
Chapter 3
Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1. A norm on a real vector space X is a function

X → R : u "→ ||u||
such that

(N1) for every u ∈ X \ {0}, ||u|| > 0;
(N2) for every u ∈ X and for α ∈ R, ||αu|| = |α| ||u||;
(N3) (Minkowski’s inequality) for every u, v ∈ X,

||u + v|| ≤ ||u|| + ||v||.

A (real) normed space is a (real) vector space together with a norm on that space.

Examples. 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The space
Y together with ||.|| (restricted to Y) is a normed space.

2. Let (X1, ||.||1), (X2, ||.||2) be normed spaces. The space X1 × X2 together with

||(u1, u2)|| = max(||u1||1, ||u2||2)

is a normed space.
3. We define the norm on the space RN to be

|x|∞ = max
{
|x1|, . . . , |x

N
|
}
.

Every normed space is a metric space.
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52 3 Norms

Proposition 3.1.2. Let X be a normed space. The function

X × X → R : (u, v) "→ ||u − v||

is a distance on X. The following mappings are continuous:

X → R : u "→ ||u||,
X × X → X : (u, v) "→ u + v,
R × X → X : (α, u) "→ αu.

Proof. By N1 and N2,

d(u, v) = 0⇐⇒ u = v, d(u, v) = || − (u − v)|| = ||v − u|| = d(v, u).

Finally, by Minkowski’s inequality,

d(u,w) ≤ d(u, v) + d(v,w).

Since by Minkowski’s inequality,

∣∣∣∣||u|| − ||v||
∣∣∣∣ ≤ ||u − v||,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. *+

Definition 3.1.3. Let X be a normed space and (un) ⊂ X. The series
∞∑

n=0

un

converges, and its sum is u ∈ X if the sequence
k∑

n=0

un converges to u. We then

write
∞∑

n=0

un = u.

The series
∞∑

n=0

un converges normally if
∞∑

n=0

||un|| < ∞.

Definition 3.1.4. A Banach space is a complete normed space.

Proposition 3.1.5. In a Banach space X, the following statements are equivalent:

(a)
∞∑

n=0

un converges;

(b) lim
j→ ∞
j < k

k∑

n= j+1

un = 0.
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Proof. Define S k =

k∑

n=0

un. Since X is complete, we have

(a)⇐⇒ lim
j→ ∞
j < k

||S k − S j|| = 0⇐⇒ lim
j→∞
j < k

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

k∑

n= j+1

un

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
= 0⇐⇒ b). *+

Proposition 3.1.6. In a Banach space, every normally convergent series converges.

Proof. Let
∞∑

n=0

un be a normally convergent series in the Banach space X.

Minkowski’s inequality implies that for j < k,
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

k∑

n= j+1

un

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
≤

k∑

n= j+1

||un||.

Since the series is normally convergent,

lim
j→ ∞
j < k

k∑

n= j+1

||un|| = 0.

It suffices then to use the preceding proposition. *+
Examples. 1. The space of bounded continuous functions on the metric space X,

BC(X) =
{

u ∈ C(X) : sup
x∈X
|u(x)| < ∞

}
,

together with the norm

||u||∞ = sup
x∈X
|u(x)|,

is a Banach space. Convergence with respect to ||.||∞ is uniform convergence.
2. Let µ be a positive measure onΩ. We denote by L1(Ω, µ) the quotient ofL1(Ω, µ)

by the equivalence relation “equality almost everywhere.” We define the norm

||u||1 =
∫

Ω
|u| dµ.

Convergence with respect to ||.||1 is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L1(Ω, µ) is a Banach space.

3. Let dx be the Lebesgue measure on the open subsetΩ of RN . We denote by L1(Ω)
the space L1(Ω, dx). Convergence in mean is not implied by simple convergence,
and almost everywhere convergence is not implied by convergence in mean.



54 3 Norms

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||1 =
∫

Ω
|u|dx ≤ m(Ω)||u||∞.

Hence BC(Ω) ⊂ L1(Ω), and the canonical injection is continuous, since

||u − v||1 ≤ m(Ω)||u − v||∞.

Proposition 3.1.7. Let u ∈ L1(Ω, µ). Then for every ε > 0, there exists δ > 0 such

that for every measurable subset A of Ω satisfying µ(A) ≤ δ,
∫

A
|u|dµ ≤ ε.

