
Chapter 1
Distance

1.1 Real Numbers

Analysis is based on the real numbers.

Definition 1.1.1. Let S be a nonempty subset of R. A real number x is an upper
bound of S if for all s ∈ S, s ≤ x. A real number x is the supremum of S is x is an
upper bound of S and for every upper bound y of S, x ≤ y. A real number x is the
maximum of S is x is the supremum of S and x ∈ S. The definitions of lower bound,
infimum, and minimum are similar. We shall write sup S,max S, inf S, and min S.

Let us recall the fundamental property of R.

Axiom 1.1.2. Every nonempty subset ofR that has an upper bound has a supremum.

In the extended real number system, every subset of R has a supremum and an
infimum.

Definition 1.1.3. The extended real number system R = R ∪ {−∞,+∞} has the
following properties:

(a) if x ∈ R, then −∞ < x < +∞ and x + (+∞) = +∞ + x = +∞, x + (−∞) =
−∞ + x = −∞;

(b) if x > 0, then x · (+∞) = (+∞) · x = +∞, x · (−∞) = (−∞) · x = −∞;
(c) if x < 0, then x · (+∞) = (+∞) · x = −∞, x · (−∞) = (−∞) · x = +∞.

If S ⊂ R has no upper bound, then sup S = +∞. If S has no lower bound, then
inf S = −∞. Finally, supφ = −∞ and inf φ = +∞.

Definition 1.1.4. Let X be a set and F : X → R. We define

sup
X

F = sup
x∈X

F(x) = sup{F(x) : x ∈ X}, inf
X

F = inf
x∈X

F(x) = inf{F(x) : x ∈ X}.

Proposition 1.1.5. Let X and Y be sets and f : X × Y → R. Then
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sup
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

sup
x∈X

f (x, y), sup
x∈X

inf
y∈Y

f (x, y) ≤ inf
y∈Y

sup
x∈X

f (x, y).

Definition 1.1.6. A sequence (xn) ⊂ R is increasing if for every n, xn ≤ xn+1. The
sequence (xn) is decreasing if for every n, xn+1 ≤ xn. The sequence (xn) is monotonic
if it is increasing or decreasing.

Definition 1.1.7. The lower limit of (xn) ⊂ R is defined by lim
n→∞

xn = sup
k

inf
n≥k

xn. The

upper limit of (xn) is defined by lim
n→∞

xn = inf
k

sup
n≥k

xn.

Remarks. (a) The sequence ak = inf
n≥k

xn is increasing, and the sequence bk = sup
n≥k

xn

is decreasing.
(b) The lower limit and the upper limit always exist, and

lim
n→∞

xn ≤ lim
n→∞

xn.

Proposition 1.1.8. Let (xn), (yn) ⊂ ]−∞,+∞] be such that −∞ < lim
n→∞

xn and −∞ <
lim
n→∞

yn. Then

lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn).

Let (xn), (yn) ⊂ [−∞,+∞[ be such that lim
n→∞

xn < +∞ and lim
n→∞

yn < +∞. Then

lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn.

Definition 1.1.9. A sequence (xn) ⊂ R converges to x ∈ R if for every ε > 0, there
is m ∈ N such that for every n ≥ m, |xn − x| ≤ ε. We then write lim

n→∞
xn = x.

The sequence (xn) is a Cauchy sequence if for every ε > 0, there exists m ∈ N
such that for every j, k ≥ m, |x j − xk | ≤ ε.

Theorem 1.1.10. The following properties are equivalent:

(a) (xn) converges,
(b) (xn) is a Cauchy sequence,
(c) −∞ < lim

n→∞
xn ≤ lim

n→∞
xn < +∞.

If any and hence all of these properties hold, then lim
n→∞

xn = lim
n→∞

xn = lim
n→∞

xn.

Let us give a sufficient condition for convergence.

Theorem 1.1.11. Every increasing and majorized, or decreasing and minorized,
sequence of real numbers converges.

Remark. Every increasing sequence of real numbers that is not majorized converges
in R to +∞. Every decreasing sequence of real numbers that is not minorized
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converges in R to −∞. Hence, if (xn) is increasing, then

lim
n→∞

xn = sup
n

xn,

and if (xn) is decreasing, then

lim
n→∞

xn = inf
n

xn.

In particular, for every sequence (xn) ⊂ R,

lim
n→∞

xn = lim
k→∞

inf
n≥k

xn

and

lim
n→∞

xn = lim
k→∞

sup
n≥k

xn.

Definition 1.1.12. The series
∞∑

n=0

xn converges, and its sum is x ∈ R if the sequence

k∑

n=0

xn converges to x. We then write
∞∑

n=0

xn = x.

