Chapter 2
The Integral

Le vrai est simple et clair; et quand notre maniere d’y arriver
est embarrassée et obscure, on peut dire qu’elle mene au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1. Let  be an open subset of RY. We define
C(Q) ={u:Q — R: uis continuous},
K(Q) = {u € C(RY) : supp u is a compact subset of Q}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from O.

Let u € K(RY). By definition, there is R > 1 such that
sptuc {x e RN : |xlo <R -1}
Let us define the Riemann sums of u:

S =2 " ulk/2)).

keZN
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22 2 The Integral

The factor 277V is the volume of the cube with side 27/ in R". Let C = [0, 1]" and
let us define the Darboux sums of u:

A;=27N% minfu(x): 2x—k e C), B;=2"" " max{u(x): 2/x —k € C).
keZN keZN

Let & > 0. By uniform continuity, there is j such that w,(1/2’) < &. Observe that
Bi—A;j<(2R)"e,Aj.1 <A;<S;<B;<Bj.

The Cauchy integral of u is defined by

j—oo

f u(x)dx=1mS; =1limA; = lim B;.
RN J— J—o
Theorem 2.1.2. The space K(R") and the Cauchy integral

KRS R:um— udx
RN

are such that

(a) for every u € K(RY), lul € K(RN);
(b) for every u,v € K(RY) and every a, € R,

fcm+ﬁvdx:af udx+p vdx;
RN RN RN

(c) for every u € K(RN) such that u > 0, f udx > 0;
RN

(d) for every sequence (u,) C K(RYN) such that u, | 0, lim f u,dx = 0.
RN

n—o00

Proof. Properties (a)—(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

sptug C K ={x e R : |x]o <R —1}.

By Dini’s theorem, (u,) converges uniformly to 0 on K. Hence
0< f updx < 2R)Y mz}? u(x) >0, n— oo, O
RN xe

The above properties define an elementary integral. They suffice for constructing
the Lebesgue integral.
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The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral
satisfying the property of monotone convergence,

(e) if (u,) is an increasing sequence of integrable functions such that

sup f Updx < oo,
n RN

then u(x) = limu,(x) is integrable and

udx = lim u, dx,
RN n—oo JrN

and linearity,
(f) if u and v are integrable functions and if @ and S are real numbers, then

f cm+,8vdx:0/fudx+,8fvdx.
RN

Let us sketch the construction of the (concrete) Lebesgue integral.
By definition, the function u belongs to L+ (RY, dx) if there exists an increasing
sequence (u,) of functions of K(RY) such that u, T u and sup f U, dx < oo,
RN

n

The integral, defined by the formula

udx = lim u,dx,
RN =0 JRN

satisfies property (e). We shall prove that the integral depends only on u.

Let f,g € L"(RY,dx). The difference f(x) — g(x) is well defined except if
f(x) = g(x) = +oo. A subset S of R" is negligible if there exists h € LT(RY,dx)
such that for every x € §, h(x) = +oo.

By definition a function u belongs to £!(R", dx) if there exists f,g € L*(R",
dx) such that u = f — g except on a negligible subset of R". The integral defined by

fudx: fdx—f gdx
RN RN RN

satisfies properties (e) and (f). Again we shall prove that the integral depends only
on u.

The Lebesgue integral will be constructed in an abstract framework, the elemen-
tary integral, generalizing the Cauchy integral.

Example (Limit of integrals). It is not always permitted to permute limit and
integral. Let us define, on [0, 1], u,(x) = 2nx(1 — x*)"~!. Since for every x € 10, 1,
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. un+1(x)
lim

n—eo Lln(X)

=(1-x)<1,

u, converges simply to 0 on [0, 1]. But

1 1
0= f lim u,(x)dx < lim u,(x)dx = 1.
0 n=ee Jo

n—oo

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1. An elementary integral on the set 2 is defined by a vector space
L = L(Q, ) of functions from £ to R and by a functional

,u:.£—>]R:u|—>fud,u
Q

such that

(J) foreveryu € L, |ul € L;
(J>) for every u,v € L and every a, 8 € R,

fau+ﬂvdp=afudﬂ+ﬂfvdy;
Q Q Q

(J3) for every u € L such that u > 0, fu du > 0;
Q

(J4) for every sequence (u,) C L such thatu, | 0, lim | u,du =0.
n—0o0 Q

Proposition 2.2.2. Letu,v € L. Then u*,u”, max(u, v), min(u,v) € L.

Proof. Let us recall that u* = max(u, 0), u~ = max(-u, 0),

1 1 1 1
max(u,v) = E(u +v)+ Elu —v|, min(u,v) = E(u + V) — Elu -V O

Proposition 2.2.3. Let u,v € L be such that u < v. Then f udu < f vdu.
Q Q
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Proof. We deduce from () and (3) that

Oﬁfv—udy:fvdy—fudy. O
Q Q Q

Definition 2.2.4. A fundamental sequence is an increasing sequence (u,,) C L such
that

lim | wu,du = sup f udu < oo,
Q n Q

n—oo

Definition 2.2.5. A subset S of Q is negligible (with respect to u) if there is a
fundamental sequence (u,) such that for every x € S, limu,(x) = +oco. A property

is true almost everywhere if the set of points of 2 where it is false is negligible.
Let us justify the definition of a negligible set.