Proof. Let ε > 0. Markov’s inequality implies that for every t > 0 and for every
measurable set A,

∫

A
|u|dµ ≤ t µ(A) +

∫

{|u|>t}
|u|dµ ≤ t µ(A) + ||u||1/t.

We choose t = 2||u||1/ε and δ = ε/(2t). We obtain, when µ(A) ≤ δ, that
∫

A
|u|dµ ≤ ε.

*+
Definition 3.1.8. A subset S of L1(Ω, µ) is uniformly integrable if for every ε > 0,
there exists δ > 0 such that for every measurable subset A of Ω satisfying µ(A) ≤ δ,

sup
u∈S

∫

A
|u|dµ ≤ ε.

Theorem 3.1.9 (Vitali). Let µ(Ω) < ∞ and let (un) ⊂ L1(Ω, µ) be a sequence
almost everywhere converging to u. Then the following properties are equivalent:

(a) {un : n ∈ N} is uniformly integrable;
(b) ||un − u||1 → 0, n→ ∞.

Proof. Assume that (a) is satisfied and let ε > 0. For every n, we have
∫

Ω
|un − u|dµ =

∫

|un−u|≤ε
|un − u|dµ +

∫

|un−u|>ε
|un − u|dµ (∗)

≤ εµ(Ω) +
∫

|un−u|>ε
|un|dµ +

∫

|un−u|>ε
|u|dµ.

There exists, by assumption and Fatou’s lemma, a δ > 0 such that for every
measurable subset A of Ω satisfying µ(A) ≤ δ,

sup
n

∫

A
|un|dµ ≤ ε,

∫

A
|u|dµ ≤ ε. (∗∗)

By Lebesgue’s dominated convergence theorem and the fact that µ(Ω) < ∞, there
exists m such that for every n ≥ m,
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µ{|un − u| > ε} ≤ δ.

It follows from (∗) and (∗∗) that for every n ≥ m,

∫

Ω
|un − u|dµ ≤ (µ(Ω) + 2)ε.

Since ε > 0 is arbitrary, ||un − u||1 → 0, n→ ∞.
Assume that (b) is satisfied. For every measurable subset A of Ω, we have

∫

A
|un|dµ ≤

∫

A
|u|dµ + ||un − u||1.

Let ε > 0. There exists m such that for every n ≥ m, ||un − u||1 ≤ ε/2 and there exists
δ > 0 such that for every measurable subset A of Ω, µ(A) ≤ δ implies that

∫

A
|u|dµ ≤ ε/2,

∫

A
|u1|dµ ≤ ε, . . .

∫

A
|um−1|dµ ≤ ε.

Then for every n,
∫

A
|un|dµ ≤ ε and {un : n ∈ N} is uniformly integrable. *+

Theorem 3.1.10 (de la Vallée Poussin criterion). Let S ⊂ L1(Ω, µ) be such that
c = sup

u∈S
||u||1 < +∞. The following properties are equivalent:

(a) S is uniformly integrable;
(b) there exists an increasing convex function F : [0,∞[→ [0,∞[ such that

lim
t→∞

F(t)/t = +∞ and M = sup
u∈S

∫

Ω
F(|u|)dµ < ∞.

Proof. If S satisfies (b), then for every ε > 0, there exists t > 0 such that for every
s > t, F(s)/s > M/ε. Hence for all u ∈ S , we have

∫

{|u|>t}
|u|dµ ≤ ε

M

∫

{|u|>t}
F(|u|)dµ ≤ ε.

We choose δ = ε/t. For every measurable subset A of Ω such that µ(A) ≤ δ and for
every u ∈ S , we obtain

∫

A
|u|dµ ≤ tµ(A) +

∫

{|u|>t}
|u|dµ ≤ 2ε.

Markov’s inequality implies that for every u ∈ S and every t > 0,

µ{|u| > t} ≤ ||u||1/t ≤ c/t.
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Assume that S satisfies (a). Then there exists a strictly increasing sequence of

integers an ≥ 1 such that sup
u∈S

∫

{|u|>an}
|u|dµ ≤ 2−n. We define f (s) = 0 on [0, 1[ and

f (s) = f (m) on ]m,m+ 1[, where f (m) is the number of integers n such that an ≤ m.

