
Chapter 2
The Integral

Le vrai est simple et clair; et quand notre manière d’y arriver
est embarrassée et obscure, on peut dire qu’elle mène au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1. Let Ω be an open subset of RN . We define

C(Ω) = {u : Ω→ R : u is continuous},

K(Ω) = {u ∈ C(RN) : supp u is a compact subset of Ω}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from 0.

Let u ∈ K(RN). By definition, there is R > 1 such that

spt u ⊂ {x ∈ RN : |x|∞ ≤ R − 1}.

Let us define the Riemann sums of u:

S j = 2− jN
∑

k∈ZN

u(k/2 j).

M. Willem, Functional Analysis: Fundamentals and Applications, Cornerstones,
DOI 10.1007/978-1-4614-7004-5 2, © Springer Science+Business Media, LLC 2013

21



22 2 The Integral

The factor 2− jN is the volume of the cube with side 2− j in RN . Let C = [0, 1]N and
let us define the Darboux sums of u:

A j = 2− jN
∑

k∈ZN

min{u(x) : 2 jx − k ∈ C}, B j = 2− jN
∑

k∈ZN

max{u(x) : 2 jx − k ∈ C}.

Let ε > 0. By uniform continuity, there is j such that ωu(1/2 j) ≤ ε. Observe that

B j − A j ≤ (2R)Nε, A j−1 ≤ A j ≤ S j ≤ B j ≤ B j−1.

The Cauchy integral of u is defined by

∫

RN
u(x)dx = lim

j→∞
S j = lim

j→∞
A j = lim

j→∞
B j.

Theorem 2.1.2. The space K(RN) and the Cauchy integral

K(RN)→ R : u '→
∫

RN
u dx

are such that

(a) for every u ∈ K(RN), |u| ∈ K(RN);
(b) for every u, v ∈ K(RN) and every α, β ∈ R,

∫

RN
αu + βv dx = α

∫

RN
u dx + β

∫

RN
v dx;

(c) for every u ∈ K(RN) such that u ≥ 0,
∫

RN
u dx ≥ 0;

(d) for every sequence (un) ⊂ K(RN) such that un ↓ 0, lim
n→∞

∫

RN
un dx = 0.

Proof. Properties (a)–(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

spt u0 ⊂ K = {x ∈ RN : |x|∞ ≤ R − 1}.

By Dini’s theorem, (un) converges uniformly to 0 on K. Hence

0 ≤
∫

RN
undx ≤ (2R)N max

x∈K
un(x)→ 0, n→ ∞. ⊓+

The above properties define an elementary integral. They suffice for constructing
the Lebesgue integral.
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The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral
satisfying the property of monotone convergence,

(e) if (un) is an increasing sequence of integrable functions such that

sup
n

∫

RN
undx < ∞,

then u(x) = lim
n→∞

un(x) is integrable and

∫

RN
u dx = lim

n→∞

∫

RN
un dx,

and linearity,
(f) if u and v are integrable functions and if α and β are real numbers, then

∫

RN
αu + βv dx = α

∫
u dx + β

∫
v dx.

Let us sketch the construction of the (concrete) Lebesgue integral.
By definition, the function u belongs to L+(RN , dx) if there exists an increasing

sequence (un) of functions of K(RN) such that un ↑ u and sup
n

∫

RN
un dx < ∞.

The integral, defined by the formula

∫

RN
u dx = lim

n→∞

∫

RN
undx,

satisfies property (e). We shall prove that the integral depends only on u.
Let f , g ∈ L+(RN , dx). The difference f (x) − g(x) is well defined except if

f (x) = g(x) = +∞. A subset S of RN is negligible if there exists h ∈ L+(RN , dx)
such that for every x ∈ S , h(x) = +∞.

By definition a function u belongs to L1(RN , dx) if there exists f , g ∈ L+(RN ,
dx) such that u = f − g except on a negligible subset of RN . The integral defined by

∫

RN
u dx =

∫

RN
f dx −

∫

RN
g dx

satisfies properties (e) and (f). Again we shall prove that the integral depends only
on u.

The Lebesgue integral will be constructed in an abstract framework, the elemen-
tary integral, generalizing the Cauchy integral.

Example (Limit of integrals). It is not always permitted to permute limit and
integral. Let us define, on [0, 1], un(x) = 2nx(1 − x2)n−1. Since for every x ∈ ]0, 1[,
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lim
n→∞

un+1(x)
un(x)

= (1 − x2) < 1,

un converges simply to 0 on [0, 1]. But

0 =
∫ 1

0
lim
n→∞

un(x)dx < lim
n→∞

∫ 1

0
un(x)dx = 1.

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1. An elementary integral on the set Ω is defined by a vector space
L = L(Ω, µ) of functions from Ω to R and by a functional

µ : L→ R : u '→
∫

Ω
u dµ

such that

(J1) for every u ∈ L, |u| ∈ L;
(J2) for every u, v ∈ L and every α, β ∈ R,

∫

Ω
αu + βv dµ = α

∫

Ω
u dµ + β

∫

Ω
v dµ;

(J3) for every u ∈ L such that u ≥ 0,
∫

Ω
u dµ ≥ 0;

(J4) for every sequence (un) ⊂ L such that un ↓ 0, lim
n→∞

∫

Ω
un dµ = 0.

Proposition 2.2.2. Let u, v ∈ L. Then u+, u−,max(u, v), min(u, v) ∈ L.

Proof. Let us recall that u+ = max(u, 0), u− = max(−u, 0),

max(u, v) =
1
2

(u + v) +
1
2
|u − v|, min(u, v) =

1
2

(u + v) − 1
2
|u − v|. ⊓+

Proposition 2.2.3. Let u, v ∈ L be such that u ≤ v. Then
∫

Ω
u dµ ≤

∫

Ω
v dµ.
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Proof. We deduce from (J2) and (J3) that

0 ≤
∫

Ω
v − u dµ =

∫

Ω
v dµ −

∫

Ω
u dµ. ⊓+

Definition 2.2.4. A fundamental sequence is an increasing sequence (un) ⊂ L such
that

lim
n→∞

∫

Ω
undµ = sup

n

∫

Ω
undµ < ∞.

Definition 2.2.5. A subset S of Ω is negligible (with respect to µ) if there is a
fundamental sequence (un) such that for every x ∈ S , lim

n→∞
un(x) = +∞. A property

is true almost everywhere if the set of points of Ω where it is false is negligible.

Let us justify the definition of a negligible set.

