
Function fi(x) is not equal to zero,

The following theorem holds: If a complete orthonormal system of

* On trigonometric series see also Chapter X1, §7.
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functions in a Hilbert space ¢,(x), $(x), **, ¢o(x), *», is given, then every
function f(x) can be expanded in a series by functions of this system *

SX) = aya(X) + aghlx) + '+ + 2, ha(x) + .

Here the coefficients a,, of the expansion are equal to the projections of the
vectors f on the elements of the normal orthogonal system

4 = Urd) = [ S duid .

Pythagoras’ theorem in Hilbert space, which was established in §2,
enables us to find an interesting relation between the coefficients o, and
the function f{x). We denote by r,(x) the difference between f{x) and the
sum of the first # terms of its series; i.e.,

ri(x) = f(x) — [md(x) + - + adu(x)).

The function r,(x) is orthogonal to ¢,(x), d(x), -, da(x). Let us verify
for example that it is orthogonal to $,(x), i.e., that [} r(x) $,(x) dx = 0.
We have

b
[ o diarax = [ 1700) — aiod — aho) — -+ — a0 bl dx

— J: S(x) a(x) dx — ay J: $1(x) dx.t

Since 4, = j': J(x) §y(x) dx, and _[: $1(x) dx = 1, it follows from this that
j: ro(XMh(x)dx = 0. '
Thus, in the equation

fIx) = ay(x) + aghe(x) + -+ + a,.(x) + ro(x) (19)

the individual terms on the right-hand side are orthogonal to each other.
Hence, by Pythagoras’ theorem as formulated in §1, the square of the
length of f(x) is equal to the sum of the squares of the lengths of the
summands of the right-hand side in (19); i.e.,

[[rwax = [ lagioras + - + [ laguP ax + [ Ao,

* This series is related to its sum in the sense defined in formula (1 6).
+ The remaining integrals are equal to zerg, because the functions ¢,{x) are orthogonal
to each other.
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Since the system of functions ¢, , ¢;, -, ¢, is normalized [equation (14)],
we have

[ Feds— at +ad+ -+ + [ rie) d. 20)

The series X, aydi{x) converges in mean. This means that

]
| U0 ~ ) — =+ - a0 dx—0,
j.e., that

r ri(x) dx — 0.

But then we obtain from the formula (20) the equation

X a = [ s (21)

which states that the integral of the square of a function is equal to the
sum of the squares of the coeflicients of its expansion by a closed
orthogonal system of functions. If the condition (21) holds for an arbitrary
function of the Hilbert space, it is called the condition of completeness.

We wish to draw attention to the following important question. Which
numbers a; can be the coefficients of the expansion of a function in Hilbert
space ? The equation (21) asserts that for this purpose the series E:i,aﬁ
must converge. Now it turns out that this condition is also sufficient; i.e.,
a sequence of numbers a, is the sequence of coefficients of the expansion
by an orthogonal system of functions in Hilbert space if and only if the
series X, a? converges.

We remark that this fundamental theorem holds if Hilbert space is
interpreted as the collection of all functions with integrable square in the
sense of Lebesgue (see §2). If we were to confine ourselves in Hilbert
space, for example, to the continuous functions, then the solution of the
problem as to which numbers @, can be the coefficients of an expan-
sion would become unnecessarily complicated,

The arguments given here are only one of the reasons that have led to
the use of an integral in a generalized {Lebesgue) sense in the definition of
Hilbert space,

* Geometrically, this means that the square of the length of a vector in Hilbent
space is equal to the sum of the squares of its projections onto a complete system of
mutually orthogonal directions.
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§4. Integral Equations

In this section the reader will become acquainted with one of the most
important and, historically, one of the first branches of functional analysis,
namely the theory of integral equations, which has also played an essential
rok in the subsequent development of functional analysis. Quite apart from
internal requirements of mathematics [for example, boundary problems
for partial differential equations (Chapter VI)], various problems of
physics were of great importance in the development of the theory of
integral equations. Side by side with differential equations, the integral
equations are, in the 20th century, one of the most important means of
the mathematical investigation of various problems of physics. [n this
section we shall give a certain amount of information concerning the
theory of integral equations. The facts we shall explain here are closely
connected and have essentially sprung up (directly or indirectly) in
connection with the study of small oscillations of elastic systems.