Let F(t) =
∫ t

0
f (s)ds. We choose u ∈ S , and we define bm = µ{|u| > m}. Since

∫

Ω
F(|u|)dµ ≤ f (1)µ{1 < |u| ≤ 2} + ( f (1) + f (2))µ{2 < |u| ≤ 3} + · · ·

=

∞∑

m=1

f (m)bm,

and
∞∑

m=an

bm ≤
∞∑

m=an

m µ{m < |u| ≤ m + 1} ≤
∫

{|u|>an}
|u|dµ ≤ 2−n,

we find that
∞∑

m=1

f (m)bm =

∞∑

n=1

∞∑

m=an

bm ≤ 1. *+

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir l’opération que l’on considère, de même qu’on fait la
théorie de l’addition sans définir la nature des termes à
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.

Proposition 3.2.1. Let X and Y be normed spaces and A : X → Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

(b) c = sup
u ∈ X
u ! 0

||Au||
||u|| < ∞.

Proof. If c < ∞, we obtain

||Au − Av|| = ||A(u − v)|| ≤ c||u − v||.

Hence A is continuous.
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If A is continuous, there exists δ > 0 such that for every u ∈ X,

||u|| = ||u − 0|| ≤ δ⇒ ||Au|| = ||Au − A0|| ≤ 1.

Hence for every u ∈ X \ {0},

||Au|| = ||u||
δ
||A

(
δ

||u||u
)
|| ≤ ||u||

δ
. *+

Proposition 3.2.2. The function

||A|| = sup
u ∈ X
u ! 0

||Au||
||u|| = sup

u ∈ X
||u|| = 1

||Au||

defines a norm on the space L(X, Y) = {A : X → Y : A is linear and continuous}.
Proof. By the preceding proposition, if A ∈ L(X, Y), then 0 ≤ ||A|| < ∞. If A ! 0, it
is clear that ||A|| > 0. It follows from axiomN2 that

||αA|| = sup
u ∈ X
||u|| = 1

||αAu|| = sup
u ∈ X
||u|| = 1

|α| ||Au|| = |α| ||A||.

It follows from Minkowski’s inequality that

||A + B|| = sup
u ∈ X
||u|| = 1

||Au + Bu|| ≤ sup
u ∈ X
||u|| = 1

(||Au|| + ||Bu||) ≤ ||A|| + ||B||. *+

Proposition 3.2.3 (Extension by density). Let Z be a dense subspace of a normed
space X, Y a Banach space, and A ∈ L(Z, Y). Then there exists a unique mapping
B ∈ L(X, Y) such that B

∣∣∣
Z = A. Moreover, ||B|| = ||A||.

Proof. Let u ∈ X. There exists a sequence (un) ⊂ Z such that un → u. The sequence
(Aun) is a Cauchy sequence, since

||Au j − Auk|| ≤ ||A|| ||u j − uk ||→ 0, j, k → ∞

by Proposition 1.2.3. We denote by f its limit. Let (vn) ⊂ Z be such that vn → u.
We have

||Avn − Aun|| ≤ ||A|| ||vn − un|| ≤ ||A|| (||vn − u|| + ||u − un||)→ 0, n→ ∞.

Hence Avn → f , and we define Bu = f . By Proposition 3.1.2, B is linear. Since for
every n,

||Aun|| ≤ ||A|| ||un||,
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we obtain by Proposition 3.1.2 that

||Bu|| ≤ ||A|| ||u||.

Hence B is continuous and ||B|| ≤ ||A||. It is clear that ||A|| ≤ ||B||. Hence ||A|| = ||B||.
If C ∈ L(X, Y) is such that C

∣∣∣
Z
= A, we obtain

Cu = lim
n→∞

Cun = lim
n→∞

Aun = lim
n→∞

Bun = Bu. *+

Proposition 3.2.4. Let X and Y be normed spaces, and let (An) ⊂ L(X, Y) and
A ∈ L(X, Y) be such that ||An − A||→ 0. Then (An) converges simply to A.

Proof. For every u ∈ X, we have

||Anu − Au|| = ||(An − A)u|| ≤ ||An − A|| ||u||. *+

Proposition 3.2.5. Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (An) ⊂ L(X, Y) be such that

(a) c = sup
n
||An|| < ∞;

(b) for every v ∈ Z, (Anv) converges.