Proposition 2.2.6. Let (u,) be a decreasing sequence of functions of L such that

everywhere u,, > 0 and almost everywhere, limu,(x) = 0. Then lim | u,du = 0.
n—00 n—00 .Q

Proof. Let € > 0. By assumption, there is a fundamental sequence (v,) such that
if limu,(x) > 0, then limv,(x) = +oco. We replace v, by v;!, and we multiply by a

strictly positive constant such that

v, =0, fvnd,u <e.
Q

We define w, = (u,, — v,)*. Thenw, | 0, and we deduce from axiom (74) that

0< limf u,du < limfwn + v, du = limfwndy + lim fvnd,u
Q Q Q Q

= lim fvnd,u <e.
Q

Since € > 0 is arbitrary, the proof is complete. O

Proposition 2.2.7. Let (u,) and (v,) be fundamental sequences such that almost
everywhere,

u(x) = lim u,(x) < lim v,(x) = v(x).
Then
lim f u,dy < lim f vadpu.
n—oo Q n—0oo .Q

Proof. We choose k and we define w,, = (uy — v,,)*. Then (w,,) C L is a decreasing
sequence of positive functions such that almost everywhere,
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limw, (%) = (ue(x) = v(x))" < (u(x) - v(x)" = 0.

We deduce from the preceding proposition that

fukdu < limf Wy, + v, du = lim f wpdu + limf vadu = limf vadu.
Q Q Q Q Q

Since k is arbitrary, the proof is complete. O

Definition 2.2.8. A function u : Q — ]—o0, +o0] belongs to L = L*(Q, u) if there
exists a fundamental sequence (u,) such that u,, T u. The integral (with respect to )

of u is defined by
fudu = lim f u,du.
Q n—oo fe)

By the preceding proposition, the integral of u is well defined.
Proposition 2.2.9. Letu,ve L' and a,8 > 0. Then
(a) max(u,v), min(u,v),ut € L*;

(b) a/u+,8v€£+andfa/u+,6’vd,u:afudy+,8fvdy;
Q Q Q
(c) if u < v almost everywhere, thenfud,usfvdu.
Q Q

Proof. Proposition 2.2.7 is equivalent to (c). O

Proposition 2.2.10 (Monotone convergence in L*). Let (u,) C L be everywhere
(or almost everywhere) increasing and such that

c= supfund,u < 00,
n Q

Then (u,) converges everywhere (or almost everywhere) tou € L* and

fudu = lim | u,du.
Q n=e Jo

Proof. We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (ux,) such that ug, T uy.
The sequence v, = max(uy, . .., U, ,) 1s increasing, and almost everywhere,

v, <max(uy, ..., U,) = Uy.

fv,,du Sfund,u <ec,
Q Q

Since
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the sequence (v,,) C £ is fundamental. By definition, v, T u, u € L*, and

fud,u = lim | v,du.
Q

n—oo fo)
For k < n, we have almost everywhere that
Urn < Vi < Uy.

Hence we obtain, almost everywhere, that u; < u < limu, and

n—o00

f urdu < f udu < r}l_)tg) und,u.

It is easy to conclude the proof.

Corollary 2.2.11. Every countable union of negligible sets is negligible.

27

Proof. Let (Sy) be a sequence of negligible sets. For every k, there exists v, € L*
such that for every x € Sy, vi(x) = +00. We replace v by v, and we multiply by a

strictly positive constant such that

1
v >0, kad,us—.
Q 2k

n

The sequence u,, = ka is increasing and

Hence u, T u and u € L*. Since for every x € USk, u(x) = +oo, the set US" is

k=1 k=1

negligible.

O

By definition, functions of £* are finite almost everywhere. Hence the difference
of two functions of £* is well defined almost everywhere. Assume that f, g,v,w €
L' and that f — g = v—w almost everywhere. Then f +w = v+ g almost everywhere

and
ffd,u+fwdv,u:ff+wd,u:fv+gd/1:fvdﬂ+fgdﬂ,
Q Q Q Q Q Q

so that

ffdu—fgdu:fvdu—fwdu.
Q Q Q Q
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Definition 2.2.12. A real function u almost everywhere defined on Q belongs to
L' = L1(Q,p) if there exist f,g € L* such that u = f — g almost everywhere.
The integral (with respect to u) of u is defined by

Ludﬂ:Lfdﬂ—Lgdﬂ-

By the preceding computation, the integral is well defined.

Proposition 2.2.13. (a) Ifu € L', then |u] € L.
(b) Ifu,ve L' andif a,B € R, then au + Bv € L' and

fau+,8vd/1:afud/1+,8fvdy.
Q Q Q

(c) Ifu € L' and if u > 0 almost everywhere, then f udu > 0.
Q

Proof. Observe that
|f — gl = max(f, g) — min(f, g). O
Lemma 2.2.14. Letu € L' and e > 0. Then there exist v,w € L suchthatu = v—w

almost everywhere, w > 0, and f wdu < &.
Q

Proof. By definition, there exist f, g € L* such that u = f — g almost everywhere.
Let (g,) be a fundamental sequence such that g, T g. Since

f gdu=lim | g.du,
O n—oo fe)

there exists n such that fg —gndu <& Wechoosew=g—g,>0andv = f—g,.
Q
O

We extend the property of monotone convergence to £!.