The problem of small oscillations of elastic systems. We return to
the problem of small oscillations discussed in §2. Let us find equations that
describe such oscillations. For the sake of simplicity we assume that we
are dealing with the oscillation of a
linear elastic system. As examples of 4
such systems we can take, say, a g
string of length [ (figure 8) or an
elastic rod (figure 9). We shall assume
that in the position of equilibrium ¢
our elastic system is situated along the
segment OF of the x-axis. We apply a
unit force at the point x. Under the FiG. 8.
action of this force all the points of
the system receive a certain displacement. The displacement arising at
the point y (figure 8) is denoted by k({x, ).

B8
{

— T

Orhb

Fig. 9.

The function k{x, ) is a function of two points: the point x at which
the force is applied, and the point y at which we measure the displacement.
1t is called the infltuence function (Green's function).
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From the law of conservation of energy, we can deduce an important
property of the Green's function k{x, ), namely the so-called reciprocity
law: The displacement arising at the point y under the action of a force
applied at the point x is equal to the displacement arising at the point x
under the action of the same force applied at the point y. In other words,
this means that

k(x, ) = k(y, x). @2)

Let us find, for example, the Green's function for the longitudinal
oscillations of an elastic rod {in figure 8 we have illustrated other transverse
displacements). We consider a rod AB of length fixed at the ends (figure 9).
At the point C we apply a force / acting in the direction of B. Under the
action of this force the rod is deformed and the point C is shifted into the
position C’. We denote the magnitude of the shift of C by A. Let us find
the value of A. By means of # we can then find the shift at an arbitrary
point y. For this purpose we shall make use of Hooke’s law, which states
that the force is proportional to the relative extension (i.e., to the ratio of
the amount of displacement to the length). A similar relation holds for
compressions.

Under the action of the force f the part AC of the rod is stretched.
We denote the reaction arising here by T, . At the same time the part CB
of the rod is compressed, giving rise to a reaction T, . By Hooke's law

h h
T= "_.,T=
1 Jm.:r: 3 Kf—x

where « is the coefficient of proportionality that characterizes the elastic
properties of the rod. The position of equilibrium of the forces acting at
the point C gives us

h \ XA
—x I

A
f = K.; + 4
Hence

h=L xi—x.

Kl

In order to find the displacement arising at a certain point y on the segment
AC, i.e., for y < x, we note that it follows from Hooke’s law that under
an extension of the rod the relative extension {j.e., the ratio of the
displacement of the point to its distance from the fixed end) does not
depend on the position of the point. We denote the displacement of the
point y by k.
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Then by comparing the relative displacements at the points x and y we

obtain
k k

- =—

y x
hence

_wt=d _
k—hx—my(a' x) for y<x.
Similarly, if the point lies on the segment CB (y > x), we obtain

k=h!_—y=ilm[l—y).

I —x

Bearing in mind that the Green’s function k(x, j) is the displacement at
the point y under the action of a unit force applied at the point x, we
obtain that on the longitudinal oscillations of an elastic rod the Green’s
function has the form

K—Ily(f—x) for y < x,
k(x‘ly) = ]
;x{!—y} for y > x.

In a more or less similar way we could have found the Green’s function
for a string. If the tension of the string is 7 and the length /, then under
the action of a unit Force applied at the point x the string assumes the form
illustrated in figure 8, and the displacement k(x, y) at the point y is given
by the formula

%x(f —5), for x<y,
k{x9 }’) = ]
ﬁy(i— x), for x>y,

which coincides with the Green’s function for the rod which we have
derived.

In terms of the Green’s function we can express the displacement of
the system from its position of equilibrium provided that it is acted upon
by a continuously distributed force of density f{)). Since on an interval
of length 4y there acts a force f{y) Ay, which we can regard approximately
as concentrated at the point y, under the action of this force at the point
x there arises a displacement k(x, y) f{3) 4y. The displacement undei the
action of the whole load is approximately equal to the sum

3, k(x, ) f(y) 4y.
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Passing to the limit for 4y — 0 we obtain that the displacement «({x)
at the point x under the action of the force f{y) distributed along the
system is given by the formula

b
) = | kx, 10)dy. (23)

Let us assume that our elastic system is not subject to the action of
external forces. If it is displaced from its position of equilibrium, it then
begins to move. These motions are called the free oscillations of the
system.