Then An converges simply to A ∈ L(X, Y), and

||A|| ≤ lim
n→∞
||An||.

Proof. Let u ∈ X and ε > 0. By density, there exists v ∈ B(u, ε) ∩ Z. Since (Anv)
converges, Proposition 1.2.3 implies the existence of n such that

j, k ≥ n⇒ ||A jv − Akv|| ≤ ε.

Hence for j, k ≥ n, we have

||A ju − Aku|| ≤ ||A ju − A jv|| + ||A jv − Akv|| + ||Akv − Aku||
≤ 2c ||u − v|| + ε
= (2c + 1)ε.

The sequence (Anu) is a Cauchy sequence, since ε > 0 is arbitrary. Hence (Anu)
converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2
that A is linear and that

||Au|| = lim
n→∞
||Anu|| ≤ lim

n→∞
||An|| ||u||.

But then A is continuous and ||A|| ≤ lim
n→∞
||An||. *+
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Theorem 3.2.6 (Banach–Steinhaus theorem). Let X be a Banach space, Y a
normed space, and let (An) ⊂ L(X, Y) be such that for every u ∈ X,

sup
n
||Anu|| < ∞.

Then

sup
n
||An|| < ∞.

First Proof. Theorem 1.3.13 applied to the sequence Fn : u "→ ||Anu|| implies the
existence of a ball B(v, r) such that

c = sup
n

sup
u∈B(v,r)

||Anu|| < ∞.

It is clear that for every y, z ∈ Y,

||y|| ≤ max{||z + y||, ||z− y||}. (∗)

Hence for every n and for every w ∈ B(0, r), ||Anw|| ≤ c, so that

sup
n
||An|| ≤ c/r.

Second Proof. Assume to obtain a contradiction that supn ||An|| = +∞. By consider-
ing a subsequence, we assume that n 3n ≤ ||An||. Let us define inductively a sequence
(un). We choose u0 = 0. There exists vn such that ||vn|| = 3−n and 3

4 3−n||An|| ≤ ||Anvn||.
By (∗), replacing if necessary vn by −vn, we obtain

3
4

3−n||An|| ≤ ||Anvn|| ≤ ||An(un−1 + vn)||.

We define un = un−1 + vn, so that ||un − un−1|| = 3−n. It follows that for every k ≥ n,

||uk − un|| ≤ 3−n/2.

Hence (un) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

||u − un|| ≤ 3−n/2.

We conclude that

||Anu|| ≥ ||Anun|| − ||An(un − u)||

≥ ||An||
[
3
4

3−n − ||un − u||
]

≥ n 3n
[
3
4

3−n − 1
2

3−n
]
= n/4. *+
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Corollary 3.2.7. Let X be a Banach space, Y a normed space, and (An) ⊂ L(X, Y)
a sequence converging simply to A. Then (An) is bounded, A ∈ L(X, Y), and

||A|| ≤ lim
n→∞
||An||.

Proof. For every u ∈ X, the sequence (Anu) is convergent, hence bounded, by
Proposition 1.2.3. The Banach–Steinhaus theorem implies that sup

n
||An|| < ∞. It

follows from Proposition 3.1.2 that A is linear and

||Au|| = lim
n→∞
||Anu|| ≤ lim

n→∞
||An|| ||u||,

so that A is continuous and ||A|| ≤ lim
n→∞
||An||. *+

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.

Example (Convergence of functionals). We define the linear continuous functionals
fn on L1(]0, 1[) to be

〈 fn, u〉 =
∫ 1

0
u(x)xn dx.

Since for every u ∈ L1(]0, 1[) such that ||u||1 = 1, we have

|〈 fn, u〉| <
∫ 1

0
|u(x)|dx = 1,

it is clear that

|| fn|| = sup
u ∈ L1

||u||1 = 1

|〈 fn, u〉| ≤ 1.

Choosing vk(x) = (k + 1)xk, we obtain

lim
k→∞
〈 fn, vk〉 = lim

k→∞
k + 1

k + n + 1
= 1.

It follows that || fn|| = 1, and for every u ∈ L1(]0, 1[) such that ||u||1 = 1,

|〈 fn, u〉| < || fn||.