Theorem 1.1.13. The following statements are equivalent:

(a)
∞∑

n=0

xn converges;

(b) lim
j→∞
j<k

k∑

n= j+1

xn = 0.

Theorem 1.1.14. Let (xn) be such that
∞∑

n=0

|xn| converges. Then
∞∑

n=0

xn converges and

∣∣∣∣∣∣∣

∞∑

n=0

xn

∣∣∣∣∣∣∣
≤
∞∑

n=0

|xn|.

1.2 Metric Spaces

Metric spaces were created by Maurice Fréchet in 1906.

Definition 1.2.1. A distance on a set X is a function

X × X → R : (u, v)→ d(u, v)

such that
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(D1) for every u, v ∈ X, d(u, v) = 0⇐⇒ u = v;
(D2) for every u, v ∈ X, d(u, v) = d(v, u);
(D3) (triangle inequality) for every u, v,w ∈ X, d(u,w) ≤ d(u, v) + d(v,w).

A metric space is a set together with a distance on that set.

Examples. 1. Let (X, d) be a metric space and let S ⊂ X. The set S together with d
(restricted to S × S ) is a metric space.

2. Let (X1, d1) and (X2, d2) be metric spaces. The set X1 × X2 together with

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}

is a metric space.
3. We define the distance on the space RN to be

d(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

4. We define the distance on the space C([0, 1]) = {u : [0, 1]→ R : u is continuous}
to be

d(u, v) = max
x∈[0,1]

|u(x) − v(x)|.

Definition 1.2.2. Let X be a metric space. A sequence (un) ⊂ X converges to
u ∈ X if

lim
n→∞

d(un, u) = 0.

We then write lim
n→∞

un = u or un → u, n → ∞. The sequence (un) is a Cauchy

sequence if
lim

j,k→∞
d(u j, uk) = 0.

The sequence (un) is bounded if

sup
n

d(u0, un) < ∞.

Proposition 1.2.3. Every convergent sequence is a Cauchy sequence. Every Cauchy
sequence is a bounded sequence.

Proof. If (un) converges to u, then by the triangle inequality, it follows that

0 ≤ d(u j, uk) ≤ d(u j, u) + d(u, uk)

and lim
j,k→∞

d(u j, uk) = 0.

If (un) is a Cauchy sequence, then there exists m such that for j, k ≥ m, d(u j, uk) ≤
1. We obtain for every n that

d(u0, un) ≤ max{d(u0, u1), . . . , d(u0, um−1), d(u0, um) + 1}. ,-
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Definition 1.2.4. A sequence (unj) is a subsequence of a sequence (un) if for every
j, n j < n j+1.

Definition 1.2.5. Let X be a metric space. The space X is complete if every Cauchy
sequence in X converges. The space X is precompact if every sequence in X contains
a Cauchy subsequence. The space X is compact if every sequence in X contains a
convergent subsequence.

Remark. (a) Completeness allows us to prove the convergence of a sequence
without using the limit.

(b) Compactness will be used to prove existence theorems and to find hidden
uniformities.

The proofs of the next propositions are left to the reader.

Proposition 1.2.6. Every Cauchy sequence containing a convergent subsequence
converges. Every subsequence of a convergent, Cauchy, or bounded sequence
satisfies the same property.

Proposition 1.2.7. A metric space is compact if and only if it is precompact and
complete.

Theorem 1.2.8. The real line R, with the usual distance, is complete.

Example (A noncomplete metric space). We define the distance on X = C([0, 1])
to be

d(u, v) =
∫ 1

0
|u(x) − v(x)| dx.

Every sequence (un) ⊂ X such that

(a) for every x and for every n, un(x) ≤ un+1(x),

(b) sup
n

∫ 1

0
un(x)dx = lim

n→∞

∫ 1

0
un(x)dx < +∞,

is a Cauchy sequence. Indeed, we have that

lim
j,k→∞

∫ 1

0
|u j(x) − uk(x)|dx = lim

j,k→∞
|
∫ 1

0
(u j(x) − uk(x))dx| = 0.

But X with d is not complete, since the sequence defined by

un(x) = min{n, 1/
√

x}

satisfies (a) and (b) but is not convergent. Indeed, assuming that (un) converges to u
in X, we obtain, for 0 < ε < 1, that

∫ 1

ε
|u(x) − 1/

√
x|dx = lim

n→∞

∫ 1

ε
|u(x) − un(x)|dx ≤ lim

n→∞

∫ 1

0
|u(x) − un(x)|dx = 0.

But this is impossible, since u(x) = 1/
√

x has no continuous extension at 0.
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Definition 1.2.9. Let X be a metric space, u ∈ X, and r > 0. The open and closed
balls of center u and radius r are defined by

B(u, r) = {v ∈ X : d(v, u) < r}, B[u, r] = {v ∈ X : d(v, u) ≤ r}.