Now let us write down in terms of the Green’s function k({x, y) the
equation that the free oscillations of the elastic system in question have to
obey. For this purpose we denote by u(x, t) the displacement from the
position of equilibrium at the point x and the instant of time ¢. Then the
acceleration of x at the time ¢ is equal to &u(x, t)/or%.

If p is the linear density of the field, i.e., p dy the mass of the element
of length 4y, then we obtain by a fundamental law of mechanics the
equation of motion by replacing in (23) the force f{y) dy by the product
of the mass and the acceleration [9%«(y, 1)/0¢*] p dy taken with the opposite
sign.

Thus, the equation of the free oscillations has the form

wx,d) = — [ koo 20 5y,

An important role in the theory of oscillations is played by the so-called
harmonic oscillations of the elastic system, i.e., the motions for which

u(x, ) = u(x) sin wt.

They are characterized by the fact that every fixed point performs harmonic
oscillations (moves according to a sinusoidal law) with a certain frequency
w, and that this frequency is one and the same for all the points x.
Later on we shall see that every free oscillation is composed of harmonic
oscillations.
We set
u(x, 1) = u(x)sin wt

in the equation of the free oscillations and cancel sin w¢. Then we obtain
the following equation to determine the function u(x)

wx) = put [ kx, ) u0) dy. 24
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Such an equation is called a homogeneous integral equation for the
function i{x).

Obviously the equation (24) has for every « the uninteresting solution
#{x) = 0, which corresponds to the state of rest. Those values of w
for which there exist other solutions of the equation (24), different from
zero, are called the eigenfrequencies of the system.

Since nonzero solutions do not exist for every value of «w, the system
can perform free oscillations only with definite frequencies. The smallest
of these is called the fundamental tone of the system, and the remaining
ones are overtones.

Now it turns out that for every system there exists an infinite sequence
of eigenfrequencies, the so-called frequency spectrum

Gehy o Gidg 4 *°7 Wy, *™

The nonzero solution u,(x) of the equation (24) corresponding to the
the eigenfrequency «w, gives us the form of the corresponding characteristic
oscillation. :

For example, if the elastic system is a string stretched between the
points O and 7 and fastened at these points, then the possible frequencies
of the characteristic oscillations of the system are egual to

w w mw w
T,ZaT,M— , @ —

a = T

where g is a coefficient depending on the density and the tension of the

1)

Iy

o Y =X 5 \\/Ii—x
u

FiG. 10.
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string, namely, 4 = +/7/p. The fundamental tone is here w, = a(=/N,
and the overtones are w, = 2w, , wy = 3wy, **, @, = N, . The form of
the corresponding harmonic oscillations is given by the equation

ulx) = sin"T”x

and are illustrated for n = 1, 2, 3, 4 in figure 10.

So far we have discussed free oscillations of elastic systems. Now if an
exterior harmonic force acts on the elastic system during the motion,
then, in determining the harmonic oscillations under the action of this
force, we arrive at the function u(x) at the so-called inhomogeneous
integral equation

wx) = put || kx, D)y + W), 25)

Properties of integral equations. Previously we have become ac-
quainted with examples of integral equations

£ =2 [ K dy (26)
and

f) = A f k(x, 7)) dy + (%), @7

the first of which was obtained in the solution of the problem on the free
oscillations of an elastic system, and the second in the discussion of forced
oscillations, i.e., oscillations under the action of external forces.

The unknown function in these equations is f{x). The given function
k(x, y) is called the kernel of the integral equation. The equation (27) is
called an inkomogeneous linear integral equation, and the equation (26) is
homogeneous. It is obtained from the inhomogeneous one by setting
h(x) = 0.

It is clear that the homogeneous equation always has the zero solution,
i.e., the solution f(x) = 0. A close connection exists between the solutions,
of the inhomogeneous and the homogeneous integral equations. By way
of example we mention the following theorem: If the homogeneous integral
equation has only the zero solution, then the corresponding inhomo-
geneous equation is soluble for every function #{x).