Lebesgue’s dominated convergence theorem implies that ( fn) converges simply to
f = 0. Observe that

|| f || < lim
n→∞
|| fn||.
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1. A scalar product on the (real) vector space X is a function

X × X → R : (u, v) "→ (u|v)

such that

(S1) for every u ∈ X \ {0}, (u|u) > 0;
(S2) for every u, v,w ∈ X and for every α, β ∈ R, (αu + βv|w) = α(u|w) + β(v|w);
(S3) for every u, v ∈ X, (u|v) = (v|u).

We define ||u|| = √(u|u). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2. Let u, v,w ∈ X and let α, β ∈ R. Then

(a) (u|αv + βw) = α(u|v) + β(u|w);
(b) ||αu|| = |α| ||u||.
Proposition 3.3.3. Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (parallelogram identity) ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2;
(b) (polarization identity) (u|v) = 1

4 ||u + v||2 − 1
4 ||u − v||2;

(c) (Pythagorean identity) (u|v) = 0⇐⇒ ||u + v||2 = ||u||2 + ||v||2.

Proof. Observe that

||u + v||2 = ||u||2 + 2(u|v) + ||v||2, (∗)
||u − v||2 = ||u||2 − 2(u|v) + ||v||2. (∗∗)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. *+
Proposition 3.3.4. Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (Cauchy–Schwarz inequality) |(u|v)| ≤ ||u|| ||v||;
(b) (Minkowski’s inequality) ||u + v|| ≤ ||u|| + ||v||.
Proof. It follows from (∗) and (∗∗) that for ||u|| = ||v|| = 1,

|(u|v)| ≤ 1
2

(
||u||2 + ||v||2

)
= 1.

Hence for u ! 0 ! v, we obtain

|(u|v)|
||u|| ||v|| =

∣∣∣∣∣∣

(
u
||u||

∣∣∣ v
||v||

)∣∣∣∣∣∣ ≤ 1.
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By (∗) and the Cauchy–Schwarz inequality, we have

||u + v||2 ≤ ||u||2 + 2||u|| ||v|| + ||v||2 =
(
||u|| + ||v||

)2
. *+

Corollary 3.3.5. (a) The function ||u|| = √(u|u) defines a norm on the pre-Hilbert
space X.

(b) The function

X × X → R : (u, v) "→ (u|v)

is continuous.

Definition 3.3.6. A family (e j) j∈J in a pre-Hilbert space X is orthonormal if

(e j|ek) = 1, j = k,
= 0, j ! k.

Proposition 3.3.7 (Bessel’s inequality). Let (en) be an orthonormal sequence in a
pre-Hilbert space X and let u ∈ X. Then

∞∑

n=0

∣∣∣(u|en)
∣∣∣2 ≤ ||u||2.

Proof. It follows from the Pythagorean identity that

||u||2 =
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

(u|en)en +

k∑

n=0

(u|en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

(u|en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

+

k∑

n=0

∣∣∣(u|en)
∣∣∣2

≥
k∑

n=0

∣∣∣(u|en)
∣∣∣2.

*+
Proposition 3.3.8. Let (e0, . . ., ek) be a finite orthonormal sequence in a pre-Hilbert
space X, u ∈ X, and x0, . . . , xk ∈ R. Then

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

(u | en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

xnen

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
.

Proof. It follows from the Pythagorean identity that
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∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

xnen

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

(u | en)en +

k∑

n=0

((u | en) − xn)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=0

(u | en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

+

k∑

n=0

∣∣∣(u | en) − xn

∣∣∣2.

*+
Definition 3.3.9. A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10. Let (en) be a Hilbert basis of a pre-Hilbert space X and let
u ∈ X. Then

(a) u =
∞∑

n=0

(u | en)en;

(b) (Parseval’s identity) ||u||2 =
∞∑

n=0

|(u | en)|2.

Proof. Let ε > 0. By definition, there exists a sequence x0, . . . , x j ∈ R such that

||u −
j∑

n=0

xnen|| < ε.

It follows from the preceding proposition that for k ≥ j,

||u −
k∑

n=0

(u | en)en|| < ε.

