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Decoupling from local equilibrium;

* Electroweak and week Interaction rates;
* Particle distributions after decoupling;

* Decoupling and Freeze-Out

Neutrino decoupling;
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Cosmic Neutrino Background;
Beyond thermal equilibrium: Boltzmann Equation
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Decoupling from equilibrium

Equilibrium condition, interaction timescale, and interaction rate:

Thermal equilibrium of a fluid species can be established if the interaction
rate, ['(t), is larger than the expansion rate, H(t) = a/a :

I'(t) » H(t)

The timescale for particle interactions, t. = 1/T, is therefore much shorter
than the characteristic timescale of expansion, ty = 1/H:

The interaction rate is the number of interaction events of the species per
unit of time. It is given by:

I' = nov

where n is the number density of target particles, o, is the interaction cross
section and, v, is the relative speed between particles.

The Sl unit of I' “"one over second”: [I'] = [n][c][v] = s~ !



Decoupling from equilibrium

Equilibrium condition, interaction timescale, and interaction rate:
For example, in the interaction process: 1 + 2 <+ 3 + 4 one has:

* [ = n,ov,, is the iteration rate of the particle species 1
* I, = ny0v,, is the iteration rate of the particle species 2 (v,1=v;3)
* I3 = nyuov3, is the iteration rate of the particle species 3
T, = nzov,5 is the iteration rate of the particle species 4 (v,3=V3,)

Reverting the equilibrium condition (I' > H), one should expect that a given
particle specie has conditions to decouple from the thermal bath when:

I

-1
H
For a relativistic fluid the expansion rate of the universe reads (Sl):
G he he 72
H2 = — = — = — *T4
3 P73z T 3M2 307
where, My is the Planck Mass:
_ E L 18
My =4/ g =24 x 10 GeV 5

Decoupling from thermal equilibrium

Equilibrium condition, interaction timescale, and interaction rate:

From this, one obtains (in natural units):

he 2 g\ 1/2 T?
H= [ tog T =r ()77
\/3M§1 309 "

Let us now estimate the interaction rate, [' = nov, for the fluid of relativistic
particles:

* Since particles are relativistic: v ~ ¢ = 1

* The number density in equilibrium is: n; ~ %‘;’) g;T3 T3

* The interaction cross section will depend on the type of interaction and
mediators. For interactions mediated by bosons of mass my:

a%(/Tz, T > mx (photon, massless bosons)
ox —
ag(:’ﬂ/’m%(, T K< mx (massive bosons)

where a’y is the generalized structure constant with the gauge bosen X



Decoupling from thermal equilibrium

Equilibrium condition, interaction timescale, and interaction rate:
So the equilibrium condition ratio, I'/H, becomes:

I no % g; T3 {a?}( /T? T > mx (photon, massless bosons)

— o~ = X
HoH ()7 12/M,

g a(T?/m% T < myx (massive bosons)

Implications:
1. At high temperature (T’ = 100 GeV - the electroweak symmetry breaking

my+ z y~100GeV) all interactions are mediated by massless Gauge
bosons (y, W, Z, g). For the electroweak interaction, a? = 0.01, this gives:

I o®M, 10'6GeV

H f§ i

So thermal equilibrium is possible via electroweak interactions for
100 GeV S T < 106 GeV

Above the 10'® GeV (the Grand Unification Theory) scale the Universe is
not able to acquire an equilibrium state via the electroweak interaction,
Actually it may have never been in thermal equilibrium!

Decoupling from thermal equilibrium

Equilibrium condition, interaction timescale, and interaction rate:
So the equilibrium condition ratio, I'/H, becomes:

~Y f—

> e
H H Q0 (3_6)1/2 TQ/Mpl

I %giTs {0@( /T T > mx (photon, massless bosons)

a3 T?/m5% T < mx (massive bosons)

2. Atlower temperature (T < 100 GeV — below the electroweak symmetry
breaking) the weak interaction between relativistic particles is mediated

by massive bosons, my. One has:

I'  o2M,T? ( T )3

H™ M3 1 MeV

Which drops below unity T < 1 MeV.

So relativistic particles interacting via weak force (e.g. neutrinos) are able
to remain in equilibrium with the fluid in the temperature range:

1MeV <T <100 GeV

Below this temperature they should decouple from the fluid.