Theorem 2.2.15 (Levi’s monotone convergence theorem). Let (u,) C L' be an
almost everywhere increasing sequence such that

c= Supfund,u < oo.
n Q

Then limu,, € L' and

n—oo

f lim u,dy = lim f Und.
Qn—mo n—o0 0

Proof. After replacing u, by u, — ug, we can assume that uy = 0. By the preceding

lemma, for every k > 1, there exist vi, wy € L' such that wy > 0, f widu < 1/ 2k,
Q
and, almost everywhere,

U — Up—1 = Vg — Wg.
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Since (uy) is almost everywhere increasing, v, > 0 almost everywhere.

We define . .
fnzzvk’ gn:ZWk-
k=1

k=1

The sequences (f,) and (g,) are almost everywhere increasing, and

n n 1
gndu = fwkd,uﬁ — <1, ffndpzfun+gnd/,t£c+l.
L kzz; Q ;2]‘ Q Q

Proposition 2.2.10 implies that almost everywhere,
limf, =fe L, limg,=ge L"
and
ffd,u = lim fndy,fgdu =lim | gdu.
Q n—=e Jo Q n=e Jo
We deduce from Corollary 2.2.11 that almost everywhere,

f—g=1lim(f, — g, = lim u,.

Hence limu, € £' and

n—oo

flim unduszdﬂ—fgduz limffn—gnd,uz limfund,u.

Theorem 2.2.16 (Fatou’s lemma). Let (u,) C L' and f € L' be such that

(a) supfund,u < 00;
n Jo

(b) for everyn, f < u, almost everywhere.

Then lim u, € L' and

n—oo

f lim u,dpy < lim | w,dup.
Q

n—oo n—o0 Q

Proof. We choose k, and we define, for m > k,
uk’m = min(uk’ LN ] I/lm).

The sequence (uy ) decreases to v, = infu,, and
n>k
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ffdﬂﬁfuk,mdﬂ-
Q Q

The preceding theorem, applied to (—uy,), implies that v; € £! and

kad,u: lim fuk,md,us lim min fund/z:inffund,u.
0 m—oo Jo m—00 k<n<m ) o nzk Jo

The sequence (v;) increases to lim u, and

n—oo

kad,u < supf updu < oo,
Q n Q

It follows from the preceding theorem that lim u, € £' and

n—oo

f lim u,du = klim vidp < lim inff up,dp = lim | wu,du. O
Q 00 Q

n—oo fo) k—oo n>k n—oo JO

Theorem 2.2.17 (Lebesgue’s dominated convergence theorem). Let (u,) C L!
and f € L' be such that

(a) u, converges almost everywhere;
(b) for every n, lu,| < f almost everywhere.

Then limu, € £' and

n—0o0

f lim u,du = lim | wu,du.
Q

—00 —00
n n Q

Proof. Fatou’s lemma implies that u = lim u, € £' and

n—oo

fod,us lim 2f—|un—u|d;1:2ffd;1— lim | |u, — uldy.

n—0oo

Hence
lim| | w, —udyl < limflun—uld/,tzo. O
n—oo fo)

—00
n Q

Theorem 2.2.18 (Comparison theorem). Let (u,) C L' and f € L' be such that

(a) u, converges almost everywhere to u;
(D) |u| < f almost everywhere.

Thenu € L.
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Proof. We define
v, = max(min(uy,, f), —f).

The sequence (v,) € L' is such that

(a) v, converges almost everywhere to u;
(b) for every n, |v,| < f almost everywhere.

The preceding theorem implies that « = limv, € £'. O

n—oo

Definition 2.2.19. A real function u defined almost everywhere on 2 is measurable
(with respect to u) if there exists a sequence (u,) C L such that u, — u almost
everywhere. We denote the space of measurable functions (with respect to ) on Q2

by M = M(Q, ).

Proposition 2.2.20. (a) Lc LT c L' c M.

(b) Ifu e M, then |u|l € M.

(c) Ifu,ve Mandifa,B € R, then au + Bv € M.

(d) Ifu € Mand if, almost everywhere, u| < f € L', thenu € L.

Proof. Property (d) follows from the comparison theorem. O

Notation. Letu € Mbe such that u > 0 and u ¢ L. We write fu du = +co. Hence
Q
the integral of a measurable nonnegative function always exists.

Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21. Let (u,) C L' be an almost everywhere increasing sequence
converging to an almost everywhere finite function u. Then u € M.

Proof. For every k, there exists a fundamental sequence (uy,) such that ug, T ug.
The increasing sequence v, = max(uj,,...,uU,,) converges to v, and almost
everywhere,

Vv, <max(uy,...,u,) = Uy,.

For k < n, we have, almost everywhere, u;,, < v, < u,. Hence almost everywhere,
ur < v < u. Itis now easy to conclude the proof. O

Lemma 2.2.22. Let (u,) C L be an increasing sequence converging to an almost
everywhere finite function u. Then u € M.

Proof. By Lemma 2.2.14, for every n > 1 there exist v,, w, € L* such that almost
everywhere,

O0<u,—up_1 =v,—wy,wy, ZO,fwnd,u <1/2".
Q

Proposition 2.2.10 and the preceding lemma imply that
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[se]

iwn:we£+, Zvnz\/EM.

n=1 n=1

Since almost everywhere, u = v —w + ug, u € M. m|

Lemma 2.2.23. Let (u,) C M be an increasing sequence converging to an almost
everywhere finite function u. Then u € M.