Hence u =
∞∑

n=0

(u | en)en, and by Proposition 3.1.2,

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
lim
k→∞

k∑

n=0

(u | en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

= lim
k→∞

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

k∑

n=0

(u | en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

= lim
k→∞

k∑

n=0

∣∣∣(u | en)
∣∣∣2 =

∞∑

n=0

∣∣∣(u | en)
∣∣∣2.

*+

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11. Assume the existence of a sequence ( f j) generating a dense
subset of the normed space X. Then X is separable.

Proof. By assumption, the space of (finite) linear combinations of ( f j) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of ( f j)
is dense in X. Since this space is countable, X is separable. *+
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Proposition 3.3.12. Let X be an infinite-dimensional pre-Hilbert space. The fol-
lowing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof. By the preceding proposition, (b) implies (a).
If X is separable, it contains a sequence ( f j) generating a dense subspace. We

may assume that ( f j) is free. Since the dimension of X is infinite, the sequence ( f j)
is infinite. We define by induction the sequences (gn) and (en):

e0 = f0/|| f0||,

gn = fn −
n−1∑

j=0

( fn|e j)e j, en = gn/||gn||, n ≥ 1.

The sequence (en) generated from ( fn) by the Gram–Schmidt orthonormalization
process is a Hilbert basis of X. *+
Definition 3.3.13. A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer). Let (en) be an orthonormal sequence in the

Hilbert space X. The sequence
∞∑

n=0

cnen converges if and only if
∞∑

n=0

c2
n < ∞. Then

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∞∑

n=0

cnen

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∞∑

n=0

c2
n.

Proof. Define S k =

k∑

n=0

cnen. The Pythagorean identity implies that for j < k,

||S k − S j||2 =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

k∑

n= j+1

cnen

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

=

k∑

n= j+1

c2
n.

Hence

lim
j→∞
j < k

||S k − S j||2 = 0⇐⇒ lim
j→ ∞
j < k

k∑

n= j+1

c2
n = 0⇐⇒

∞∑

n=0

c2
n < ∞.

Since X is complete, (S k) converges if and only if
∞∑

n=0

c2
n < ∞. Then

∞∑

n=0

cnen =

lim
k→∞

S k, and by Proposition 3.1.2,
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|| lim
k→∞

S k ||2 = lim
k→∞
||S k||2 = lim

k→∞

k∑

n=0

c2
n =

∞∑

n=0

c2
n. *+

Examples. 1. Let µ be a positive measure on Ω. We denote by L2(Ω, µ) the
quotient of

L2(Ω, µ) =
{

u ∈M(Ω, µ) :
∫

Ω
|u|2dµ < ∞

}

by the equivalence relation “equality almost everywhere.” If u, v ∈ L2(Ω, µ), then
u + v ∈ L2(Ω, µ). Indeed, almost everywhere on Ω, we have

|u(x) + v(x)|2 ≤ 2(|u(x)|2 + |v(x)|2).

We define the scalar product

(u|v) =
∫

Ω
uv dµ

on the space L2(Ω, µ).
The scalar product is well defined, since almost everywhere on Ω,

|u(x) v(x)| ≤ 1
2

(|u(x)|2 + |v(x)|2).

By definition,

||u||2 =
(∫

Ω
|u|2dµ

)1/2

.

Convergence with respect to ||.||2 is convergence in quadratic mean. We will prove
in Sect. 4.2, on Lebesgue spaces, that L2(Ω, µ) is a Hilbert space. If µ(Ω) < ∞, it
follows from the Cauchy–Schwarz inequality that for every u ∈ L2(Ω, µ),

||u||1 =
∫

Ω
|u| dµ ≤ µ(Ω)1/2||u||2.

Hence L2(Ω, µ) ⊂ L1(Ω, µ), and the canonical injection is continuous.
2. Let dx be the Lebesgue measure on the open subsetΩ of RN . We denote by L2(Ω)

the space L2(Ω, dx). Observe that

1
x
∈ L2(]1,∞[) \ L1(]1,∞[) and

1√
x
∈ L1(]0, 1[) \ L2(]0, 1[).

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),
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||u||22 =
∫

Ω
u2dx ≤ m(Ω)||u||2∞.