The subset S of X is open if for all u ∈ S, there exists r > 0 such that B(u, r) ⊂ S.
The subset S of X is closed if X \ S is open.

Example. Open balls are open; closed balls are closed.

Proposition 1.2.10. The union of every family of open sets is open. The intersection
of a finite number of open sets is open. The intersection of every family of closed sets
is closed. The union of a finite number of closed sets is closed.

Proof. The properties of open sets follow from the definition. The properties of
closed sets follow by considering complements. ,-
Definition 1.2.11. Let S be a subset of a metric space X. The interior of S, denoted

by S
◦
, is the largest open set of X contained in S. The closure of S, denoted by S, is the

smallest closed set of X containing S. The boundary of S is defined by ∂S = S \ S
◦
.

The set S is dense if S = X.

Proposition 1.2.12. Let X be a metric space, S ⊂ X, and u ∈ X. Then the following
properties are equivalent:

(a) u ∈ S ;
(b) for all r > 0, B(u, r)∩ S ! φ;
(c) there exists (un) ⊂ S such that un → u.

Proof. It is clear that (b) ⇔ (c). Assume that u " S. Then there exists a closed
subset F of X such that u " F and S ⊂ F. By definition, then exists r > 0 such that
B(u, r)∩S = φ. Hence (b) implies (a). If there exists r > 0 such that B(u, r)∩S = φ,
then F = X \ B(u, r) is a closed subset containing S. We conclude that u " S. Hence
(a) implies (b). ,-
Theorem 1.2.13 (Baire’s theorem). In a complete metric space, every intersection
of a sequence of open dense subsets is dense.

Proof. Let (Un) be a sequence of dense open subsets of a complete metric space X.
We must prove that for every open ball B of X, B ∩

(
∩∞n=0Un

)
! φ. Since B ∩ U0

is open (Proposition 1.2.10) and nonempty (density of U0), there is a closed ball
B[u0, r0] ⊂ B ∩ U0. By induction, for every n, there is a closed ball

B[un, rn] ⊂ B(un−1, rn−1) ∩ Un

such that rn ≤ 1/n. Then (un) is a Cauchy sequence. Indeed, for j, k ≥ n, d(u j, uk) ≤
2/n. Since X is complete, (un) converges to u ∈ X. For j ≥ n, u j ∈ B[un, rn], so that
for every n, u ∈ B[un, rn]. It follows that u ∈ B ∩

(
∩∞n=0Un

)
. ,-
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Example. Let us prove that R is uncountable. Assume that (rn) is an enumeration
of R. Then for every n, the set Un = R \ {rn} is open and dense. But then

⋂∞
n=1 Un is

dense and empty. This is a contradiction.

Definition 1.2.14. Let X be a metric space with distance d and let S ⊂ X. The
subset S is complete, precompact, or compact if S with distance d is complete,
precompact, or compact. A covering of S is a family F of subsets of X such that the
union of F contains S.

Proposition 1.2.15. Let X be a complete metric space and let S ⊂ X. Then S is
closed if and only if S is complete.

Proof. It suffices to use Proposition 1.2.12 and the preceding definition. ,-
Theorem 1.2.16 (Fréchet’s criterion, 1910). Let X be a metric space and let S ⊂
X. The following properties are equivalent:

(a) S is precompact;
(b) for every ε > 0, there is a finite covering of S by balls of radius ε.

Proof. Assume that S satisfies (b). We must prove that every sequence (un) ⊂ S
contains a Cauchy subsequence. Cantor’s diagonal argument will be used. There
is a ball B1 of radius 1 containing a subsequence (u1,n) from (un). By induction, for
every k, there is a ball Bk of radius 1/k containing a subsequence (uk,n) from (uk−1,n).
The sequence vn = un,n is a Cauchy sequence. Indeed, for m, n ≥ k, vm, vn ∈ Bk and
d(vm, vn) ≤ 2/k.

Assume that (b) is not satisfied. There then exists ε > 0 such that S has no finite
covering by balls of radius ε. Let u0 ∈ S. There is u1 ∈ S \ B[u0, ε]. By induction,
for every k, there is

uk ∈ S \
k−1⋃

j=0

B[u j, ε].

Hence for j < k, d(u j, uk) ≥ ε, and the sequence (un) contains no Cauchy
subsequence. ,-

Every precompact space is separable.

Definition 1.2.17. A metric space is separable if it contains a countable dense
subset.

Proposition 1.2.18. Let X and Y be separable metric spaces and let S be a
subset of X.

(a) The space X × Y is separable.
(b) The space S is separable.

Proof. Let (en) and ( fn) be sequences dense in X and Y. The family {(en, fk) : (n, k) ∈
N2} is countable and dense in X × Y. Let
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F = {(n, k) ∈ N2 : k ≥ 1, B(en, 1/k) ∩ S ! φ}.