Proposition 2.2.6. Let (un) be a decreasing sequence of functions of L such that

everywhere un ≥ 0 and almost everywhere, lim
n→∞

un(x) = 0. Then lim
n→∞

∫

Ω
undµ = 0.

Proof. Let ε > 0. By assumption, there is a fundamental sequence (vn) such that
if lim

n→∞
un(x) > 0, then lim

n→∞
vn(x) = +∞. We replace vn by v+n , and we multiply by a

strictly positive constant such that

vn ≥ 0,
∫

Ω
vndµ ≤ ε.

We define wn = (un − vn)+. Then wn ↓ 0, and we deduce from axiom (J4) that

0 ≤ lim
∫

Ω
undµ ≤ lim

∫

Ω
wn + vndµ = lim

∫

Ω
wndµ + lim

∫

Ω
vndµ

= lim
∫

Ω
vndµ ≤ ε.

Since ε > 0 is arbitrary, the proof is complete. ⊓+
Proposition 2.2.7. Let (un) and (vn) be fundamental sequences such that almost
everywhere,

u(x) = lim
n→∞

un(x) ≤ lim
n→∞

vn(x) = v(x).

Then

lim
n→∞

∫

Ω
undµ ≤ lim

n→∞

∫

Ω
vndµ.

Proof. We choose k and we define wn = (uk − vn)+. Then (wn) ⊂ L is a decreasing
sequence of positive functions such that almost everywhere,
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lim wn(x) = (uk(x) − v(x))+ ≤ (u(x) − v(x))+ = 0.

We deduce from the preceding proposition that

∫

Ω
ukdµ ≤ lim

∫

Ω
wn + vn dµ = lim

∫

Ω
wndµ + lim

∫

Ω
vndµ = lim

∫

Ω
vndµ.

Since k is arbitrary, the proof is complete. ⊓+
Definition 2.2.8. A function u : Ω→ ]−∞,+∞] belongs to L+ = L+(Ω, µ) if there
exists a fundamental sequence (un) such that un ↑ u. The integral (with respect to µ)
of u is defined by

∫

Ω
u dµ = lim

n→∞

∫

Ω
undµ.

By the preceding proposition, the integral of u is well defined.

Proposition 2.2.9. Let u, v ∈ L+ and α, β ≥ 0. Then

(a) max(u, v),min(u, v), u+ ∈ L+;

(b) αu + βv ∈ L+ and
∫

Ω
αu + βv dµ = α

∫

Ω
u dµ + β

∫

Ω
v dµ;

(c) if u ≤ v almost everywhere, then
∫

Ω
u dµ ≤

∫

Ω
v dµ.

Proof. Proposition 2.2.7 is equivalent to (c). ⊓+
Proposition 2.2.10 (Monotone convergence inL+). Let (un) ⊂ L+ be everywhere
(or almost everywhere) increasing and such that

c = sup
n

∫

Ω
undµ < ∞.

Then (un) converges everywhere (or almost everywhere) to u ∈ L+ and
∫

Ω
u dµ = lim

n→∞

∫

Ω
undµ.

Proof. We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (uk,n) such that uk,n ↑ uk.

The sequence vn = max(u1,n, . . . , un,n) is increasing, and almost everywhere,

vn ≤ max(u1, . . . , un) = un.

Since ∫

Ω
vndµ ≤

∫

Ω
undµ ≤ c,
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the sequence (vn) ⊂ L is fundamental. By definition, vn ↑ u, u ∈ L+, and

∫

Ω
u dµ = lim

n→∞

∫

Ω
vndµ.

For k ≤ n, we have almost everywhere that

uk,n ≤ vn ≤ un.

Hence we obtain, almost everywhere, that uk ≤ u ≤ lim
n→∞

un and

∫

Ω
ukdµ ≤

∫

Ω
u dµ ≤ lim

n→∞

∫

Ω
undµ.

It is easy to conclude the proof. ⊓+
Corollary 2.2.11. Every countable union of negligible sets is negligible.

Proof. Let (S k) be a sequence of negligible sets. For every k, there exists vk ∈ L+
such that for every x ∈ S k, vk(x) = +∞. We replace vk by v+k , and we multiply by a
strictly positive constant such that

vk ≥ 0,
∫

Ω
vkdµ ≤ 1

2k
.

The sequence un =

n∑

k=1

vk is increasing and

∫

Ω
undµ ≤

n∑

k=1

1
2k
≤ 1.

Hence un ↑ u and u ∈ L+. Since for every x ∈
∞⋃

k=1

S k, u(x) = +∞, the set
∞⋃

k=1

S k is

negligible. ⊓+
By definition, functions ofL+ are finite almost everywhere. Hence the difference

of two functions of L+ is well defined almost everywhere. Assume that f , g, v,w ∈
L+ and that f −g = v−w almost everywhere. Then f +w = v+g almost everywhere
and

∫

Ω
f dµ +

∫

Ω
w dvµ =

∫

Ω
f + w dµ =

∫

Ω
v + g dµ =

∫

Ω
v dµ +

∫

Ω
g dµ,

so that ∫

Ω
f dµ −

∫

Ω
g dµ =

∫

Ω
v dµ −

∫

Ω
w dµ.
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Definition 2.2.12. A real function u almost everywhere defined on Ω belongs to
L1 = L1(Ω, µ) if there exist f , g ∈ L+ such that u = f − g almost everywhere.
The integral (with respect to µ) of u is defined by

∫

Ω
u dµ =

∫

Ω
f dµ −

∫

Ω
g dµ.

By the preceding computation, the integral is well defined.

Proposition 2.2.13. (a) If u ∈ L1, then |u| ∈ L1.
(b) If u, v ∈ L1 and if α, β ∈ R, then αu + βv ∈ L1 and∫

Ω
αu + βv dµ = α

∫

Ω
u dµ +β

∫

Ω
v dµ.

(c) If u ∈ L1 and if u ≥ 0 almost everywhere, then
∫

Ω
u dµ ≥ 0.

Proof. Observe that
| f − g| = max( f , g) −min( f , g). ⊓+

Lemma 2.2.14. Let u ∈ L1 and ε > 0. Then there exist v,w ∈ L+ such that u = v−w

almost everywhere, w ≥ 0, and
∫

Ω
w dµ ≤ ε.

Proof. By definition, there exist f , g ∈ L+ such that u = f − g almost everywhere.
Let (gn) be a fundamental sequence such that gn ↑ g. Since

∫

Ω
g dµ = lim

n→∞

∫

Ω
gndµ,

there exists n such that
∫

Ω
g − gn dµ ≤ ε. We choose w = g − gn ≥ 0 and v = f − gn.