Proof. Replacing u, by u, —up, we can assume that u,, > 0. For every k, there exists
a sequence (ux,,) C L converging almost everywhere to u;. We can assume that
urm = 0. By Levi’s theorem,

Vin = inf Ukm € Ll.
m=n

For every k, (vk,,) 1s increasing and converges almost everywhere to u;. We define
1
Vp = max(Vyy, ..., V) € L.
The sequence (v,) is increasing and converges almost everywhere to u. By the

preceding lemma, u € M. O

Theorem 2.2.24. Let (u,) C M be a sequence converging almost everywhere to a
finite limit. Then u € M.

Proof. By the preceding lemma,

vk = sup u, € Mand limu, = —sup(—v;) € M. O
n>k k

The class of measurable functions is the smallest class containing £ that is closed
under almost everywhere convergence.

Definition 2.2.25. A subset A of £ is measurable (with respect to u) if the
characteristic function of A is measurable. The measure of A is defined by

H(A) = f Xadp.
Q
Proposition 2.2.26. Let A and B be measurable sets and let (A,) be a sequence of

measurable sets. Then A \ B, UA,, and ﬂAn are measurable, and

n=1 n=1

U(AU B) + (A N B) = u(A) + u(B),

If, moreover, for every n, A, C A1, then

ﬂﬁJAJ=£gumu.
n=1
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If, moreover, u(Ay) < oo, and for every n, A,,1 C A,, then

" (ﬂ An) = lim (A).
n=1

Proof. Observe that
Xaup +Xang = max(X4,Xp) + min(Xa,Xp) = Xa + X,
Xa\B =X —min(X4,Xp),

YU, = i maxta - X,

Xne A, = lim min(Xy4,,...,Xa,).

n—oo

The proposition follows then from the preceding theorem and Levi’s theorem. O

Proposition 2.2.27. A subset of Q2 is negligible if and only if it is measurable and
its measure is equal to 0.

Proof. Let A C Q be a negligible set. Since X4 = 0 almost everywhere, we have by
definition that ¥, € L' and u(A) = fXAd,u =0.
Q

Let A be a measurable set such that u(A) = 0. For every n, f nXadu = 0.
Q

By Levi’s theorem, u = limnx4 € L'. Since u is finite almost everywhere and

n—oo

u(x) = +oo on A, the set A is negligible. O

The hypothesis in the following definition will be used to prove that the set {u > ¢}
is measurable when the function u > 0 is measurable.

Definition 2.2.28. A positive measure on £ is an elementary integral u : £ — R
on £ such that

(Js) forevery u € L, min(u, 1) € L.

Proposition 2.2.29. Let u be a positive measure on Q, u € M, andt > 0. Then
min(u, t) € M.

Proof. If t = 0, min(u,0) = u* € M. Let t > 0. There is a sequence (u,) C
L converging to u almost everywhere. Then v, = tmin(t'u,,1) € £ and v, —
min(u, t) almost everywhere. O

Theorem 2.2.30. Let u be a positive measure on 2 and let u : Q — [0, +o00] be
almost everywhere finite. The following properties are equivalent:

(a) uis measurable;
(b) foreveryt >0, {u >t} ={xe Q:u(x)>t}is measurable.
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Proof. Assume that u is measurable. For every + > 0 and n > 1, the preceding
proposition implies that

u, = n[min(u, t + 1/n) — min(u, )]
is measurable. It follows from Theorem 2.2.24 that
X{u>t} = lim u, € M

Hence {u > t} is measurable.
Assume that u satisfies (b). Let us define, for n > 1, the function

1 (o))
Un = = ZX{u>k/2"}- (*)
=1

For every x € Q, u(x) — 1/2" < u,(x) < u(x). Hence (u,) is simply convergent to u.
Theorem 2.2.24 implies that (u#,) ¢ M and u € M. O

Corollary 2.2.31. Let u,v € M. Then uv € M.

Proof. If f is measurable, then for every ¢t > 0, the set

2>t =Af>1

is measurable. Hence f2 is measurable. We conclude that
1
uy = Z[(u+v)2—(u—v)2]€/\/(. O

Definition 2.2.32. A function u : Q — [0, +o0] is admissible (with respect to the
positive measure u) if u is measurable and if for every t > 0,

pu(t) = p(fu > 1) = p({x € Q 2 u(x) > 1}) < +oo.

The function g, is the distribution function of u.

Corollary 2.2.33 (Markov inequality). Let u € L', u > 0. Then u is admissible,
and for every t > 0,

() < 17! fud,u.
Q

Proof. Observe that for every t > 0, v = tXy,» < u. By the comparison theorem,

vel:landfvdusfudu. O
Q Q
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Corollary 2.2.34 (Cavalieri’s principle). Letu € L', u > 0. Then

fu du = f‘X’ wu(t)dt.
Q 0

Proof. The sequence (u,) defined by (%) is increasing and converges simply to
u. The function y, :]0,+oco[— [0, +oo[ is nonincreasing. We deduce from Levi’s
theorem that

1 < k *
uduy=lim | u,du=1lim — » pu, (—) = f w,(t)dt. O
L n— Jo n—e0 2" ; 2n 0

Definition 2.2.35. Let © be an open set of RY. The Lebesgue measure on Q is the
positive measure defined by the Cauchy integral

7((Q)—>R:u+—>fudx.
Q

The Lebesgue measure of a measurable subset A of Q is defined by

m(A) = fXAdx.
Q

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RY.