If for a certain value A a homogeneous equation has the solution f{x),
not identically equal to zero, then this value A is called an eigenvalue and
the corresponding solution f{x) an eigenfunction. We have seen earlier
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that when an integral equation describes the free oscillations of an elastic
system, then the eigenvalues are closely connected with the frequencies
of the oscillations of the system (namely A = pw?®. The eigenfunctions
then give the form of the corresponding harmonic oscillations.

In the problems on oscillations it followed from the law of conservation
of energy that

k(x, y) = k(y, x). (28)

A kernel satisfying the condition (28) is called symmetric.

The eigenfunctions and eigenvalues of an equation with a symmetric
kernel have a number of important properties. One can prove that such an
equation always has a sequence of real eigenvalues

ALy Agy vy Ag

To every cigenvalue there correspond one or several eigenfunctions.
Here eigenfunctions corresponding to distinct eigenvalues are always
orthogonal to each other.*

Thus, for every integral equation with a symmetric kernel the system
of eigenfunctions is an orthogonal system of functions. There arises the
question of when this system is complete, i.e., when can every function
of the Hilbert space be expanded in a series by a system of eigenfunctions
of the integral equation. In particular, if the equation

[ xnfay =0 (29)

is satisfied for f{y) = O only, then the system of eigenfunctions of the
integral equation

A kx D 0) = £

is a complete orthogonal system.t

Thus, every function f(x) with integrable square can in this case be
expanded in a series by eigenfunctions. By discussing various types of
integral equations, we obtain a general and powerful method of proving

* The latter statement will be proved in the next section.

t In the case when k(x, ) is the Green’s function of an elastic system, the equation (29)
assumes a simple physical meaning. In fact [see formula (23)] we have seen that under
the action of a force f{3) distibuted along the system the displacement of the system
from the pasition of equilibrium is expressed by the formula w(x) = [} &(x, ) ) dy.
Thus, the condition (29) signifies that every nonzero force takes the system out of its
position of equilibrium.
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that various important orthogonal systems are closed, i.e., that the
Functions are expandable in series by orthoponal functions. By this method
we can prove the completeness of the system of trigonometric functions,
of cylinder functions, spherical functions, and many other important
systems of functions.

The fact that an arbitrary function can be expanded in a series by
eigenfunctions means in the case of oscillations that every oscillation can
be decomposed into a sum of harmonic oscillations. Such a decomposition
yields a method that is widely applicable in solving problems on oscillations
in various domains of mechanics and physics (oscillations of elastic bodies,
acoustic oscillations, electromagnetic waves, etc.).

The development of the theory of linear integral equations gave the
impetus to the creation of the general theory of linear operators of which
the theory of linear integral equations forms an organic part. In the last
few decades the general methods of the theory of linear operators have
vigorously contributed to the further development of the theory of integral
equations.

85. Linear Operators and Furiher Developments of Functional Analysis

In the preceding section we have seen that problems on the oscillations
of an elastic system lead to the search for the eigenvalues and eigen-
functions of integral equations. Let us note that these problems can also
be reduced to the investigation of the eigenvalues and eigenfunctions of
linear differential equations.* Many other physical problems also lead to
the task of computing the eigenvalues and eigenfunctions of linear
differential or integral equations.

Let us give one more example. In modern radio technology the so-called
wave guides are widely used for the transmission of electromagnetic
oscillations of high frequencies, i.e., hollow metallic tubes in which
electromagnetic waves are propagated. It is known that in a wave guide
only electromagnetic oscillations of not too large a wave length can be
propagated. The search for the critical wave length amounts to a problem
on the eigenvalues of a certain differential equation.

Problems on eigenvalues occur, moreover, in linear algebra, in the
theory of ordinary differential equations, in questions of stability, etc.

So it became necessary to discuss all these related problems from one
single point of view. This common point of view is the general theory of
linear operators. Many problems on eigenfunctions and eigenvalues in
various concrete cases came to be fully understood only in the light of

* See Chapter VI, §5.
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the general theory of operators. Thus, in this and a2 number of other
directions the general theory of operators turned out to be a very fruitful
research tool in those domains of mathematics in which it is applicable.