⊓+
We extend the property of monotone convergence to L1.

Theorem 2.2.15 (Levi’s monotone convergence theorem). Let (un) ⊂ L1 be an
almost everywhere increasing sequence such that

c = sup
n

∫

Ω
undµ < ∞.

Then lim
n→∞

un ∈ L1 and

∫

Ω
lim
n→∞

undµ = lim
n→∞

∫

Ω
undµ.

Proof. After replacing un by un − u0, we can assume that u0 = 0. By the preceding

lemma, for every k ≥ 1, there exist vk,wk ∈ L+ such that wk ≥ 0,
∫

Ω
wkdµ ≤ 1/2k,

and, almost everywhere,
uk − uk−1 = vk − wk.
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Since (uk) is almost everywhere increasing, vk ≥ 0 almost everywhere.
We define

fn =
n∑

k=1

vk, gn =

n∑

k=1

wk.

The sequences ( fn) and (gn) are almost everywhere increasing, and

∫

Ω
gndµ =

n∑

k=1

∫

Ω
wkdµ ≤

n∑

k=1

1
2k
≤ 1,

∫

Ω
fndµ =

∫

Ω
un + gndµ ≤ c + 1.

Proposition 2.2.10 implies that almost everywhere,

lim
n→∞

fn = f ∈ L+, lim
n→∞

gn = g ∈ L+

and ∫

Ω
f dµ = lim

n→∞

∫

Ω
fndµ,

∫

Ω
g dµ = lim

n→∞

∫

Ω
g dµ.

We deduce from Corollary 2.2.11 that almost everywhere,

f − g = lim
n→∞

( fn − gn) = lim
n→∞

un.

Hence lim
n→∞

un ∈ L1 and

∫

Ω
lim
n→∞

undµ =
∫

Ω
f dµ −

∫

Ω
g dµ = lim

n→∞

∫

Ω
fn − gndµ = lim

n→∞

∫

Ω
undµ. ⊓+

Theorem 2.2.16 (Fatou’s lemma). Let (un) ⊂ L1 and f ∈ L1 be such that

(a) sup
n

∫

Ω
undµ < ∞;

(b) for every n, f ≤ un almost everywhere.

Then lim
n→∞

un ∈ L1 and

∫

Ω
lim
n→∞

undµ ≤ lim
n→∞

∫

Ω
undµ.

Proof. We choose k, and we define, for m ≥ k,

uk,m = min(uk, . . . , um).

The sequence (uk,m) decreases to vk = inf
n≥k

un, and
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∫

Ω
f dµ ≤

∫

Ω
uk,mdµ.

The preceding theorem, applied to (−uk,m), implies that vk ∈ L1 and

∫

Ω
vkdµ = lim

m→∞

∫

Ω
uk,mdµ ≤ lim

m→∞
min

k≤n≤m

∫

Ω
undµ = inf

n≥k

∫

Ω
undµ.

The sequence (vk) increases to lim
n→∞

un and

∫

Ω
vkdµ ≤ sup

n

∫

Ω
undµ < ∞.

It follows from the preceding theorem that lim
n→∞

un ∈ L1 and

∫

Ω
lim
n→∞

undµ = lim
k→∞

∫

Ω
vkdµ ≤ lim

k→∞
inf
n≥k

∫

Ω
undµ = lim

n→∞

∫

Ω
undµ. ⊓+

Theorem 2.2.17 (Lebesgue’s dominated convergence theorem). Let (un) ⊂ L1

and f ∈ L1 be such that

(a) un converges almost everywhere;
(b) for every n, |un| ≤ f almost everywhere.

Then lim
n→∞

un ∈ L1 and

∫

Ω
lim
n→∞

undµ = lim
n→∞

∫

Ω
undµ.

Proof. Fatou’s lemma implies that u = lim
n→∞

un ∈ L1 and

2
∫

Ω
f dµ ≤ lim

n→∞

∫
2 f − |un − u|dµ = 2

∫

Ω
f dµ − lim

n→∞

∫

Ω
|un − u|dµ.

Hence

lim
n→∞
|
∫

Ω
un − u dµ| ≤ lim

n→∞

∫

Ω
|un − u|dµ = 0. ⊓+

Theorem 2.2.18 (Comparison theorem). Let (un) ⊂ L1 and f ∈ L1 be such that

(a) un converges almost everywhere to u;
(b) |u| ≤ f almost everywhere.

Then u ∈ L1.
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Proof. We define
vn = max(min(un, f ),− f ).

The sequence (vn) ⊂ L1 is such that

(a) vn converges almost everywhere to u;
(b) for every n, |vn| ≤ f almost everywhere.

The preceding theorem implies that u = lim
n→∞

vn ∈ L1. ⊓+

Definition 2.2.19. A real function u defined almost everywhere on Ω is measurable
(with respect to µ) if there exists a sequence (un) ⊂ L such that un → u almost
everywhere. We denote the space of measurable functions (with respect to µ) on Ω
byM =M(Ω, µ).

Proposition 2.2.20. (a) L ⊂ L+ ⊂ L1 ⊂M.
(b) If u ∈M, then |u| ∈M.
(c) If u, v ∈M and if α, β ∈ R, then αu + βv ∈M.
(d) If u ∈M and if, almost everywhere, |u| ≤ f ∈ L1, then u ∈ L1.

Proof. Property (d) follows from the comparison theorem. ⊓+

Notation. Let u ∈M be such that u ≥ 0 and u ! L1. We write
∫

Ω
u dµ = +∞. Hence

the integral of a measurable nonnegative function always exists.
Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21. Let (un) ⊂ L+ be an almost everywhere increasing sequence
converging to an almost everywhere finite function u. Then u ∈M.

Proof. For every k, there exists a fundamental sequence (uk,n) such that uk,n ↑ uk.
The increasing sequence vn = max(u1,n, . . . , un,n) converges to v, and almost
everywhere,

vn ≤ max(u1, . . . , un) = un.

For k ≤ n, we have, almost everywhere, uk,n ≤ vn ≤ un. Hence almost everywhere,
uk ≤ v ≤ u. It is now easy to conclude the proof. ⊓+
Lemma 2.2.22. Let (un) ⊂ L1 be an increasing sequence converging to an almost
everywhere finite function u. Then u ∈M.

Proof. By Lemma 2.2.14, for every n ≥ 1 there exist vn,wn ∈ L+ such that almost
everywhere,

0 ≤ un − un−1 = vn − wn,wn ≥ 0,
∫

Ω
wndµ ≤ 1/2n.