Theorem 2.2.36. We consider the Lebesgue measure on RY.

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RN, there exist a sequence (Gy) of open sets of

RN and a negligible set S of RN such that AU S = ﬂGk.
k=1
(c) For every measurable set A of RN, there exist a sequence (Fy) of closed sets of

RN and a negligible set T of RN such that A = U FrUT.
k=1

Proof. (a) Let G be an open bounded set and define
u(x) = min{1,n d(x,RY \ G)}. (%)

Since (u,) € K(RY) and u, — X, the set G is measurable. For every open set

G, G, = GN B(0,n)is measurable. Hence G = UG" is measurable. Taking the
n=1
complement, every closed set is measurable.
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(b) Let A be a measurable set of RY. By definition, there exist a sequence (u,) C
K(R") and a negligible set R of R" such that u,, — X4 on RY \ R. There is
also f € L* such that R ¢ S = {f = +oo}. By Proposition 1.3.10, f is Ls.c.
Proposition 1.3.12 implies that for every r € R, {f > t} is open. Let us define
the open sets

Uy = {u, > 1/2)U{f >n} and Gy = UUn.
n=k

Itis clear that forevery k, AUS C Gyand AU S = ﬂGk. Since S is negligible
k=1
by definition, the proof is complete.

(c) Taking the complement, there exist a sequence (Fy) of closed sets of RN and a
negligible set S of RY such that

AN@RN\S) = UFk.
k=1
It suffices thento define T = AN S. O
Corollary 2.2.37. Leta < b. Then

m(la, b)) = m([a, b]) = b — a.

In particular, m({a}) = 0, and every countable set is negligible.

Proof. Let (u,) be the sequence defined by (x). Proposition 2.2.10 implies that

m(la, b[) = f)(]a,b[dx = lim u,dx =>b—a.
R n—oo R

Since [a, b] = m]a —1/n,b + 1/n], it follows from Proposition 2.2.26 that

n=1

m(la,b])=limb—-a+2/n=>b-a. |
Example. Let A > —1. For every n > 2, the function

un(x) = X/IX]I/n,l[(X)

is integrable by the comparison theorem. It follows from Levi’s monotone conver-
gence theorem that

1
f dx=1/(A+1).
0
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Let A < —1. For every n > 2, the function
Vn(x) = x/l)(]l,n[(x)

is integrable. It follows that

f dx =1/]2+ 1].
1

Example (Cantor sets). Let 0 < € < 1 and (£,) C ]0, 1[ be such that

= i 2"¢,.
n=0

From the interval Cy = [0, 1], remove the open middle interval Jy; of length £y.
Remove from the two remaining closed intervals the middle open intervals J; ; and
J12 of length £;. In general, remove from the 2" remaining closed intervals the
middle open intervals J,, 1, .. ., J, 2 of length £,. Define

2" 00
Cu1 =G, \ U Jn,ka C= ﬂ Cy.
k=1 n=1

The set C is the Cantor set (corresponding to (£,,)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each C,, is closed.

The interior of C is empty. Indeed, each C, consists of 2" closed intervals of
equal length, so that ¢ is the only open subset in C.

The Lebesgue measure of C is equal to 1 — &. By induction, we have for every n
that

Mm(Cpay) = 1 — Z 2i¢;.
J=0
Proposition 2.2.26 implies that

(o)

mC)=1- Y 2t;=1-e
=0

The set C is not countable. Let (x,) C C. Denote by [ay, b;] the interval of C,
not containing x;. Denote by [ay, b,] the first interval of C; N [ay, b1] not containing
x». In general, let [a,, b,] denote the first interval of C,, N [a,-1, b,-1] not containing

Xp. Define x = supa, = lim a,. For every n, we have
n n—00

[al’l9 bﬂ] - Cn,xn ¢ [al’l’ bl’l]’x € [an’ bi’l]'
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Hence x € C, and for every n, x,, # x.

For £ = 1, C is not countable and negligible.

Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at
every point of C.

The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by
Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.

N
Definition 2.3.1. Define on R, f(#) = (1—[#))*. The family f;(x) = l_lf(ijn—kn),
n=1

j €N,k eZV,is such that f; € K(RY),

Spt fix = Bolk/2),1/27), Y fix = 1, fiu 2 0.
kezZN

Proposition 2.3.2. Let Q be an open set in RN and let u € K(Q). Then the sequence

uj=» uk/2))f

kezZN

converges uniformly to u on Q.

Proof. Let € > 0. By uniform continuity, there exists m such that w,(1/2™) < &.
Hence for j > m,

() = )| =1 Y w(x) — uk/2)fixx)| < & ) fixlx) = &, 0

keZN keZN

Proposition 2.3.3. Let u € K(RY). Then
(a) for every X € R, u(., xN) e K(RN1);

(b) u(x',.)dx' € KR);
RN-1

(c) » u(x)dx:jﬂ;de LNlu(x’,xN)dx'.