In the subsequent development of the theory of operators, quantum
mechanics played a very important role, since it makes extensive use of
the methods of the theory of operators. The fundamental mathematical
apparatus of quantum mechanics is the theory of the so-called self-adjoint
operators. The formulation of mathematical problems arising in guantum
mechanics was and still is a powerful stimulus for the further development
of functional analysis.

The operator point of view on differential and integral equations turned
out to be extremely useful also for the development of practical methods
for approximate solutions of such equations.

Fundamental concepts of the theory of operators. Let us now proceed
to an explanation of the fundamental definitions and facts in the theory
of operators.

In analysis we have come across the concept of a function. In its simplest
form this was a relation that associates with every number x {the value of
the independent variable) a number y (the value of the function). In the
further development of analysis it became necessary to consider relations
of a more general type.

Such more general relations are discussed, for example, in the calculus
of variations (Chapter VIIIl), where we associated with every function a
number. If with every function a certain number is associated, then we
say that we are given a functional. As an example of a functional we can
take the association between an arbitrary functiony = f{x) (@ < x < b)
and the arc length of the curve represented by it. We obtain another
example of a functional if we associate with every function y = f(x)
(a < x < b) its definite integral [ f(x) dx.

If we regard f{x) as a point of an infinite-dimensional space, then a
functional is simply a function of the points of the infinite-dimensional
space. From this point of view the problems of the calculus of variations
concern the search for maxima and minima of functions of the points of
an infinite-dimensional space.

In order to define what we mean by a continuous functional it is
necessary to define first what we mean by proximity of two points of an
infinite-dimensional space. In §2 we gave the distance between two
functions f{x) and g{x) (points of an infinite-dimensional space) as

b
VI 10 — gtorax.



254 XIX. FUNCTIONAL ANALYSIS

This method of assigning a distance in infinite-dimensional space is often
used, but of course it is not the only possible one. In other problems other
methods of giving the distance between functions may turn out to be
better. We may point, for example, to the problem of the theory of
approximation of functions (see Chapter XII, §3), where the distance
between functions, which characterizes the measure of proximity of the
two functions f{x) and g(x), is given, for example, by the formula

max | f{x) — g(x} |

QOther methods of giving a distance between functions are used in the
investigation of functionals in the calculus of variations. Distinct methods
of giving the distance between functions lead us to distinct infinite-
dimensional spaces.

Thus, various infinite-dimensional (functional) spaces differ from each
other by their set of functions and by the definition of distance between
them. For example, if we take the set of all functions with integrable
square and define distance as

100 - georax,

then we arrive at the Hilbert space that was introduced in §2; but if we
take the set of all continuous functions and define distance as
max | f{x) — g(x) |, then we obtain the so-called space (C).

In the discussion of integral equations we come across expressions of
the form

¢ = | " k(x, ) JO) dy.

For a given kernel k(x, y) this equation indicates a rule by which every
function f{x) is set in correspondence with another function g(x).

This kind of a correspondence that relates with one function £ another
Function g is called an operator.

We shall say that we are given a linear operator A in a Hilbert space
if we have a rule by which we associate with every function / another
function g. The correspondence need not be given for all the functions of
the Hilbert space. In that case the set of those functions f for which there
exists the function g = Afis called the domain of definition of the operator
A (similar to the domain of definition of a function in ordinary analysis).
The correspondence itself is usually denoted as follows:

g = 4. (30)
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The linearity of the operator means that the sum of the functions f;
and f; is associated with the sum of Af; and Af;, and the product of fand
a number A with the function A4S i.e.,

AN+ 1D = AL + A, (31)
anxd
A(Af) = AAf. (32)

Occasionally continuity is also postulated for linear operators; i.e., it
is required that the convergence of a sequence of functions f, to a function
£ should imply that the sequence Af, should converge to Af.

Let us give examples of linear operators.

1. Let us associate with every function f{(x) the function g(x) = f~ f(t) dt,
i.e., the indefinite integral of /. The linearity of this operator follows from
the ordinary properties of the integral, i.e., from the fact that the integral
of the sum is equal to the sum of the integrals and that a constant factor
can be taken out of the integral sign.

2. Let us associate with every differentiable function f(x) its derivative
J'(x). This operator is usually denoted by the letter D; i.e.,

F(x) = D fx).