Hence BC(Ω) ⊂ L2(Ω), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945). Let (en) be an orthonormal sequence
in L2(]a, b[). The following properties are equivalent:

(a) (en) is a Hilbert basis;

(b) for every a ≤ t ≤ b,
∞∑

n=1

(∫ t

a
en(x)dx

)2

= t − a;

(c)
∞∑

n=1

∫ b

a

(∫ t

a
en(x)dx

)2

dt =
(b − a)2

2
.

Proof. Property (b) follows from (a) and Parseval’s identity applied to χ[a,t].
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.

*+

Example. The sequence en(x) =

√
2
π

sin n x is orthonormal in L2(]0, π[). Since

2
π

∞∑

n=1

∫ π

0

(∫ t

0
sin n x dx

)2

dt = 3
∞∑

n=1

1
n2

and since by a classical identity due to Euler,

∞∑

n=1

1
n2 =

π2

6
,

the sequence (en) is a Hilbert basis of L2(]0, π[).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1. Let X be a real vector space and let A : X → X be a linear
mapping. The eigenvectors corresponding to the eigenvalue λ ∈ R are the nonzero
solutions of

Au = λu.

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range
of A.
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Definition 3.4.2. Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X → X such that for every u, v ∈ X, (Au|v) = (u|Av).

Proposition 3.4.3. Let X be a pre-Hilbert space and A : X → X a symmetric
continuous operator. Then

||A|| = sup
u ∈ X
||u|| = 1

|(Au|u)|.

Proof. It is clear that

a = sup
u ∈ X
||u|| = 1

|(Au|u)| ≤ b = sup
u, v ∈ X

||u|| = ||v|| = 1

|(Au|v)| = ||A||.

If ||u|| = ||v|| = 1, it follows from the parallelogram identity that

|(Au|v)| = 1
4
|(A(u + v)|u + v) − (A(u − v)|u − v)|

≤ a
4

[||u + v||2 + ||u − v||2]

=
a
4

[2||u||2 + 2||v||2] = a.

Hence b = a. *+
Corollary 3.4.4. Under the assumptions of the preceding proposition, there exists
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un||→ 0, |λ1| = ||A||.

Proof. Consider a maximizing sequence (un):

||un|| = 1, |(Aun|un)|→ sup
u ∈ X
||u|| = 1

|(Au|u)| = ||A||.

By passing if necessary to a subsequence, we can assume that (Aun|un) → λ1,
|λ1| = ||A||. Hence

0 ≤ ||Aun − λ1un||2 = ||Aun||2 − 2λ1(Aun|un) + λ2
1||un||2

≤ 2λ2
1 − 2λ1(Aun|un)→ 0, n→ ∞. *+

Definition 3.4.5. Let X and Y be normed spaces. A mapping A : X → Y is compact
if the set {Au : u ∈ X, ||u|| ≤ 1} is precompact in Y.
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By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6. Let X be a Hilbert space and let A : X → X be a symmetric
compact operator. Then there exists an eigenvalue λ1 of A such that |λ1| = ||A||.
Proof. We can assume that A ! 0. The preceding corollary implies the existence of
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un||→ 0, |λ1| = ||A||.

Passing if necessary to a subsequence, we can assume that Aun → v. Hence un →
u = λ−1

1 v, ||u|| = 1, and Au = λ1u. *+
Theorem 3.4.7 (Poincaré’s principle). Let X be a Hilbert space and A : X → X a
symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, . . . , en−1) and the corresponding eigenvalues (λ1, . . . , λn−1). Then there exists an
eigenvalue λn of A such that

|λn| = max
{|(Au|u)| : u ∈ X, ||u|| = 1, (u|e1) = . . . = (u|en−1) = 0

}

and λn → 0, n→ ∞.

Proof. The closed subspace of X

Xn =
{
u ∈ X : (u|e1) = . . . = (u|en−1) = 0

}

is invariant by A. Indeed, if u ∈ Xn and 1 ≤ j ≤ n − 1, then

(Au|e j) = (u|Ae j) = λ j(u|e j) = 0.

Hence An = A
∣∣∣∣
Xn

is a nonzero symmetric compact operator, and there exist an

eigenvalue λn of An such that |λn| = ||An|| and a corresponding eigenvector en ∈ Xn

such that ||en|| = 1. By construction, the sequence (en) is orthonormal, and the
sequence (|λn|) is decreasing. Hence |λn|→ d, n→ ∞, and for j ! k,

||Ae j − Aek||2 = λ2
j + λ

2
k → 2d2, j, k → ∞.