Proposition 2.2.10 and the preceding lemma imply that
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∞∑

n=1

wn = w ∈ L+,
∞∑

n=1

vn = v ∈M.

Since almost everywhere, u = v − w + u0, u ∈M. ⊓+
Lemma 2.2.23. Let (un) ⊂ M be an increasing sequence converging to an almost
everywhere finite function u. Then u ∈M.

Proof. Replacing un by un − u0, we can assume that un ≥ 0. For every k, there exists
a sequence (uk,m) ⊂ L converging almost everywhere to uk. We can assume that
uk,m ≥ 0. By Levi’s theorem,

vk,n = inf
m≥n

uk,m ∈ L1.

For every k, (vk,n) is increasing and converges almost everywhere to uk. We define

vn = max(v1,n, . . . , vn,n) ∈ L1.

The sequence (vn) is increasing and converges almost everywhere to u. By the
preceding lemma, u ∈M. ⊓+
Theorem 2.2.24. Let (un) ⊂ M be a sequence converging almost everywhere to a
finite limit. Then u ∈M.

Proof. By the preceding lemma,

vk = sup
n≥k

un ∈M and lim un = −sup
k

(−vk) ∈M. ⊓+

The class of measurable functions is the smallest class containingL that is closed
under almost everywhere convergence.

Definition 2.2.25. A subset A of Ω is measurable (with respect to µ) if the
characteristic function of A is measurable. The measure of A is defined by

µ(A) =
∫

Ω

χAdµ.

Proposition 2.2.26. Let A and B be measurable sets and let (An) be a sequence of

measurable sets. Then A \ B,
∞⋃

n=1

An and
∞⋂

n=1

An are measurable, and

µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B).

If, moreover, for every n, An ⊂ An+1, then

µ

⎛
⎜⎜⎜⎜⎜⎝
∞⋃

n=1

An

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞
µ(An).
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If, moreover, µ(A1) < ∞, and for every n, An+1 ⊂ An, then

µ

⎛
⎜⎜⎜⎜⎜⎝
∞⋂

n=1

An

⎞
⎟⎟⎟⎟⎟⎠ = lim

n→∞
µ(An).

Proof. Observe that

χA∪B + χA∩B = max(χA, χB) +min(χA, χB) = χA + χB,

χA\B = χA −min(χA, χB),

χ∪∞n=1An
= lim

n→∞
max(χA1 , . . . , χAn ),

χ∩∞n=1An
= lim

n→∞
min(χA1 , . . . , χAn ).

The proposition follows then from the preceding theorem and Levi’s theorem. ⊓+
Proposition 2.2.27. A subset of Ω is negligible if and only if it is measurable and
its measure is equal to 0.

Proof. Let A ⊂ Ω be a negligible set. Since χA = 0 almost everywhere, we have by

definition that χA ∈ L1 and µ(A) =
∫

Ω

χAdµ = 0.

Let A be a measurable set such that µ(A) = 0. For every n,
∫

Ω
nχAdµ = 0.

By Levi’s theorem, u = lim
n→∞

nχA ∈ L1. Since u is finite almost everywhere and

u(x) = +∞ on A, the set A is negligible. ⊓+
The hypothesis in the following definition will be used to prove that the set {u > t}

is measurable when the function u ≥ 0 is measurable.

Definition 2.2.28. A positive measure on Ω is an elementary integral µ : L → R
on Ω such that

(J5) for every u ∈ L, min(u, 1) ∈ L.

Proposition 2.2.29. Let µ be a positive measure on Ω, u ∈ M, and t ≥ 0. Then
min(u, t) ∈M.

Proof. If t = 0, min(u, 0) = u+ ∈ M. Let t > 0. There is a sequence (un) ⊂
L converging to u almost everywhere. Then vn = t min(t−1un, 1) ∈ L and vn →
min(u, t) almost everywhere. ⊓+
Theorem 2.2.30. Let µ be a positive measure on Ω and let u : Ω → [0,+∞] be
almost everywhere finite. The following properties are equivalent:

(a) u is measurable;
(b) for every t ≥ 0, {u > t} = {x ∈ Ω : u(x) > t} is measurable.
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Proof. Assume that u is measurable. For every t ≥ 0 and n ≥ 1, the preceding
proposition implies that

un = n[min(u, t + 1/n) −min(u, t)]

is measurable. It follows from Theorem 2.2.24 that

χ{u>t} = lim
n→∞

un ∈M.

Hence {u > t} is measurable.
Assume that u satisfies (b). Let us define, for n ≥ 1, the function

un =
1
2n

∞∑

k=1

χ{u>k/2n}. (∗)

For every x ∈ Ω, u(x) − 1/2n ≤ un(x) ≤ u(x). Hence (un) is simply convergent to u.
Theorem 2.2.24 implies that (un) ⊂M and u ∈M. ⊓+
Corollary 2.2.31. Let u, v ∈M. Then uv ∈M.

Proof. If f is measurable, then for every t ≥ 0, the set

{ f 2 > t} = {| f | > t}

is measurable. Hence f 2 is measurable. We conclude that

uv =
1
4

[(u + v)2 − (u − v)2] ∈M. ⊓+

Definition 2.2.32. A function u : Ω → [0,+∞] is admissible (with respect to the
positive measure µ) if u is measurable and if for every t > 0,

µu(t) = µ({u > t}) = µ({x ∈ Ω : u(x) > t}) < +∞.

The function µu is the distribution function of u.

Corollary 2.2.33 (Markov inequality). Let u ∈ L1, u ≥ 0. Then u is admissible,
and for every t > 0,

µu(t) ≤ t−1
∫

Ω
u dµ.

Proof. Observe that for every t > 0, v = tχ{u>t} ≤ u. By the comparison theorem,

v ∈ L1 and
∫

Ω
v dµ ≤

∫

Ω
u dµ. ⊓+
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Corollary 2.2.34 (Cavalieri’s principle). Let u ∈ L1, u ≥ 0. Then

∫

Ω
u dµ =

∫ ∞

0
µu(t)dt.

Proof. The sequence (un) defined by (∗) is increasing and converges simply to
u. The function µu :]0,+∞[→ [0,+∞[ is nonincreasing. We deduce from Levi’s
theorem that

∫

Ω
u dµ = lim

n→∞

∫

Ω
undµ = lim

n→∞
1
2n

∞∑

k=1

µu

(
k
2n

)
=

∫ ∞

0
µu(t)dt. ⊓+

Definition 2.2.35. Let Ω be an open set of RN . The Lebesgue measure on Ω is the
positive measure defined by the Cauchy integral

K(Ω)→ R : u '→
∫

Ω
u dx.