Thermal history of the Universe:

Key events in the thermal history of the universe

Event time ¢  redshift 2 temperature T’

: 34 ¢ - . . .
Inflation 1078 (1) Electroweak interacting species
Baryogenesis ? ? 2t may attain thermal equilibrium up to

” . the GUT 1016GeV scale
EW phase transition 20 ps 10%° 100 GeV =
QCD phase transition 20 ps 102 150 MeV Particle species interacting via the
— weak force have conditions to
Dark matter freeze-out it T ? . e s
attain thermal equilibrium
Neutrino decoupling ls 6 x 107 1 MeV -
Electron-positron annihilation 6s 2:%10° 500 keV
Big Bang nucleosynthesis 3 min 4 %108 100 keV
Matter-radiation equality 60 kyr 3400 0.75 eV
Recombination 260-380 kyr 1100-1400 0.26-0.33 eV
Photon decoupling 380 kyr  1000-1200 0.23-0.28 eV
Reionization 100-400 Myr 11-30 2.6-7.0 meV
Dark energy-matter equality 9 Gyr 0.4 0.33 meV
9
Present 13.8 Gyr 0 0.24 meV

Decoupling from thermal equilibrium

Particle distributions after decoupling

Let us now study what happens to the phase space distribution of a given particle
species, f (x,p,t > tp), after that species decouples from the fluid at time tp.

The number of particles within the volume element dV d3p around the point (x, p) of
the phase space is:

AN = f(z,p,t)dVd’p

If no particles are created or destroyed after decoupling, the left hand side of this
equation remains constant. On the right hand side, we know that the volume element
element scales with a3. For the momentum we have:

E2 — m2 _|_p2
 For massless particles (e.g. radiation) momentum scales as energy;

 For massive (non-relativistic) particles we also have that momentum scales as
energy (m is the rest mass of the particle species).

So, for massless or massive particles:
px E=hc/Aoxa!

10




Decoupling from thermal equilibrium

Particle distributions after decoupling

Let us now study what happens to the phase space distribution of a given particle
species, f (x,p,t > tp), after that species decouples from the fluid at time tp.

The number of particles within the volume element dV d3p around the point (x, p) of
the phase space is:

e DD

Is constant if no particles are 3 a
created /destroyed after decoupling a a

The shape of the distribution function should not change after decoupling...
However f depends on x and p, so it's argument scales with time as a~. We can then
relate the momentum at decoupling, pp , with the momentum after decoupling, p,
as:

—1
D ap ap PD a a
i a a p a— ap

11

where ap, is the scale factor at decoupling a = a(tp).

Decoupling from thermal equilibrium

Particle distributions after decoupling

So the distribution function at decoupling, ¢, can be written as

ap a
f(zp,pp,tp) = fla—,p—,tp)
a ap

The right-hand side of the equation is the distribution function after decoupling.
Dropping x (because f is independent of position) one has:

a(t)

fl,pt = tp) = f(p(t)" =t = tp)

So, depending on the relativistic state of particles, one has two possibilities:

» The species decouples while is relativistic (e.g. massless neutrinos)

g 1 g 1
273 exp(pajfﬁ) +1 2m% exp(Z)£1
D

f(p7t2tD) —

So the functional form of f remains the same if T scales as:

T(t) = Tp j(’;) =7 szm (1+2) 12




Decoupling from thermal equilibrium

Particle distributions after decoupling

We therefore conclude that the temperature of decoupled relativistic species
also scales with the inverse of the scale factor (T = T ap/a) as it happens

for relativistic species in thermal equilibrium (T, oc g/ a™1).

neutrino decoupling

However when a species
decouples, g,s, decreases
and therefore the
temperature of the fluid, T,
decreases at a lower rate
then the temperatures

of the decoupled species.

electron-positron
annihilation

1010 10 1078

13
a

Decoupling from thermal equilibrium

Particle distributions after decoupling
The number density of a relativistic species after decoupling scales as:

_ C(3)Tp (ap\? B ap\?
e a (12 [ ()

» The species decouples while it is non-relativistic (m > T)

a(t) ) ~ e < Vipajap)® +m? + MD>

t>tp) = —
f(SU,p, = D) f<paD’D o T,

2 2
~ i P L)y B
N 27’(’3 *xPp ( QmTD <GD> TD + TD>

this distribution has the same functional form of a distribution of non-relativistic
particles with temperature and chemical potential given by:

T(t)
Ty

10 =1p (2] = 24 22| ) = m+ (o = m)




Decoupling from thermal equilibrium

Particle distributions after decoupling

Using these scalings in the expressions for the number density of a non-
relativistic species one obtains that, after decoupling the number density scales

as.