For every (n, k) ∈ F , we choose fn,k ∈ B(en, 1/k) ∩ S. The family { fn,k : (n, k) ∈ F }
is countable and dense in S. ,-

1.3 Continuity

Let us define continuity using distances.

Definition 1.3.1. Let X and Y be metric spaces. A mapping u : X → Y is
continuous at y ∈ X if for every ε > 0, there exists δ > 0 such that

sup{dY (u(x), u(y)) : x ∈ X, dX(x, y) ≤ δ} ≤ ε. (∗)

The mapping u is continuous if it is continuous at every point of X. The mapping u
is uniformly continuous if for every ε > 0, there exists δ > 0 such that

ωu(δ) = sup{dY (u(x), u(y)) : x, y ∈ X, dX(x, y) ≤ δ} ≤ ε.

The function ωu is the modulus of continuity of u.

Remark. It is clear that uniform continuity implies continuity. In general, the
converse is false. We shall prove the converse when the domain of the mapping
is a compact space.

Example. The distance d : X × X → R is uniformly continuous, since

|d(x1, x2) − d(y1, y2)| ≤ 2 max{d(x1, y1), d(x2, y2)}.

Lemma 1.3.2. Let X and Y be metric spaces, u : X → Y, and y ∈ X. The following
properties are equivalent:

(a) u is continuous at y;
(b) if (yn) converges to y in X, then (u(yn)) converges to u(y) in Y.

Proof. Assume that u is not continuous at y. Then there is ε > 0 such that for every
n, there exists yn ∈ X such that

dX(yn, y) ≤ 1/n and dY(u(yn), u(y)) > ε.

But then (yn) converges to y in X and (u(yn)) is not convergent to u(y).
Let u be continuous at y and (yn) converging to y. Let ε > 0. There exists δ > 0

such that (∗) is satisfied, and there exists m such that for every n ≥ m, dX(yn, y) ≤ δ.
Hence for n ≥ m, dY(u(yn), u(y)) ≤ ε. Since ε > 0 is arbitrary, (u(yn)) converges
to u(y). ,-
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Proposition 1.3.3. Let X and Y be metric spaces, K a compact subset of X, and
u : X → Y a continuous mapping, constant on X\K. Then u is uniformly continuous.

Proof. Assume that u is not uniformly continuous. Then there is ε > 0 such that for
every n, there exist xn ∈ X and yn ∈ K such that

dX(xn, yn) ≤ 1/n and dY (u(xn), u(yn)) > ε.

By compactness, there is a subsequence (ynk ) converging to y. Hence (xnk ) converges
also to y. It follows from the continuity of u at y and from the preceding lemma that

ε ≤ lim
k→∞

dY (u(xnk), u(ynk))

≤ lim
k→∞

dY (u(xnk), u(y)) + lim
k→∞

dY(u(y), u(ynk)) = 0.

This is a contradiction. ,-
Lemma 1.3.4. Let X be a set and F : X → ]−∞,+∞] a function. Then there exists
a sequence (yn) ⊂ X such that lim

n→∞
F(yn) = inf

X
F. The sequence (yn) is called a

minimizing sequence.

Proof. If c = inf
X

F ∈ R, then for every n ≥ 1, there exists yn ∈ X such that

c ≤ F(yn) ≤ c + 1/n.

If c = −∞, then for every n ≥ 1, there exists yn ∈ X such that

F(yn) ≤ −n.

In both cases, the sequence (yn) is a minimizing sequence. If c = +∞, the result is
obvious. ,-
Proposition 1.3.5. Let X be a compact metric space and let F : X → R be a
continuous function. Then F is bounded, and there exist y, z ∈ X such that

F(y) = min
X

F, F(z) = max
X

F.

Proof. Let (yn) ⊂ X be a minimizing sequence: lim
n→∞

F(yn) = inf
X

F. There is a

subsequence (ynk ) converging to y. We obtain

F(y) = lim
k→∞

F(ynk ) = inf
X

F.

Hence y minimizes F on X. To prove the existence of z, consider −F. ,-
The preceding proof suggests a generalization of continuity.
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Definition 1.3.6. Let X be a metric space. A function F : X → ]−∞,+∞] is lower
semicontinuous (l.s.c.) at y ∈ X if for every sequence (yn) converging to y in X,

F(y) ≤ lim
n→∞

F(yn).

The function F is lower semicontinuous if it is lower semicontinuous at every point
of X. A function F : X → [−∞,+∞[ is upper semicontinuous (u.s.c.) at y ∈ X if for
every sequence (yn) converging to y in X,

lim
n→∞

F(yn) ≤ F(y).