Observe that this operator is not defined for all the functions of the
Hilbert space but only for those that have a derivative belonging to the
Hilbert space. These functions form, as we have said previously, the
domain of definition of this operator.

3. The examples 1 and 2 were examples of linear operators in an infinite-
dimensional space. But examples of linear operators in finite-dimensional
spaces have occurred in other chapters of this book. Thus, in Chapter 111
affine transformations were investigated. If an affine transformation of a
plane of space leaves the origin of coordinates fixed, then it is an example
of a linear operator in a two-dimensional, or three-dimensional, space.
The linear transformations of an n-dimensional space introduced in
Chapter XVI now appear as linear operators in #~dimensional space.

4. In the integral equations, we have already met a very important
and widely - applicable class of linear operators in a functional space,
namely the so-called integral operators. Let us choose a certain definite
function k{x, ). Then the formula

g(x) = th“(x, NS dy
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associates with every function f a certain function g. Symbolically we can
write this transformation as follows:

g =A4f

The operator A in this case is called an integral operator. We could mention
many other important examples of integral operators.
In §4 we spoke of the inhomogeneous integral equation

) = A [ K ) S0)dy + h)

In thé notation of the theory of operators this equation can be rewritten
as follows
S =24+ h, (33)

where A is a given number, 4 a given function (a vector of an infinite-
dimensional space), and fthe required function. In the same notation the
homogeneous equation can be written as follows:

J = AMf. (34)

The classical theorems on integral equations, such as, for example, the
theorem formulated in §4 on the connection between the solvability of the
inhomogeneous and the corresponding homogeneous integral equation,
are not true for every operator equation. However, one can indicate certain
general conditions to be imposed on the operator 4 under which these
theorems are true.

These conditions are stated in topological terms and express that the
operator A should carry the unit sphere (i.e., the set of vectors whose
length does not exceed |) into a compact set.

Eigenvaloes snd eigenvectors of operators. The problem of eigen-
values and eigenfunctions of an integral equation to which we were led
by problems on oscillations can be formulated as follows: to find the values
A for which there exist a nonzero function f satisfying the equation

1) =2 [ Kx 0y @y

As before, this equation can be written as follows:

=AM/

or
Af =11 (35)
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Now we shall understand by A4 an arbitrary linear operator. Then a
vector fsatisfying the equation (35) is called an eigenvector of the operator
A, and the number /A the corresponding eigenvalue.

Since the vector (1/A)f coincides in direction with the vector f (differs
from f only by a numerical factor), the problem of finding eigenvectors
can also be stated as the problem of finding nonzero vectors f that do not
change direction under the transformation A.

This way of looking at the eigenvalues enables us to unify the problem
of eigenvalues of integral equations (if A is an integral operator), differ-
ential equations (if 4 is a differential operator), and the problem of eigen-
values in linear algebra (if A4 is a linear trapnsformation in finite-dimensional
space; see Chapter VI and Chapter XV1). In the case of three-dimensional
space this problem arises in the search for the so-called principal axes of
an ellipsoid.

In the case of integral equations a number of important properties of
the eigenfunctions and eigenvalues (for example the reality of the eigen-
values, the orthogonality of the eigenfunctions, etc.) are consequences of
the symmetry of the kernel, i.e., of the equation k(x, ) = k(y, x).

For an arbitrary linear operator 4 in a Hilbert space the analogue of
of this property is the so-called self-adjointness of the operator.

The condition for an operator A to be self-adjoint in the general case is
that for any two elements f; and f; the equation

(41, /) = (. 4f3)

holds, where {Af; , f;) denotes the scalar product of the vector Af] and the
vector 1, .

In problems of mechanics the condition of self-adjointness of an
operator is usually a consequence of the law of conservation of energy.
Therefore it is satisfied for operators connected with, say, oscillations
for which there is no loss (dissipation) of energy.

The majority of operators that occur in quantum mechanics are also
self-adjoint.