The Lebesgue measure of a measurable subset A of Ω is defined by

m(A) =
∫

Ω

χAdx.

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RN .

Theorem 2.2.36. We consider the Lebesgue measure on RN.

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RN, there exist a sequence (Gk) of open sets of

RN and a negligible set S of RN such that A ∪ S =
∞⋂

k=1

Gk.

(c) For every measurable set A of RN, there exist a sequence (Fk) of closed sets of

RN and a negligible set T of RN such that A =
∞⋃

k=1

Fk ∪ T.

Proof. (a) Let G be an open bounded set and define

un(x) = min{1, n d(x,RN \G)}. (∗)

Since (un) ⊂ K(RN) and un → χG, the set G is measurable. For every open set

G, Gn = G ∩ B(0, n) is measurable. Hence G =
∞⋃

n=1

Gn is measurable. Taking the

complement, every closed set is measurable.
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(b) Let A be a measurable set of RN . By definition, there exist a sequence (un) ⊂
K(RN) and a negligible set R of RN such that un → χA on RN \ R. There is
also f ∈ L+ such that R ⊂ S = { f = +∞}. By Proposition 1.3.10, f is l.s.c.
Proposition 1.3.12 implies that for every t ∈ R, { f > t} is open. Let us define
the open sets

Un = {un > 1/2} ∪ { f > n} and Gk =

∞⋃

n=k

Un.

It is clear that for every k, A∪ S ⊂ Gk and A∪ S =
∞⋂

k=1

Gk. Since S is negligible

by definition, the proof is complete.
(c) Taking the complement, there exist a sequence (Fk) of closed sets of RN and a

negligible set S of RN such that

A ∩ (RN \ S ) =
∞⋃

k=1

Fk.

It suffices then to define T = A ∩ S . ⊓+
Corollary 2.2.37. Let a < b. Then

m(]a, b[) = m([a, b]) = b − a.

In particular, m({a}) = 0, and every countable set is negligible.

Proof. Let (un) be the sequence defined by (∗). Proposition 2.2.10 implies that

m(]a, b[) =
∫

R
χ]a,b[dx = lim

n→∞

∫

R
undx = b − a.

Since [a, b] =
∞⋂

n=1

]a − 1/n, b + 1/n[, it follows from Proposition 2.2.26 that

m([a, b]) = lim
n→∞

b − a + 2/n = b − a. ⊓+

Example. Let λ > −1. For every n ≥ 2, the function

un(x) = xλχ]1/n,1[(x)

is integrable by the comparison theorem. It follows from Levi’s monotone conver-
gence theorem that ∫ 1

0
xλdx = 1/(λ + 1).
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Let λ < −1. For every n ≥ 2, the function

vn(x) = xλχ]1,n[(x)

is integrable. It follows that

∫ ∞

1
xλdx = 1/|λ + 1|.

Example (Cantor sets). Let 0 < ε ≤ 1 and (ℓn) ⊂ ]0, 1[ be such that

ε =
∞∑

n=0

2nℓn.

From the interval C0 = [0, 1], remove the open middle interval J0,1 of length ℓ0.
Remove from the two remaining closed intervals the middle open intervals J1,1 and
J1,2 of length ℓ1. In general, remove from the 2n remaining closed intervals the
middle open intervals Jn,1, . . . , Jn,2n of length ℓn. Define

Cn+1 = Cn \
2n⋃

k=1

Jn,k, C =
∞⋂

n=1

Cn.

The set C is the Cantor set (corresponding to (ℓn)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each Cn is closed.

The interior of C is empty. Indeed, each Cn consists of 2n closed intervals of
equal length, so that φ is the only open subset in C.

The Lebesgue measure of C is equal to 1− ε. By induction, we have for every n
that

m(Cn+1) = 1 −
n∑

j=0

2 jℓ j.

Proposition 2.2.26 implies that

m(C) = 1 −
∞∑

j=0

2 jℓ j = 1 − ε.

The set C is not countable. Let (xn) ⊂ C. Denote by [a1, b1] the interval of C1

not containing x1. Denote by [a2, b2] the first interval of C2 ∩ [a1, b1] not containing
x2. In general, let [an, bn] denote the first interval of Cn ∩ [an−1, bn−1] not containing
xn. Define x = sup

n
an = lim

n→∞
an. For every n, we have

[an, bn] ⊂ Cn, xn ! [an, bn], x ∈ [an, bn].
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Hence x ∈ C, and for every n, xn " x.
For ε = 1, C is not countable and negligible.
Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at

every point of C.
The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by

Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.

Definition 2.3.1. Define on R, f (t) = (1− |t|)+. The family f j,k(x) =
N∏

n=1

f (2 jxn−kn),

j ∈ N, k ∈ ZN , is such that f j,k ∈ K(RN),

spt f j,k = B∞[k/2 j, 1/2 j],
∑

k∈ZN

f j,k = 1, f j,k ≥ 0.

Proposition 2.3.2. LetΩ be an open set in RN and let u ∈ K(Ω). Then the sequence

u j =
∑

k∈ZN

u(k/2 j) f j,k

converges uniformly to u on Ω.

Proof. Let ε > 0. By uniform continuity, there exists m such that ωu(1/2m) ≤ ε.
Hence for j ≥ m,

|u(x) − u j(x)| = |
∑

k∈ZN

(u(x) − u(k/2 j)) f j,k(x)| ≤ ε
∑

k∈ZN

f j,k(x) = ε. ⊓+

Proposition 2.3.3. Let u ∈ K(RN). Then

(a) for every x
N
∈ R, u(., x

N
) ∈ K(RN−1);

(b)
∫

RN−1
u(x′, .)dx′ ∈ K(R);

(c)
∫

RN
u(x)dx =

∫

R
dx

N

∫

RN−1
u(x′, x

N
)dx′.

Proof. Every restriction of a continuous function is continuous.

Let us define v(x
N

) =
∫

RN−1
u(x′, x

N
)dx′. Lebesgue’s dominated convergence

theorem implies that v is continuous on R. Since the support of u is a compact
subset of RN , the support of v is a compact subset of R.
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We have, for every j ∈ N and every k ∈ Z, by definition of the integral that

∫

RN
f j,k(x)dx =

∫

R
dx

N

∫

RN−1
f j,k(x′, x

N
)dx′.

Hence for every j ∈ N,

∫

RN
u j(x)dx =

∫

R
dx

N

∫

RN−1
u j(x′, x

N
)dx′.