The function F is upper semicontinuous if it is upper semicontinuous at every point
of X.

Remarks. A function F : X → R is continuous at y ∈ X if and only if F is both
l.s.c. and u.s.c. at y.

Let us generalize the preceding proposition.

Proposition 1.3.7. Let X be a compact metric space and let F : X →] − ∞,∞] be
an l.s.c. function. Then F is bounded from below, and there exists y ∈ Y such that

F(y) = min
X

F.

Proof. Let (yn) ⊂ X be a minimizing sequence. There is a subsequence (ynk )
converging to y. We obtain

F(y) ≤ lim
k→∞

F(ynk ) = inf
X

F.

Hence y minimizes F on X. ,-
When X is not compact, the situation is more delicate.

Theorem 1.3.8 (Ekeland’s variational principle). Let X be a complete metric
space and let F : X → ]−∞,+∞] be an l.s.c. function such that c = infX F ∈ R.
Assume that ε > 0 and z ∈ X are such that

F(z) ≤ inf
X

F + ε.

Then there exists y ∈ X such that

(a) F(y) ≤ F(z);
(b) d(y, z) ≤ 1;
(c) for every x ∈ X \ {y}, F(y) − ε d(x, y) < F(x).

Proof. Let us define inductively a sequence (yn). We choose y0 = z and

yn+1 ∈ S n = {x ∈ X : F(x) ≤ F(yn) − ε d(yn, x)}
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such that

F(yn+1) − inf
S n

F ≤ 1
2

[
F(yn) − inf

S n

F
]
. (∗)

Since for every n,

ε d(yn, yn+1) ≤ F(yn) − F(yn+1),

we obtain

c ≤ F(yn+1) ≤ F(yn) ≤ F(y0) = F(z),

and for every k ≥ n,

ε d(yn, yk) ≤ F(yn) − F(yk). (∗∗)
Hence

lim
n→∞
k≥n

d(yn, yk) = 0.

Since X is complete, the sequence (yn) converges to y ∈ X. Since F is l.s.c., we have

F(y) ≤ lim
n→∞

F(yn) ≤ F(z).

It follows from (∗∗) that for every n,

ε d(yn, y) ≤ F(yn) − F(y).

In particular, for every n, y ∈ S n, and for n = 0,

ε d(z, y) ≤ F(z) − F(y) ≤ c + ε − c = ε.

Finally, assume that

F(x) ≤ F(y) − ε d(x, y).

The fact that y ∈ S n implies that x ∈ S n. By (∗), we have

2F(yn+1) − F(yn) ≤ inf
S n

F ≤ F(x),

so that
F(y) ≤ lim

n→∞
F(yn) ≤ F(x).

We conclude that x = y, because

ε d(x, y) ≤ F(y) − F(x) ≤ 0. ,-

Definition 1.3.9. Let X be a set. The upper envelope of a family of functions F j :
X → ]−∞,∞], j ∈ J, is defined by

(
sup
j∈J

F j

)
(x) = sup

j∈J
F j(x).
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Proposition 1.3.10. The upper envelope of a family of l.s.c. functions at a point of
a metric space is l.s.c. at that point.

Proof. Let F j : X → ] − ∞,+∞] be a family of l.s.c. functions at y. By
Proposition 1.1.5, we have, for every sequence (yn) converging to y,

sup
j

F j(y) ≤ sup
j

lim
n→∞

F j(yn) = sup
j

sup
k

inf
m

F j(ym+k)

≤ sup
k

inf
m

sup
j

F j(ym+k) = lim
n→∞

sup
j

F j(yn).

Hence sup
j

F j is l.s.c. at y. ,-

Proposition 1.3.11. The sum of two l.s.c. functions at a point of a metric space is
l.s.c. at this point.

Proof. Let F,G : X → ]−∞,∞] be l.s.c. at y. By Proposition 1.1.10, we have for
every sequence (yn) converging to y that

F(y) +G(y) ≤ lim
n→∞

F(yn) + lim
n→∞

G(yn) ≤ lim
n→∞

(F(yn) +G(yn)).

Hence F +G is l.s.c. at y. ,-
Proposition 1.3.12. Let F : X → ]−∞,∞]. The following properties are equivalent:

(a) F is l.s.c.;
(b) for every t ∈ R, {F > t} = {x ∈ X : F(x) > t} is open.

Proof. Assume that F is not l.s.c. Then there exists a sequence (xn) converging to x
in X and there exists t ∈ R such that

lim
n→∞

F(xn) < t < F(x).

Hence for every r > 0, B(x, r) # {F > t}, and {F > t} is not open.
Assume that {F > t} is not open. Then there exists a sequence (xn) converging to

x in X such that for every n,

F(xn) ≤ t < F(x).