Let us verify that an integral operator with a symmetric kernel k(x, )
is self-adjoint. In fact, in this case Af; is the function j:k(x. ¥) ) dy.
Therefore the scalar product (4f;, f2), which is equal to the integral of
the product of this function with £ , is given by the formula

Ui f = | [ ke )i s dy ax.
Similarly

(ir Afy) = f J’" k(x, ) fi) £i(x) dy dix.
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The equation {Af; . ;) = (/1. Afy) is an immediate consequence of the
symmetry of the kernel &{x, y).

Arbitrary self-adjoint operators have a2 number of important properties
that are useful in the applications of these operators to the solution of a
variety of problems. Indeed, the eigenvalues of a self-adjoint linear
operator are always real and the eigenfunctions corresponding to distinct
eigenvalues are orthogonal to each other.

Let us prove, for example, the last statement. Let A, and A; be two
distinct eigenvalues of the operator A4, and f; and f, eigenvectors corre-
sponding to them. This means that

A.flz)"l.flr
Afy = Mfe .

We form the scalar product of the first equation (36) by f;, and of the
second by f; . Then we have

(4f 1) = Al 1o
(Af2 . 1) = A f2. f3)-

Since the operator A4 is self-adjoint, we have (A1, ., 2) = (Af; , /). When
we subtract the second equation (37) from the first, we obtain

0 = (A — M)/, So)

Since A, £ A, , we have (i, f2) = 0, i.e, the eipenvectors f; and f; are
orthogonal.

The investigation of self-adjoint operators has brought dlarity into
many concrete problems and questions connected with the theory of
eigenvalues. Let us dwell in more detail on one of them, namely on the
problem of the expansion by eigenefunctions in the case of a continuous
spectrum.

In order to explain what a continuous spectrum means, let us turn
apgain to the classical example of the oscillation of a string. Earlier we have
shown that for a string of length / the characteristic frequencies of
oscillations can assume the sequence of values.

(36)

(37N

Let us plot the points of this sequence on the numerical axis OA. When we
increase the length of the string /, the distance between any two adjacent
points of the sequence will decrease, and they will fill the numerical axis



§5. LINEAR OPERATORS AND FURTHER DEVELOPMENTS 259

more densely. In the limit, when /— co, i.e., for an infinite string, the
the eigenfrequencies fill the whole numerical semiaxis A > 0. In this case
we say that the system has a continuous spectrum.

We have already said that for a string of length / the expansion in a
series by eigenfunctions is an expansion in a series by sines and cosines
of m(=/hx; i.e., in a trigonometric series

= S . inp X
flx) 5 +Za,,cosn ; x + b, sinn ; X.

For the case of an infinite string we can again show that a more or less
arbitrary function can be expanded by sines and cosines. However, since
the eigenfrequencies are now distributed continvously along the numerical
line, this is not an expansion in a series, but in a so-called Fourier integral

A= | " 140 cos Ax + B(A) sin Ax] dA.

—

The expansion in a Fourier integral was already well known and widely
used in the 19th century in the solutions of various problems of mathe-
matical physics.

However, in more general cases with a continuous spectrum® many
problems referring to an expansion of functions by eigenfunctions were
not properly clarified. Only the creation of the general theory of self-
adjoint operators brought the necessary clarity to these problems.

Let us mention still another set of classical problems that have been
solved on the basis of the general theory of operators. The discussion of
oscillations involving dissipation (scattering) of energy belongs to such
problems.

In this case we can again look for free oscillations of the system in the
form i{x) ¢{r). However, in contrast to the case of oscillations without
dissipation of energy, the function ¢(7) is not simply cos wr, but has the
form e** cos wt, where & > 0, Thus, the corresponding solution has the
form w{x)e~** cos ewt. In this case every point x again performs oscillations
(with frequency w), however the oscillations are damped because for
t— <o the amplitude of these oscillations containing the factor e—*
tends to zero.

It is convenient to write the characteristic oscillations of the system in
the complex form u(x)e—**, where in the absence of friction the number A
is real and in the presence of friction A is complex.

* As examples we can take the oscillations of an inhomogeneous elastic medium
and also many problems of quantum mechanics.



260 XIX. FUNCTIONAL ANALYSIS

The problem on the oscillations of 2 system with dissipation of energy
again leads to a problem on eigenvalues, but this time not for self-adjoint
operators. A characteristic feature here is the presence of complex eigen-
values indicative of the damping of the free oscillations.