There is R > 1 such that

spt u ⊂ {x ∈ RN : |x|∞ ≤ R − 1}.

For every j ∈ N, by the definition of the integral

∣∣∣∣∣

∫

RN
u(x) − u j(x)dx

∣∣∣∣∣ ≤ (2R)N max
x∈RN

∣∣∣u(x) − u j(x)
∣∣∣ ,

we obtain
∣∣∣∣∣

∫

R
dx

N

∫

RN−1
u(x′, x

N
) − u j(x′, x

N
)dx′

∣∣∣∣∣ ≤ (2R)N max
x∈RN

∣∣∣u(x) − u j(x)
∣∣∣ .

It is easy to conclude the proof using the preceding proposition. ⊓+

Definition 2.3.4. The elementary integral µ on Ω = Ω1 × Ω2 is the product of the
elementary integrals µ1 on Ω1 and µ2 on Ω2 if for every u ∈ L(Ω, µ),

(a) u(., x2) ∈ L(Ω1, µ1) for every x2 ∈ Ω2;

(b)
∫

Ω1

u(x1, .)dµ1 ∈ L(Ω2, µ2);

(c)
∫

Ω
u(x1, x2)dµ =

∫

Ω2

dµ2

∫

Ω1

u(x1, x2)dµ1.

We assume that µ is the product of µ1 and µ2.

Lemma 2.3.5. Let u ∈ L+(Ω, µ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L+(Ω1, µ1);

(b)
∫

Ω1

u(x1, .)dµ1 ∈ L+(Ω2, µ2);

(c)
∫

Ω
u(x1, x2)dµ =

∫

Ω2

dµ2

∫

Ω1

u(x1, x2)dµ1.
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Proof. Let (un) ⊂ L(Ω, µ) be a fundamental sequence such that un ↑ u. By
definition,

vn =

∫

Ω
un(x1, .)dµ1 ∈ L(Ω2, µ2),

and (vn) is a fundamental sequence. But then vn ↑ v, v ∈ L+(Ω2, µ2), and

∫

Ω2

v(x2)dµ2 = lim
n→∞

∫

Ω2

vn(x2)dµ2.

For almost every x2 ∈ Ω2, v(x2) ∈ R. In this case, (un(., x2)) ⊂ L(Ω1, µ1) is a
fundamental sequence and un(., x2) ↑ u(., x2). Hence u(., x2) ∈ L+(Ω1, µ1) and

∫

Ω1

u(x1, x2)dµ1 = lim
n→∞

∫

Ω1

un(x1, x2)dµ1 = lim
n→∞

vn(x2) = v(x2).

It follows that
∫

Ω1

u(x1, .)dµ1 ∈ L+(Ω2, µ2) and

∫

Ω
u(x1, x2)dµ = lim

n→∞

∫

Ω
un(x1, x2)dµ

= lim
n→∞

∫

Ω2

dµ2

∫

Ω1

un(x1, x2)dµ1

= lim
n→∞

∫

Ω2

vn(x2)dµ2

=

∫

Ω2

v(x2)dµ2 =

∫

Ω2

dµ2

∫

Ω1

u(x1, x2)dµ1. ⊓+

Lemma 2.3.6. Let S ⊂ Ω be negligible with respect to µ. Then for almost every
x2 ∈ Ω2,

S x2 = {x1 ∈ Ω1 : (x1, x2) ∈ S }

is negligible with respect to µ1.

Proof. By assumption, there is u ∈ L+(Ω, µ) such that

S ⊂ {(x1, x2) ∈ Ω : u(x1, x2) = +∞}.

The preceding lemma implies that for almost every x2 ∈ Ω2,
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S x2 ⊂ {x1 ∈ Ω1 : u(x1, x2) = +∞}

is negligible with respect to µ1. ⊓+
Theorem 2.3.7 (Fubini). Let u ∈ L1(Ω, µ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L1(Ω1, µ1);

(b)
∫

Ω1

u(x1, .)dµ1 ∈ L1(Ω2, µ2);

(c)
∫

Ω
u(x1, x2)dµ =

∫

Ω2

dµ2

∫

Ω1

u(x1, x2)dµ1.

Proof. By assumption, there is f , g ∈ L+(Ω, µ) such that u = f − g almost
everywhere on Ω. By the preceding lemma, for almost every x2 ∈ Ω2,

u(x1, x2) = f (x1, x2) − g(x1, x2)

almost everywhere on Ω1. The conclusion follows from Lemma 2.3.5. ⊓+
The following result provides a way to prove that a function on a product space

is integrable.

Theorem 2.3.8 (Tonelli). Let u : Ω→ [0,+∞[ be such that

(a) for every n ∈ N, min(n, u) ∈ L1(Ω, µ);

(b) c =
∫

Ω2

dµ2

∫

Ω1

u(x1, x2)dµ1 < +∞.

Then u ∈ L1(Ω, µ).

Proof. Let us define un = min(n, u). Fubini’s theorem implies that

∫

Ω
un(x1, x2)dµ =

∫

Ω2

dµ2

∫

Ω1

un(x1, x2)dµ1 ≤ c.

The conclusion follows from Levi’s dominated convergence theorem. ⊓+

2.4 Change of Variables

Let Ω be an open set of RN and let dx be the Lebesgue measure on Ω. We define

L+(Ω) = L+(Ω, dx),L1(Ω) = L1(Ω, dx).

Definition 2.4.1. Let Ω and ω be open. A diffeomorphism is a continuously
differentiable map f : Ω→ ω such that for every x ∈ Ω,

J f (x) = det f ′(x) " 0.
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We assume that f : Ω → ω is a diffeomorphism. The next theorem is proved in
Sect. 9.1.

Theorem 2.4.2. Let u ∈ K(ω). Then u( f )|J f | ∈ K(Ω) and

∫

Ω
u( f (x))|J f (x)|dx =

∫

ω
u(y)dy. (∗)

Lemma 2.4.3. Let u ∈ L+(ω). Then u( f )|J f | ∈ L+(Ω), and (∗) is valid.

Proof. Let (un) ⊂ K(ω) be a fundamental sequence such that un ↑ u. By the
preceding theorem, vn = un( f )|J f | ∈ K(Ω) and (vn) is a fundamental sequence.
It follows that

∫

Ω
u( f (x))|J f (x)|dx = lim

n→∞

∫

Ω
un( f (x))|J f (x)|dx = lim

n→∞

∫

ω
un(y)dy =

∫

ω
u(y)dy.