Proof. Every restriction of a continuous function is continuous.

Let us define v(x ) = f
N RN-1
theorem implies that v is continuous on R. Since the support of u is a compact

subset of R, the support of v is a compact subset of R.

u(x’,xN)dx’. Lebesgue’s dominated convergence
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We have, for every j € N and every k € Z, by definition of the integral that

fR . fix(dx = fR dx, - firx x )dx'.

Hence for every j € N,

u-(x)dxzfdxf ui(x',x )dx'.
\fRN J R N Jryv- / N

There is R > 1 such that
sptuc {xeRY :|xlo <R -1}

For every j € N, by the definition of the integral

f u(x) — uj(x)dx
RN

< RN m%)Ni |u(X) - Mj(x)|,

we obtain
‘L;de LNI u(x’, xN) —u(x, xN)dx' < 2RV max |u(x) - uj(x)|.
It is easy to conclude the proof using the preceding proposition. O

Definition 2.3.4. The elementary integral u on Q = Q; X £, is the product of the
elementary integrals u; on £; and up on Q; if for every u € L(Q, p),

(@) u(.,xp) € L(£1, ) for every x; € £y;
(b) f u(xiy, )duy € L(£, 1o);

Q
(c) fu(xl,xz)dy=f dﬂzfu(xl,xz)d,UL
Q Q, Q

We assume that u is the product of ¢; and p5.

Lemma 2.3.5. Let u € L*(Q,u). Then

(a) for almost every x; € 5, u(., x2) € L7(Q1, 1),
(b) f u(xy, yduy € Lo, 1),

Q
(c) fu(xl,xz)d,tt:f duzfu(xl,Xz)dm.
Q [9)) Q
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Proof. Let (u,) c L(£,u) be a fundamental sequence such that u, T u. By
definition,

Vp = f”n(xl’-)d,ul € L(, 1),
o

and (v,) is a fundamental sequence. But then v, T v, v € L7(Q5, u2), and

f v(x2)duy = lim f vn(x2)dps.
Q, n—e Jo,

For almost every x, € £,, v(x;) € R. In this case, (u,(., x2)) C L(Q1,u1) is a
fundamental sequence and u,(., x) T u(., x2). Hence u(., x3) € L(9y,u;) and

f u(xy, x2)dpy = lim | u,(xy, x2)duy = lim v, (x2) = v(x2).
-Ql n—oo -Ql n—oo

It follows that f u(xy, .)duy € L7(9,, o) and
2

fu(xlaXQ)dﬂ: lim f”n(xlaXZ)d,u
Q n—e Jo

n—oo

= lim du f un(x1, x2)dpy
o3 2

n—oo

= f v(x2)dpy = f dus f u(xy, x2)du;. O
Qz .Qz Ql

Lemma 2.3.6. Let S C Q be negligible with respect to u. Then for almost every
Xp € Qz,

= lim f Va(x2)dpn
[0)3

Sy, ={x1 €21 :(x1,x) €S}

is negligible with respect to u,.

Proof. By assumption, there is u € L (Q, i) such that
S C{(x1,x2) € Q: u(xy, xp) = +00}.

The preceding lemma implies that for almost every x; € £2;,
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Sy, Cix1 € 21 1 u(xy, x2) = 400}

is negligible with respect to ;.

Theorem 2.3.7 (Fubini). Letu € L1(Q, u). Then
(a) for almost every x; € &, u(., x3) € Ll(Ql,,ul);
) [ utadur € £ @2p

Q,
(c) fu(xl,xz)dﬂ:f dﬂzfu(xl,xz)dﬂl-
Q 2, 2

41

Proof. By assumption, there is f,g € L*(Q,u) such that u = f — g almost

everywhere on Q. By the preceding lemma, for almost every x; € £2,,

u(xy, x2) = f(x1,x2) — g(x1, x2)

almost everywhere on €. The conclusion follows from Lemma 2.3.5.

O

The following result provides a way to prove that a function on a product space

is integrable.
Theorem 2.3.8 (Tonelli). Let u : Q — [0, +oo[ be such that
(a) for everyn € N, min(n, u) € L'(Q, u);

(b) C=f d,uzf u(xy, x2)dpy < +oo.
foX Q

Then u € L1(Q, u).

Proof. Let us define u, = min(n, u). Fubini’s theorem implies that

f un(x1, X2)dp = f dus f up(x1, x2)duy < c.
Q 2 Q

The conclusion follows from Levi’s dominated convergence theorem.

2.4 Change of Variables

Let © be an open set of RY and let dx be the Lebesgue measure on . We define

L7Q) = L7(Q,dx), L1(Q) = £1(Q, dx).

Definition 2.4.1. Let Q and w be open. A diffeomorphism is a continuously

differentiable map f : 2 — w such that for every x € Q,

J(x) = det f'(x) £ 0.
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We assume that f : Q — w is a diffeomorphism. The next theorem is proved in
Sect. 9.1.

Theorem 2.4.2. Let u € K(w). Then u(f)|Js| € K(Q) and

fg a0l = [ udy )

Lemma 2.4.3. Let u € L™ (w). Then u(f)|Js| € LT(Q), and () is valid.