Using a method of the theory of operators in conjuntion with methods
of the theory of analytic functions M, V., Keldy¥ investigated this class
of problems in 1950-1951 and proved for it the completeness of the
system of eigenfunctions.

Connection of functional analysis with other branches of mathematics
and quantum mechanics. We have already mentioned that the creation
of quantum mechanics pave a decisive impetus to the development of
functional analysis. Just as the rise of the differential and integral calculus
in the 18th century was dictated by the requirements of mechanics and
classical physics, so the development of functional analysis was, and still is,
the result of the vigorous influence of contemporary physics, principally of
quantum mechanics, The fundamental mathematical apparatus of
quantum mechanics consists of the branches of mathematics relating
essentially to functional analysis. We can only briefly indicate the con-
nections existing here, because an explanation of the foundations of
quantum mechanics exceeds the framework of this book.

In quantum mechanics the state of the system is given in its mathematical
description by a vector of Hilbert space, Such quantities as energy, impulse,
and moment of momentum are investigated by means of self-adjoint
operators. For example, the possible energy levels of an electron in an
atom are computed as eigenvalues of the energy operator. The differences
of these eigenvalues give the frequencies of the emitted quantum of light
and thus define the structure of the radiation spectrum of the given
substance. The corresponding states of the electron are here described as
eigenfunctions of the energy operator.

The solution of problems of quantum mechanics often requires the
computation of eigenvalues of various (usually differential) operators.
In some complicated cases the precise solution of these problems turns
out to be practically impossible. For an approximate solution of these
problems the so-called perturbation theory is widely used, which enables
us to find from the known eigenvalues and functions of a certain self-
adjoint operator A the eigenvalues of an operator A, slightly different
from it. We mention that the perturbation theory has not yet received a
full mathematical foundation, which is an interesting and important
mathematical problem.

Independently of the approximate determination of eigenvalues, we can
often say a good deal about a given problem by means of qualitative
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investigation. This investigation proceeds in problems of quantum
mechanics on the basis of the symmetries existing in the given case. As
examples of such symmetries we can take the properties of symmetry of
crystals, spherical symmetry in an atom, symmetry with respect to rotation,
and others. Since the symmetries form a group {see Chapter XX), the group
methods (the so-called representation theory of groups) enables us to
answer a number of problems without computation, As examples we
may mention the classification of atomic spectra, nuclear transformations,
and other problems, Thus, quantum mechanics makes extensive use of
the mathematical apparatus of the theory of self-adjoint operators. At
the same time the continued contemporary development of quantum
mechanics leads to a further development of the theory of operators by
placing new problems before this theory.

The influence of quantum mechanics and also the internal mathematical
developments of functional analysis have had the effect that in recent
years algebraic problems and methods have played a significant role in
functional analysis, This intensification of algebraic tendencies in contem-
porary analysis can well be compared with the growth of the value of
algebraic methods in contemporary theoretical physics in comparison
with the methods of physics of the 19th century.

In conclusion, we wish to emphasize once more that functional analysis
is one of the rapidly developing branches of contemporary mathematics.
Its connections and applications in contemporary physics, differential
equations, approximate computations, and its use of general methods
developed in algebra, topology, the theory of functions of a real variable,
etc.,, make functional analysis one of the focal points of contemporary
mathematics.

Suggested Reading

N. Dunford and J, T, Schwurtz, Linear operators. . General theory, Interscience,
New York, 1958.

I. M. Gel'fand and Z. Ja. 8apiro, Representations of the rotation group of three-
dimensional space and their applications, Amer. Math. Soc, Translations
Series 2, val. 2, 1956, 207-316.

A. N, Kolmogorov and S. V. Fomin, Elements of the theory of functions and
Junctional analysis. Vol. 1, Mefric and normed spaces. Vol, 2, Measure,
Lebesgue integrals and Hilbert space. Graylock, New York, 1957/1961.

L. D. Landau and E. M. LifSic, Course of theoretical physics. Vol. 3, Quantum
mechanics, Pergamon, New York, 1958/1960.

F. Riesz and B, 5z.-Nagy, Functional! analysis, Frederick Ungar, New York,
1955,

A. E. Taylor, Introduction to functfonal analysis, Wiley, New York, 1958.