ni:gi(

2m

mTD
21

) (

ap
a

3/2
m_T> o~ (m—)/T

)3 o~ (m—pp)/Tp

this means that if a particle species decouples when it is non-relativistic, its

number density also scales as:

ap

)

n; = N4 D <

15
Particle distributions after decoupling
Example: photons (relativistic)
Wavelength (cm) T Black-body spectrum
—_ 300 30 3 0.3 0.03 10
g 10-14 T 8
B 107k CMB "’8‘@K ’ 5
N\ —18 [ 108 £
E o " 3000 K ;E,
? 1o - 1-B o* / o' i
w s '\/,/ ° Hs:uoz;l 3asec 1 §
% ES i i/ : !Jﬁﬂ‘)‘ilnogrn 100 / AOK F1oo g
~ 1079l « COBE/DMR - / / 500 K ©
> / — COBE,/FIRAS / / oK [, 3
g 0 I T 2
B 107 s s / / Ty 700 K Eoor
- 0.1 1 10 100 1000 00101 ”1 T '”10 T ”1Ioo
Frequency (GHz) Wavelength, pm
Ty,o = 2.726 Ty,D = 2.726 (1 + zp) ~ 3000 K
T, T,
Relativistic: ... 0 Non-Relativistic: 0
2 0 .
ap ¢ Tp ap S Ip -
T =T = 1+ 2 T =Tp | — | =i—=(1 2
O=Too®) ST s T ) =Tp (a(t)> [z T2




Decoupling from thermal equilibrium

Decoupling and Freeze-out

As massive particles decouple their abundances are Boltzmann suppressed by e=™/T.
While relativistic, for T >> m, one should expect that n; /T2 is constant (because n; «< T3).
However these predictions assume that the decoupling species is always in equilibrium as
its density is being supressed. But this hypothesis cannot hold at very low temperatures,

T « m, because particle abundances become too small to be able to achieve equilibrium.

relativistic non-relativistic )
:l I I | G T O 3 ) T T | N O S L | At hlgh enough m/T one
! ; ,' should expect that the real
L reeze-out — .
T~H number density departures from

the equilibrium prediction:

3/2
mT —(m
neq:g<2ﬂ_> € (m/T

In fact beyond m/T larger
: than ~10 the ratio nyon eq/T>
, equilibrium 7  becomes constant again. The
L. g - density, Npon_eq, is the non-
R L LA equilibrium Freeze-Out

1 10 100 density.

!
n .
T:{

1 A
L : 5 relic density _
I L )

Decoupling from thermal equilibrium

Neutrino decoupling:

Neutrinos are coupled to the thermal bath via weak interaction processes like:
Ve+ e ¢ e+ et +e” & 7+
e 4 B LD
At 10 MeV, photons, neutrinos, electrons (and their antiparticles) are the
only remaining particles of the relativistic fluid. Then, g,,reads:

g*:2+z(2><2+3x2)=10.75
Y 8 eft v

Using this in the Friedman equations

/ / 2
Pl

Combining with the expression for I one concludes that neutrinos decouple
below at about 1 MeV (accurate calculation yields T = 0.8 MeV) .

I  o?M,T? T NF
H M{}V 1 MeV 18




Decoupling from thermal equilibrium

Electron-positron annihilation
Electron-positron annihilation occurs soon after the neutrino decoupling. In fact, as
soonasT < 1.022 MeV electron-positron pair creation becomes less effective, and

the interaction

et +e & v+

progressively moves to the right (more pairs e~/ et being destroyed than created).

9+«

100

10

) I

106.75

T TTTTT] T T T TTTTT]

T

it

[ T
w*,2°% H°

bb

-.-_¢ decoupling

| T | T | T ‘ T

Neutrino * Neutrino decoupling occurs
3 around T ~ 0.8 MeV;

« e~/ e* annihilation occurs
* 7 around T ~ 0.5 MeV, with a
transition 0.1 S T/MeV < 1

* But these processes partially
overlap: neutrino decoupling
is not over when electro-

- positron annihilation starts

QCD

10°

107

10°

10? 10 | 0.1
T [MeV]
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Decoupling from thermal equilibrium

Electron-positron annihilation
Let us now compute the effective degrees of freedom of relativistic particles before
neutrino decoupling and after electron-positron annihilation.