Proof. Let (u,) ¢ K(w) be a fundamental sequence such that u, T u. By the
preceding theorem, v, = u,(f)|J¢| € K(L) and (v,) is a fundamental sequence.
It follows that

| wtreomsiax = tim [ (e lar = lim [ woidy= [ uoy

O
Lemma 2.4.4. Let S C w be a negligible set. Then {~'(S) is a negligible set.

Proof. By assumption, there is u € £ (w) such that
S clyew:u(y) = +oo}.
The preceding lemma implies that the set

FUS) c{x € Q: u(f(x)) = +c0}

is negligible. O
Theorem 2.4.5. Let u € L' (w). Then u(f)|Js| € L(Q), and (x) is valid.

Proof. By assumption, there exist v,w € L (w) such that u = v — w almost
everywhere on w. It follows from the preceding lemma that

u(HI sl = v(OWU | = wlH)IJyl

almost everywhere on €. It is easy to conclude the proof using Lemma 2.4.3. O

Let
BN:{xeRN:|x|< 1}

be the unit ball in RV, and let VN = m(BN) be its volume. By the preceding theorem,
for every r > 0,

m(B(0, r)) = f dy =" dx=r" V.
Iyl<r

[x|<1
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We now define polar coordinates. Let N > 2 and RY = RV \ {0}. Let
SV = {0 eRY : o] = 1}
be the unit sphere in RY. The polar change of variables is the homeomorphism
10, co[xSM ! — Ri\’ s (r,o) — ro.

Definition 2.4.6. The surface measure on SV~! is defined on C(SV~!) by

f(o)do = Nf f(i)dx.
SN-1 BN |x]

Observe that the function f(x/|x|) is bounded and continuous on BN \ {0}.

Since S¥! is compact, Dini’s theorem implies that the surface measure is a
positive measure.

Lemma 2.4.7. Let u € K(RY). Then

(a) for every r > 0, the function o — u(ro’) belongs to C(SM™1);
d
(b) — u(x)dx = ! f u(ro)doy

dr |x|<r Sh-1

(c) u(x)dx = foo rN_ldrf u(ro)do.
RV 0 S-1

Proof. (a) The restriction of a continuous function is a continuous function.

(b) Letw(r) = u(x)dx and v(r) = f u(ro)do, r > 0. By definition, we have

|x|<r Sh-1

v(r) =Nf u(Lx)dx.
B\l
N

Choose r > 0 and € > 0. By definition of the modulus of continuity, we have

f u(x) — u(rx/|x)dx
r<|x|<r+e

< wu(s)VN[(r + &)V — V.

wr+e)—w(r) — f u(rx/|x)dx

r<|x|<r+e

The preceding theorem implies that

f u(rx/|x)dx = f u(rx/lxl)dx—f u(rx/|x)dx =
r<|x|<r+e |x|<r+e [x|]<r

N_
A Y
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Hence we find that

N _
|w(r +&)—w(r)— MVO‘) < a)u(s)VN[(r + 8)N - rN],

N

so that
lim ‘W(F t&)=wn) w1, 2 0.
e—0 &
e>0

The right derivative of w is equal to #V~'v. Similarly, the left derivative of w is
equal to Vv,
(c) The fundamental theorem of calculus implies that for 0 < a < b,

b b
f u(x)dx = w(b) — w(a) = f v(r)rNdr = f rN_ldrf u(ro)do.
a<|x|<b a a Sh-1

Taking the limit as a — 0 and b — +o00, we obtain (c). |
Theorem 2.4.8. Letu € L' (RY). Then

(a) for almost every r > 0, the function o — u(ro) belongs to L1(SN™!, do);

(b) the function r — f u(ro)do belongs to L'(10, oo[, ¥N='dr);
SN—I

(c) u(x)dx:foo rN_ldrf u(roydo.
RN 0 S-1

Proof. By the preceding theorem, the Lebesgue measure on RY is the product of
the surface measure on SV~ and the measure V~'dr on ]0, oo[. It suffices then to
use Fubini’s theorem. O

Theorem 2.4.9. The volume ‘Cv is given by the formulas

2
V] = 2, V2 =n and VN = WVN_Q.

Proof. Let N > 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

= f dxs...dx f dxdx;
x§+...+x2<1 N x%+x§<1—(x%+...+x2)
N - N

:nf 1—(x§+...+x2)dX3...dx
a2 <l N N

1
2
= n(N - 2)VN_2f (1= dr = N”VN_Z. O
0
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2.5 Comments

The construction of the Lebesgue integral in Chap.2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space £ defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (u,) of elementary functions such that

supfun du < co.
n Q

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

— Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

— The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].

Lemma 2.4.7 is due to Baker [4]. The book by Saks [67] is still an excellent
reference on integration theory.

The history of integration theory is described in [39,57]. See also [31] on the life
and the work of Emile Borel.

An informal version of the Lebesgue dominated convergence theorem appears
(p- 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).

2.6 Exercises for Chap. 2
1. (Independence of J4.) The functional defined on

L= {u N R Jim u(b) exists}

by (f,u) = I}im u(k) satisfies (J1-,_3) but not J4.
2. (Independence of Js.) The elementary integral defined on

L={u:[0,1]>R:x—ax:acR)}

fudu =u(l)

by

1S not a positive measure.
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. (Counting measure.) Let Q be a set. The elementary integral defined on

L={u:Q — R: {u(x) # 0} is finite}

by
f udy = u(x),
Q M;O
satisfies
LN, p) = {u N> R: Z lu(n)| < oo}
n=0
and

du = .
Luu ;u(n)

Prove also that when 2 = R, the set R is not measurable.