Hence lim
n→∞

F(xn) < F(x) and F is not l.s.c. at x. ,-

Theorem 1.3.13. Let X be a complete metric space and let (F j : X → R) j∈J be a
family of l.s.c. functions such that for every x ∈ X,

sup
j∈J

F j(x) < +∞. (∗)
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Then there exists a nonempty open subset V of X such that

sup
j∈J

sup
x∈V

F j(x) < +∞.

Proof. By Proposition 1.3.10, the function F = sup
j∈J

F j is l.s.c. The preceding

proposition implies that for every n, Un = {F > n} is open. By (∗),
∞⋂

n=1

Un = φ.

Baire’s theorem implies the existence of n such that Un is not dense. But then
{F ≤ n} contains a nonempty open subset V . ,-
Definition 1.3.14. The characteristic function of A ⊂ X is defined by

χA(x) = 1, x ∈ A,
= 0, x ∈ X \ A.

Corollary 1.3.15. Let X be a metric space and A ⊂ X. Then

A is open⇐⇒ χA is l.s.c., A is closed⇐⇒ χA is u.s.c.

Definition 1.3.16. Let S be a nonempty subset of a metric space X. The distance of
x to S is defined on X by d(x, S ) = inf

s∈S
d(x, s).

Proposition 1.3.17. The function “distance to S ” is uniformly continuous on X.

Proof. Let x, y ∈ X and s ∈ S. Since d(x, s) ≤ d(x, y) + d(y, s), we obtain

d(x, S ) ≤ inf
s∈S

(d(x, y) + d(y, s)) = d(x, y) + d(y, S ).

We conclude by symmetry that |d(x, S ) − d(y, S )| ≤ d(x, y). ,-
Definition 1.3.18. Let Y and Z be subsets of a metric space. The distance from Y
to Z is defined by d(Y, Z) = inf{d(y, z) : y ∈ Y, z ∈ Z}.
Proposition 1.3.19. Let Y be a compact subset and let Z be a closed subset of a
metric space X such that Y ∩ Z = φ. Then d(Y, Z) > 0.

Proof. Assume that d(Y, Z) = 0. Then there exist sequences (yn) ⊂ Y and (zn) ⊂ Z
such that d(yn, zn) → 0. By passing, if necessary, to a subsequence, we can assume
that yn → y. But then d(y, zn)→ 0 and y ∈ Y ∩ Z. ,-
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1.4 Convergence

Definition 1.4.1. Let X be a set and let Y be a metric space. A sequence of mappings
un : X → Y converges simply to u : X → Y if for every x ∈ X,

lim
n→∞

d(un(x), u(x)) = 0.

The sequence (un) converges uniformly to u if

lim
n→∞

sup
x∈X

d(un(x), u(x)) = 0.

Remarks. (a) Clearly, uniform convergence implies simple convergence.
(b) The converse is false in general. Let X = ]0, 1[, Y = R and un(x) = xn. The

sequence (un) converges simply but not uniformly to 0.
(c) We shall prove a partial converse due to Dini.

Notation. Let un : X → R be a sequence of functions. We write un ↑ u when for
every x and for every n, un(x) ≤ un+1(x) and

u(x) = sup
n

un(x) = lim
n→∞

un(x).

We write un ↓ u when for every x and every n, un+1(x) ≤ un(x) and

u(x) = inf
n

un(x) = lim
n→∞

un(x).

Theorem 1.4.2 (Dini). Let X be a compact metric space and let un : X → R be a
sequence of continuous functions such that

(a) un ↑ u or un ↓ u;
(b) u : X → R is continuous.

Then (un) converges uniformly to u.

Proof. Assume that

0 < lim
n→∞

sup
x∈X
|un(x) − u(x)| = inf

n≥0
sup
x∈X
|un(x) − u(x)|.

There exist ε > 0 and a sequence (xn) ⊂ X such that for every n,

ε ≤ |un(xn) − u(xn)|.

By monotonicity, we have for 0 ≤ m ≤ n that

ε ≤ |um(xn) − u(xn)|.
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By compactness, there exists a sequence (xnk ) converging to x. By continuity, we
obtain for every m ≥ 0,

ε ≤ |um(x) − u(x)|.

But then (un) is not simply convergent to u. ,-
Example (Dirichlet function). Let us show by an example that two simple limits
suffice to destroy every point of continuity. Dirichlet’s function

u(x) = lim
m→∞

lim
n→∞

(cosπm!x)2n

is equal to 1 when x is rational and to 0 when x is irrational. This function
is everywhere discontinuous. Let us prove that uniform convergence preserves
continuity.

Proposition 1.4.3. Let X and Y be metric spaces, y ∈ X, and un : X → Y a
sequence such that

(a) (un) converges uniformly to u on X;
(b) for every n, un is continuous at y.