⊓+
Lemma 2.4.4. Let S ⊂ ω be a negligible set. Then f −1(S ) is a negligible set.

Proof. By assumption, there is u ∈ L+(ω) such that

S ⊂ {y ∈ ω : u(y) = +∞}.

The preceding lemma implies that the set

f −1(S ) ⊂ {x ∈ Ω : u( f (x)) = +∞}

is negligible. ⊓+
Theorem 2.4.5. Let u ∈ L1(ω). Then u( f )|J f | ∈ L1(Ω), and (∗) is valid.

Proof. By assumption, there exist v,w ∈ L+(ω) such that u = v − w almost
everywhere on ω. It follows from the preceding lemma that

u( f )|J f | = v( f )|J f | − w( f )|J f |

almost everywhere on Ω. It is easy to conclude the proof using Lemma 2.4.3. ⊓+
Let

B
N
= {x ∈ RN : |x| < 1}

be the unit ball in RN , and let V
N
= m(B

N
) be its volume. By the preceding theorem,

for every r > 0,

m(B(0, r)) =
∫

|y|<r
dy = rN

∫

|x|<1
dx = rNV

N
.
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We now define polar coordinates. Let N ≥ 2 and RN
∗ = RN \ {0}. Let

SN−1 = {σ ∈ RN : |σ| = 1}

be the unit sphere in RN . The polar change of variables is the homeomorphism

]0,∞[×SN−1 −→ RN
∗ : (r,σ) '−→ rσ.

Definition 2.4.6. The surface measure on SN−1 is defined on C(SN−1) by

∫

SN−1
f (σ)dσ = N

∫

B
N

f
(

x
|x|

)
dx.

Observe that the function f (x/|x|) is bounded and continuous on B
N
\ {0}.

Since SN−1 is compact, Dini’s theorem implies that the surface measure is a
positive measure.

Lemma 2.4.7. Let u ∈ K(RN). Then

(a) for every r > 0, the function σ '→ u(rσ) belongs to C(SN−1);

(b)
d
dr

∫

|x|<r
u(x)dx = rN−1

∫

SN−1
u(rσ)dσ;

(c)
∫

RN
u(x)dx =

∫ ∞

0
rN−1dr

∫

SN−1
u(rσ)dσ.

Proof. (a) The restriction of a continuous function is a continuous function.

(b) Let w(r) =
∫

|x|<r
u(x)dx and v(r) =

∫

SN−1
u(rσ)dσ, r > 0. By definition, we have

v(r) = N
∫

B
N

u
(

r
|x| x

)
dx.

Choose r > 0 and ε > 0. By definition of the modulus of continuity, we have

∣∣∣∣∣∣w(r + ε) − w(r) −
∫

r<|x|<r+ε
u(rx/|x|)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∫

r<|x|<r+ε
u(x) − u(rx/|x|)dx

∣∣∣∣∣∣

≤ ωu(ε)V
N

[(r + ε)N − rN].

The preceding theorem implies that

∫

r<|x|<r+ε
u(rx/|x|)dx =

∫

|x|<r+ε
u(rx/|x|)dx−

∫

|x|<r
u(rx/|x|)dx =

(r+ε)N−rN

N
v(r).
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Hence we find that
∣∣∣∣∣∣w(r + ε) − w(r) − (r + ε)N − rN

N
v(r)

∣∣∣∣∣∣ ≤ ωu(ε)V
N

[(r + ε)N − rN],

so that
lim
ε→ 0
ε > 0

∣∣∣∣∣
w(r + ε) − w(r)

ε
− rN−1v(r)

∣∣∣∣∣ = 0.

The right derivative of w is equal to rN−1v. Similarly, the left derivative of w is
equal to rN−1v.

(c) The fundamental theorem of calculus implies that for 0 < a < b,

∫

a<|x|<b
u(x)dx = w(b) − w(a) =

∫ b

a
v(r)rN−1dr =

∫ b

a
rN−1dr

∫

SN−1
u(rσ)dσ.

Taking the limit as a→ 0 and b→ +∞, we obtain (c). ⊓+
Theorem 2.4.8. Let u ∈ L1(RN). Then

(a) for almost every r > 0, the function σ→ u(rσ) belongs to L1(SN−1, dσ);

(b) the function r →
∫

SN−1
u(rσ)dσ belongs to L1(]0,∞[, rN−1dr);

(c)
∫

RN
u(x)dx =

∫ ∞

0
rN−1dr

∫

SN−1
u(rσ)dσ.

Proof. By the preceding theorem, the Lebesgue measure on RN is the product of
the surface measure on SN−1 and the measure rN−1dr on ]0,∞[. It suffices then to
use Fubini’s theorem. ⊓+
Theorem 2.4.9. The volume V

N
is given by the formulas

V1 = 2,V2 = π and V
N
=

2π
N

VN−2.

Proof. Let N ≥ 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

V
N
=

∫

|x|<1
dx

=

∫

x2
3+...+x2

N
<1

dx3 . . . dx
N

∫

x2
1+x2

2<1−(x2
3+...+x2

N
)
dx1dx2

= π

∫

x2
3+...+x2

N
<1

1 − (x2
3 + . . . + x2

N
)dx3 . . . dx

N

= π(N − 2)VN−2

∫ 1

0
(1 − r2)rN−3dr =

2π
N

VN−2. ⊓+
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2.5 Comments

The construction of the Lebesgue integral in Chap. 2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space L+ defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (un) of elementary functions such that

sup
n

∫

Ω
un dµ < ∞.

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

– Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

– The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].
Lemma 2.4.7 is due to Baker [4]. The book by Saks [67] is still an excellent

reference on integration theory.
The history of integration theory is described in [39,57]. See also [31] on the life

and the work of Émile Borel.
An informal version of the Lebesgue dominated convergence theorem appears

(p. 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).

2.6 Exercises for Chap. 2

1. (Independence of J4.) The functional defined on

L =
{
u : N→ R : lim

k→∞
u(k) exists

}

by ⟨ f , u⟩ = lim
k→∞

u(k) satisfies (J1−2−3) but not J4.

2. (Independence of J5.) The elementary integral defined on

L = {u : [0, 1]→ R : x '→ ax : a ∈ R}

by ∫
u dµ = u(1)

is not a positive measure.
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3. (Counting measure.) Let Ω be a set. The elementary integral defined on

L = {u : Ω→ R : {u(x) " 0} is finite}

by ∫

Ω
u dµ =

∑

u(x)"0

u(x),

satisfies

L1(N, µ) =
⎧⎪⎪⎨
⎪⎪⎩u : N→ R :

∞∑

n=0

|u(n)| < ∞
⎫⎪⎪⎬
⎪⎪⎭

and ∫

N
u dµ =

∞∑

n=0

u(n).