. (Axiomatic definition of the Cauchy integral.) Let us recall that 7yu(x) = u(x —

y). Let f : K(RY) — R be a linear functional such that

(a) forevery u € KRY), u> 0= (f,u) >0;
(b) forevery y € RY and for every u € K(RY), (f, ryu) = (f, u).

Then there exists ¢ > 0 such that for every u € KMRM), ( fouy = c f u dx.
RN
Hint: Use Proposition 2.3.2.

. Let u be an elementary integral on Q. Then the following statements are

equivalent:

(a) ue L, p.
(b) There exists a decreasing sequence (u,) C L*(Q,u) such that almost

everywhere, u = limu, and inf | wu,dy > —oo.

—00
n Q

Let @ = B(0, 1) c RY. Then

A+N>0e= x'e L1, 1+ N <0 = |x|' € LYR" \ Q).

. Letu : R? — R be such that for every y € R, u(., y) is continuous and for every

x € R, u(x,.) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to u on R?.

. Construct a sequence (wy) of open dense subsets of R such that m(m wk] =0.

k=0
Hint: Let (g,) be an enumeration of Q and let /,; be the open interval with

center g, and length 1/2"*%. Define wy = UI"”"
n=0
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Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d(u,v) = gnax lu(x) — v(x)|.

<x<1
Hint: Let Y be the set of functions in X that are differentiable at at least one
point and define, forn > 1,

F, = {u € X : there exists 0 < x < 1 such that,
forall0 <y < 1, |u(x) — u(y)| < nlx - y|}.

Since Y C UF”’ it suffices to prove that ﬂGn isdense in X, where G,, = X\ F,.
n=1 n=1
By Baire’s theorem, it suffices to prove that every G, is open and dense.
It is clear that

G,={ueX:forall0 <x<1,thereexists0 <y <1
such that n|x — y| < |u(x) — u(y)|}.

Let u € G,,. The function
S(x) = max{u(x) —u@y)| —-n(x—-y)|:0<y <1},

is such that
inf f(x) = min f(x) > 0.
0<x<1 0<x<1

It follows that G, is open.
We use the functions f;; of Definition 2.3.1. Let u € X and & > 0. Define

w0 = Y ulk/2)fix(),

0<k<2/
gm(x) = ed2"x,N).
Then for j and m large enough,
du,uj) <e, uj+gme€G,.
It follows that G,, is dense.
(Iterated integrals, Baker 1990.) Let K = [0, 1]" and let u be an elementary
integral on Q. Assume that f € £'(Q, 1) and

F:KxQ—->R:(x,y)— F(x,y)

are such that
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1.

12.

(a) For almostall y € Q, F(.,y) is continuous;
(b) For all x € K, F(x,.) is u-measurable;
© IF(x, I < f().

Then:

(a) The function G(x) = f F(x,y)du is continuous on K.
Q

(b) The function H(y) = f F(x,y)dx is u-measurable on Q.

K
(c) fG(x)dx:fH(y)d,u.
K Q

Hint: Define on 2 . .
Hiy) = 27N 3" F(k/2/,y)
keNN

kloo <2/

and observe that
Jlim Hj(y) = H(y), Jlim f Hj(y)du = f H(y)du.

(Proof of Euler’s identity by M. Ivan, 2008).

2 The Integral

1 1 1 Jog iX SN B
dx g 1-y f y
d _ = dv =2 d
(@) j:l yf_l 1+ 2xy+y? j:l y Y ano 1 2n+1 Y

R 1

=4 ) —.

;(2n+1)2
1 1 1 2
dy m n
(b)fdxf—:f—dx:—.
-1 g l+2xp+y2 Ja2vV1T— 2 2

o0 2

1 v/ ol .
= — is equivalent to the formula

(c) The formula Z m g
n

n=0

Letu € C'(RY) N K(RY). Then

1 Vulx—y)-y
u(x) = f dy.
NV Jow VY

Hint: For every o € SV!,

u(x) = fm Vu(x — ro) - odr.
0

© 2
_2—
n:ln

o
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13. The Newton potential of the ball Bg = B(0,R) C R3 is defined, for ly| > R, by

d
so(y)=f i
Be [y — Xl

Since Bg is invariant by rotation, we may assume thaty = (0, 0, a), where a = |y|.
It follows that

dx
w(y) =
Br \/x% + x% + (x3 — a)?

R VR?-x2 r
=2 f dx; f dr
-R 0 r2 + (x3 — a)?

R
:yrf (\/R2+a2—2ax3—a+x3)dx3

R
4 RP 4 R
= —N— = —JT—.
3 a 3 |yl

14. The Newton potential of the sphere S? is defined, for [y| # 1, by

d
Y(y) = 7

e ly—ol

For |y| > R, we have that

4 R’ K
—T— = f P f(r,y)dr,
3 Jo

d
f(r,y)=f T
s2 ly —rof

R2
4nﬁ = R*f(R, y).
y

where

It follows that

In particular, for [y| > 1,

4
vy = f(1,y) = —.
vl