Then u is continuous at y.

Proof. Let ε > 0. By assumption, there exist n and δ > 0 such that

sup
x∈X

d(un(x), u(x)) ≤ ε and sup
x∈B[y,δ]

d(un(x), un(y)) ≤ ε.

Hence for every x ∈ B[y, δ],

d(u(x), u(y)) ≤ d(u(x), un(x)) + d(un(x), un(y)) + d(un(y), u(y)) ≤ 3ε.

Since ε > 0 is arbitrary, u is continuous at y. ,-
Definition 1.4.4. Let X be a set and let Y be a metric space. On the space of
bounded mappings from X to Y,

B(X, Y) = {u : X → Y : sup
x,y∈X

d(u(x), u(y)) < ∞},

we define the distance of uniform convergence

d(u, v) = sup
x∈X

d(u(x), v(x)).

Proposition 1.4.5. Let X be a set and let Y be a complete metric space. Then the
space B(X, Y) is complete.

Proof. Assume that (un) is such that

lim
j,k→∞

sup
x∈X

d(u j(x), uk(x)) = 0.
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Then for every x ∈ X,

lim
j,k→∞

d(u j(x), uk(x)) = 0,

and the sequence (un(x)) converges to a limit u(x). Let ε > 0. There exists m such
that for j, k ≥ m and x ∈ X,

d(u j(x), uk(x)) ≤ ε.
By continuity of the distance, we obtain, for k ≥ m and x ∈ X,

d(u(x), uk(x)) ≤ ε.

Hence for k ≥ m,

sup
x∈X

d(u(x), uk(x)) ≤ ε.

Since ε > 0 is arbitrary, (un) converges uniformly to u. It is clear that u is bounded.
,-

Corollary 1.4.6 (Weierstrass test). Let X be a set and let un : X → R be a
sequence of functions such that

c =
∞∑

n=1

sup
x∈X
|un(x)| < +∞.

Then the series converges absolutely and uniformly on X.

Proof. It is clear that for every x ∈ X,
∞∑

n=1

|un(x)| ≤ c < ∞. Let us write v j =

j∑

n=1

un.

By assumption, we have for j < k that

sup
x∈X
|v j(x) − vk(x)| = sup

x∈X
|

k∑

n= j+1

un(x)| ≤
k∑

n= j+1

sup
x∈X
|un(x)|→ 0, j→ ∞.

Hence lim
j,k→∞

d(v j, vk) = 0, and (v j) converges uniformly on X. ,-

Example (Lebesgue function). Let us show by an example that a uniform limit
suffices to destroy every point of differentiability. Let us define

f (x) =
∞∑

n=1

1
2n sin 2n2

x =
∞∑

n=1

un(x).

Since for every n, sup
x∈R
|un(x)| = 2−n, the convergence is uniform, and the function f

is continuous on R. Let x ∈ R and h± = ±π/2m2+1. A simple computation shows
that for n ≥ m + 1, un(x + h±) − un(x) = 0 and
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um(x + h±) − um(x)
h±

=
2m2−m+1

π
[cos 2m2

x ∓ sin 2m2
x].

Let us choose h = h+ or h = h− such that the absolute value of the expression in
brackets is greater than or equal to 1. By the mean value theorem,

∣∣∣∣∣∣∣

m−1∑

n=1

un(x + h) − un(x)
h

∣∣∣∣∣∣∣
≤

m−1∑

n=1

2n2−n < 2(m−1)2−(m−1)+1 = 2m2−3m+3.

Hence

2m2−m+1

π
− 2m2−3m+3 ≤

∣∣∣∣∣∣∣

m∑

n=1

un(x + h) − un(x)
h

∣∣∣∣∣∣∣
=

∣∣∣∣∣
f (x + h) − f (x)

h

∣∣∣∣∣ ,

and for every ε > 0,

sup
0<|h|<ε

∣∣∣∣∣
f (x + h) − f (x)

h

∣∣∣∣∣ = +∞.

The Lebesgue function is everywhere continuous and nowhere differentiable.
Uniform convergence of the derivatives preserves differentiability.

1.5 Comments

Our main references on functional analysis are the three classical works

– S. Banach, Théorie des opérations linéaires ([6]),
– F. Riesz and B.S. Nagy, Leçons d’analyse fonctionnelle ([62]),
– H. Brezis, Analyse fonctionnelle, théorie et applications ([8]).

The proof of Ekeland’s variational principle [20] in Sect. 1.3 is due to Crandall [21].
The proof of Baire’s theorem, Theorem 1.2.13, depends implicitly on the axiom

of choice. We need only the following weak form.

Axiom of dependent choices. Let S be a nonempty set and let R ⊂ S × S be such
that for each a ∈ S, there exists b ∈ S satisfying (a, b) ∈ S. Then there is a sequence
(an) ⊂ S such that (an−1, an) ∈ R, n = 1, 2, . . ..