Since A is compact, d = 0. *+
Theorem 3.4.8. Under the assumptions of the preceding theorem, for every u ∈ X,

the series
∞∑

n=1

(u|en)en converges and u −
∞∑

n=1

(u|en)en belongs to the kernel of A:

Au =
∞∑

n=1

λn(u|en)en. (∗)
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Proof. For every k ≥ 1, u −
k∑

n=1

(u|en)en ∈ Xk+1. It follows from Proposition 3.3.8.

that
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Au −

k∑

n=1

λn(u|en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
≤ ||Ak+1||

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
u −

k∑

n=1

(u|en)en

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
≤ ||Ak+1|| ||u||→ 0, k → ∞.

Bessel’s inequality implies that
∞∑

n=1

|(u|en)|2 ≤ ||u||2. We deduce from the Riesz–

Fischer theorem that
∞∑

n=1

(u|en)en converges to v ∈ X. Since A is continuous,

Av =
∞∑

n=1

λn(u|en)en = Au

and A(u − v) = 0. *+
Formula (∗) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].
The first proof of the Banach–Steinhaus theorem in Sect. 3.2 is due to Favard

[22], and the second proof to Royden [66].

3.6 Exercises for Chap. 3

1. Prove that BC(Ω) ∩ L1(Ω) ⊂ L2(Ω).
2. Define a sequence (un) ⊂ BC(]0, 1[) such that ||un||1 → 0, ||un||2 = 1, and
||un||∞ → ∞.

3. Define a sequence (un) ⊂ BC(R) ∩ L1(R) such that ||un||1 → ∞, ||un||2 = 1 and
||un||∞ → 0.

4. Define a sequence (un) ⊂ BC(]0, 1[) converging simply to u such that ||un||∞ =
||u||∞ = ||un − u||∞ = 1.

5. Define a sequence (un) ⊂ L1(]0, 1[) such that ||un||1 → 0 and for every
0 < x < 1, lim

n→∞
un(x) = 1. Hint: Use characteristic functions of intervals.

6. On the space C([0, 1]) with the norm ||u||1 =
∫ 1

0
|u(x)|dx, is the linear functional
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f : C([0, 1])→ R : u "→ u(1/2)

continuous?
7. Let X be a normed space such that every normally convergent series converges.

Prove that X is a Banach space.
8. A linear functional defined on a normed space is continuous if and only if its

kernel is closed. If this is not the case, the kernel is dense.
9. Is it possible to derive the norm on L1(]0, 1[) (respectively BC(]0, 1[)) from a

scalar product?
10. Prove Lagrange’s identity in pre-Hilbert spaces:

∣∣∣
∣∣∣||v||u − ||u||v

∣∣∣
∣∣∣2 = 2||u||2||v||2 − 2||u|| ||v||(u|v).

11. Let X be a pre-Hilbert space and u, v ∈ X \ {0}. Then

∣∣∣∣∣

∣∣∣∣∣
u
||u||2 −

v
||v||2

∣∣∣∣∣

∣∣∣∣∣ =
||u − v||
||u|| ||v|| .

Let f , g, h ∈ X. Prove Ptolemy’s inequality:

|| f || ||g − h|| ≤ ||h|| || f − g|| + ||g|| ||h− f ||.

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

(u|v) =
1
2
(||u + v||2 − ||u − v||2).

Verify that

( f + g|h) + ( f − g|h) = 2( f |h),

(u|h) + (v|h) = 2
(u + v

2
|h
)
= (u + v|h).

13. Let f be a linear functional on L2(]0, 1[) such that u ≥ 0 ⇒ 〈 f , u〉 ≥ 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||2. Prove that
f is not necessarily continuous with respect to the norm ||.||1.

14. Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (un) such that
||un|| = 1 and ||Aun|| → ∞. Then use the Banach–Steinhaus theorem to obtain a
contradiction.

15. In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.
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16. Assume that µ(Ω) < ∞. Let (un) ⊂ L1(Ω, µ) be such that

(a) sup
n

∫

Ω
|un|)n(1 + |un|)dµ < +∞;

(b) (un) converges almost everywhere to u.

Then un → u in L1(Ω, µ).