Prove also that when Ω = R, the set R is not measurable.
4. (Axiomatic definition of the Cauchy integral.) Let us recall that τyu(x) = u(x −

y). Let f : K(RN)→ R be a linear functional such that

(a) for every u ∈ K(RN), u ≥ 0⇒ ⟨ f , u⟩ ≥ 0;
(b) for every y ∈ RN and for every u ∈ K(RN), ⟨ f , τyu⟩ = ⟨ f , u⟩.

Then there exists c ≥ 0 such that for every u ∈ K(RN), ⟨ f , u⟩ = c
∫

RN
u dx.

Hint: Use Proposition 2.3.2.
5. Let µ be an elementary integral on Ω. Then the following statements are

equivalent:

(a) u ∈ L1(Ω, µ).
(b) There exists a decreasing sequence (un) ⊂ L+(Ω, µ) such that almost

everywhere, u = lim
n→∞

un and inf
∫

Ω
undµ > −∞.

6. Let Ω = B(0, 1) ⊂ RN . Then

λ + N > 0⇐⇒ |x|λ ∈ L1(Ω), λ + N < 0⇐⇒ |x|λ ∈ L1(RN \ Ω).

7. Let u : R2 → R be such that for every y ∈ R, u(., y) is continuous and for every
x ∈ R, u(x, .) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to u on R2.

8. Construct a sequence (ωk) of open dense subsets of R such that m

⎛
⎜⎜⎜⎜⎜⎝
∞⋂

k=0

ωk

⎞
⎟⎟⎟⎟⎟⎠ = 0.

Hint: Let (qn) be an enumeration of Q and let In,k be the open interval with

center qn and length 1/2n+k. Define ωk =

∞⋃

n=0

In,k.
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9. Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d(u, v) = max

0≤x≤1
|u(x) − v(x)|.

Hint: Let Y be the set of functions in X that are differentiable at at least one
point and define, for n ≥ 1,

Fn = {u ∈ X : there exists 0 ≤ x ≤ 1 such that,
for all 0 ≤ y ≤ 1, |u(x) − u(y)| ≤ n|x − y|}.

Since Y ⊂
∞⋃

n=1

Fn, it suffices to prove that
∞⋂

n=1

Gn is dense in X, where Gn = X\Fn.

By Baire’s theorem, it suffices to prove that every Gn is open and dense.
It is clear that

Gn = {u ∈ X : for all 0 ≤ x ≤ 1, there exists 0 ≤ y ≤ 1
such that n|x − y| < |u(x) − u(y)|}.

Let u ∈ Gn. The function

f (x) = max{|u(x) − u(y)| − n(x − y)| : 0 ≤ y ≤ 1},

is such that
inf

0≤x≤1
f (x) = min

0≤x≤1
f (x) > 0.

It follows that Gn is open.
We use the functions f j,k of Definition 2.3.1. Let u ∈ X and ε > 0. Define

u j(x) =
∑

0≤k≤2 j

u(k/2 j) f j,k(x),

gm(x) = ε d(2mx,N).

Then for j and m large enough,

d(u, u j) < ε, u j + gm ∈ Gn.

It follows that Gn is dense.
10. (Iterated integrals, Baker 1990.) Let K = [0, 1]N and let µ be an elementary

integral on Ω. Assume that f ∈ L1(Ω, µ) and

F : K × Ω→ R : (x, y) '→ F(x, y)

are such that
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(a) For almost all y ∈ Ω, F(., y) is continuous;
(b) For all x ∈ K, F(x, .) is µ-measurable;
(c) |F(x, y)| ≤ f (y).

Then:

(a) The function G(x) =
∫

Ω
F(x, y)dµ is continuous on K.

(b) The function H(y) =
∫

K
F(x, y)dx is µ-measurable on Ω.

(c)
∫

K
G(x)dx =

∫

Ω
H(y)dµ.

Hint: Define on Ω
H j(y) = 2− jN

∑

k∈NN

|k|∞<2 j

F(k/2 j, y)

and observe that

lim
j→∞

H j(y) = H(y), lim
j→∞

∫

Ω
H j(y)dµ =

∫

Ω
H(y)dµ.

11. (Proof of Euler’s identity by M. Ivan, 2008).

(a)
∫ 1

−1
dy

∫ 1

−1

dx
1 + 2xy + y2 =

∫ 1

−1

log 1+y
1−y

y
dy = 2

∞∑

n=0

∫ 1

−1

y2n

2n + 1
dy

= 4
∞∑

n=0

1
(2n + 1)2 .

(b)
∫ 1

−1
dx

∫ 1

−1

dy
1 + 2xy + y2 =

∫ 1

−1

π

2
√

1 − x2
dx =

π2

2
.

(c) The formula
∞∑

n=0

1
(2n + 1)2 =

π2

8
is equivalent to the formula

∞∑

n=1

1
n2 =

π2

6
.

12. Let u ∈ C1(RN)
⋂ K(RN). Then

u(x) =
1

NV
N

∫

RN

∇u(x − y) · y
|y|N dy.

Hint: For every σ ∈ SN−1,

u(x) =
∫ ∞

0
∇u(x − rσ) · σdr.
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13. The Newton potential of the ball BR = B(0,R) ⊂ R3 is defined, for |y| > R, by

ϕ(y) =
∫

BR

dx
|y − x| .

Since BR is invariant by rotation, we may assume that y = (0, 0, a), where a = |y|.
It follows that

ϕ(y) =
∫

BR

dx
√

x2
1 + x2

2 + (x3 − a)2

= 2π
∫ R

−R
dx3

∫ √R2−x2
3

0

r
√

r2 + (x3 − a)2
dr

= π

∫ R

−R

(√
R2 + a2 − 2ax3 − a + x3

)
dx3

=
4
3
π

R3

a
=

4
3
π

R3

|y| .

14. The Newton potential of the sphere S2 is defined, for |y| " 1, by

ψ(y) =
∫

S2

dσ
|y − σ| .

For |y| > R, we have that

4
3
π

R3

|y| =
∫ R

0
r2 f (r, y)dr,

where
f (r, y) =

∫

S2

dσ
|y − rσ| .

It follows that

4π
R2

|y| = R2 f (R, y).

In particular, for |y| > 1,

ψ(y) = f (1, y) =
4π
|y| .