We use the notation of Theorem 1.2.13. On

S =
{
(m, u, r) : m ∈ N, u ∈ X, r > 0, B(u, r) ⊂ B

}
,

we define the relation R by

(
(m, u, r) , (n, v, s)

) ∈ R
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if and only if n = m + 1, s ≤ 1/n, and

B[v, s] ⊂ B(u, r) ∩ (
n⋂

j=1

U j).

Baire’s theorem follows then directly from the axiom of dependent choices.
In 1977, C.E. Blair proved that Baire’s theorem implies the axiom of dependent

choices.
The reader will verify that the axiom of dependent choices is the only principle

of choice that we use in this book.

1.6 Exercises for Chap. 1

1. Every sequence of real numbers contains a monotonic subsequence. Hint: Let

E = {n ∈ N : for every k ≥ n, xk ≤ xn}.

If E is infinite, (xn) contains a decreasing subsequence. If E is finite, (xn)
contains an increasing subsequence.

2. Every bounded sequence of real numbers contains a convergent subsequence.
3. Let (Kn) be a decreasing sequence of compact sets and U an open set in a metric

space such that
∞⋂

n=1

Kn ⊂ U. Then there exists n such that Kn ⊂ U.

4. Let (Un) be an increasing sequence of open sets and K a compact set in a metric

space such that K ⊂
∞⋃

n=1

Un. Then there exists n such that K ⊂ Un.

5. Define a sequence (S n) of dense subsets of R such that
∞⋂

n=1

S n = φ. Define a

family (U j) j∈J of open dense subsets of R such that
⋂

j∈J

U j = φ.

6. In a complete metric space, every countable union of closed sets with empty
interior has an empty interior. Hint: Use Baire’s theorem.

7. Dirichlet’s function is l.s.c. on R \Q and u.s.c. on Q.
8. Let (un) be a sequence of functions defined on [a, b] and such that for every n,

a ≤ x ≤ y ≤ b⇒ un(x) ≤ un(y).

Assume that (un) converges simply to u ∈ C([a, b]). Then (un) converges
uniformly to u.

9. (Banach fixed-point theorem.) Let X be a complete metric space and let f :
X → X be such that
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Lip( f ) = sup{d( f (x), f (y))/d(x, y) : x, y ∈ X, x ! y} < 1.

Then there exists one and only one x ∈ X such that f (x) = x. Hint: Consider a
sequence defined by x0 ∈ X, xn+1 = f (xn).

10. (McShane’s extension theorem.) Let Y be a subset of a metric space X and let
f : Y → R be such that

λ = Lip( f ) = sup{| f (x) − f (y)|/d(x, y) : x, y ∈ Y, x ! y} < +∞.

Define on X
g(x) = sup{ f (y) − λd(x, y) : y ∈ Y}.

Then g
∣∣∣
y = f and

Lip(g) = sup{|g(x) − g(y)/d(x, y) : x, y ∈ X, x ! y} = Lip( f ).

11. (Fréchet’s extension theorem.) Let Y be a dense subset of a metric space X and
let f : Y → [0,+∞] be an l.s.c. function. Define on X

g(x) = inf
{

lim
n→∞

f (xn) : (xn) ⊂ Y and xn → x
}
.

Then g is l.s.c., g
∣∣∣
Y
= f , and for every l.s.c. function h : X → [0,+∞] such that

h
∣∣∣
Y
= f , h ≤ g.

12. Let X be a metric space and u : X → [0,+∞] an l.s.c. function such that
u $ +∞. Define

un(x) = inf{u(y) + n d(x, y) : y ∈ X}.

Then un ↑ u, and for every x, y ∈ X, |un(x) − un(y)| ≤ n d(x, y).
13. Let X be a metric space and v : X → ]−∞,∞]. Then v is l.s.c. if and only if

there exists a sequence (vn) ⊂ C(X) such that vn ↑ v. Hint: Consider the function
u = π

2 + tan−1v.
14. (Sierpiński, 1921.) Let X be a metric space and u : X → R. The following

properties are equivalent:

(a) There exists (un) ⊂ C(X) such that for every u ∈ X,
∞∑

n=1

|un(x)| < ∞ and

u(x) =
∞∑

n=1

un(x).

(b) There exists f , g : X → [0,+∞[ l.s.c. such that for every x ∈ X, u(x) =
f (x) − g(x).
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15. We define

X = {u :]0, 1[→ R : u is bounded and continuous}.

We define the distance on X to be

d(u, v) = sup
x∈]0,1[

|u(x) − v(x)|.

What are the interior and the closure of

Y = {u ∈ X : u is uniformly continuous}?