Before neutrino decoupling (T = 1 MeV):
Relativistic particles species are the ¥, e* and v, so:

7
gss = 9o =2+ (2% 2+ 3% 2) = 10.75

After electron-positron annihilation (T < 0.5 MeV):
Relativistic particles species are just the y and v, (note that neutrinos are already
decoupled but they remain relativistic and therefore contribute to the entropy):

7 T,\"
g« s :2+—(3 X 2) (—)

7 T,\*
L=24 - 2) [ =~
g -|-8(3>< )(Tw)

8 T,

after

after

Since entropy is conserved one has:

2m

S = sV = ~—g.5(T,a)* = const. 20

45



Decoupling from thermal equilibrium

Electron-positron annihilation

So one can write:

g*S(Tﬁ/a)%efore = g*S(T"/a)gfter <

7 7 Tl/ °
= (2 + §(2 X243 X% 2)) (Tya)%efore = (2 + 5(3 X 2) (T_) ) (T’Ya)gfter A
'Y

after
43 7 Tl, 3 Aafter ’

But after decoupling neutrino temperature scales as: T, pefore /Ty after = Qafter/Gbefore-
Moreover, since T, pefore = Ty, before, ON€ has:

4 7 TV ’ Ty,b for 3
_(T’Y)lg)efore =2+ —(3 X 2) (_) (T’Y)zfter ( 2 e) =
! 8 7/ after Tv,after

NS

43 7 '\ 2 7\°3
Z(Tv,before)“"” =2+ §(3 x 2) (-) (TJ) (T, bofore)” &
Y/ after v/ after

43 T\° 7
— (T oresz 2 1 S 2 T ore3
< 4( ’y/’be( ) <TV>after+8(3X ) ( ql/’ve{ ) - -

Decoupling from thermal equilibrium

Electron-positron annihilation
From which one concludes that:

43 7.\° 7
—=2<i> +-3x2) &
4 TV after 8

o (DY _1(4_ 2\ _1
T, ) e 2\4 4) 4

So after e~/ e™ annihilation the neutrino temperature is somewhat smaller than the

the photon temperature:
4\ 1/3
Ty - e T

With this result one can estimate the relativistic degrees of freedom for T < 0.5 MeV:

4
g*s=2+zx3x2<—> =3.91,

8 i |
7 4N
g*=2+§x3x2<ﬁ> = 3.36

22
Which explains the difference between g, and g, at low temperatures



Decoupling from thermal equilibrium

Electron-positron annihilation

However, this result is only valid if the decoupling of neutrinos was instantaneous (and
happened before the beginning of the electron-positron annihilation).

But these processes are not instantaneous and in fact overlap in time. Part of the energy and
entropy of the electron-positron annihilation leaks into the remaining relativistic species,
increasing their temperature, via an decrease of g, and g, (as discussed in slide 13).

A more accurate computation (taking into account the variation of g,¢(T) and g, (T)) gives:

g« = 3.38; g.s = 3.94

In order to keep the calculation of the effective degrees of freedom simple, it is usual to define a
quantity, N o¢¢, known as effective number of neutrino species, so that:

7 41y 7 4\*®
« =24 = 2| — =3 = b — =
g +8><3>< (11> 3.36 G 2+8X2Neﬁ‘(11> 3.38
T 4 i 4
ws=2+=-%Xx3x2|—=)=3091 g = — — ] =394,
G +8>< X (11> xS 2+8X2Neff<11) 3.94

23

Where Nggs = 3.046 (Nggr is by itself a parameter that can be fit by CMB
observations). If neutrino decoupling was instantaneous N.¢ = 3.

Decoupling from thermal equilibrium

Cosmic Neutrino Background

A Cosmic Neutrino background (C,, B) should be present in the universe since decoupling. Its
temperature should scale with with the inverse of scale factor and it is related to the CMB
temperature (which also scales with the inverse of the scale factor) as:

1/3 40\ /3
) Tyo = <ﬁ> 2.73=195K

4
Tyo=(—
0 (11

(which corresponds to T, o = 0.17 meV).

Plugging this result in the expression of the neutrino number and energy densities one obtains:

3 4
ny = Z eff X Hn7

T d N8
Pv = g eff (ﬁ) Py

Assuming Negr = 3.046 and the observed values of the CMB densities, one obtains n,, , =
112cm™3 and Q,, = 0.00014 (assuming massless neutrinos).

24



Decoupling from thermal equilibrium

Beyond thermal equilibrium: the Boltzmann Equation

Equilibrium quantities such as density expression derived in the previous chapter assume that
the decoupling species is always in equilibrium as its density is being supressed. In reality
this hypothesis cannot hold at very low temperatures, T < m, because particle abundances
become too small to be able to achieve equilibrium. The formal way of computing out of
equilibrium densities is through the use of the Boltzmann equation (see next slides)

relativistic non-relativistic

T T T T T T T TT7T Outofequi”brium

freeze-out - / density, n;
'~H

Freeze Out density,

i i eq
L { relic density | NEreeze—out * 1
r equilibrium “, v\
N (}*m/T “‘ -
3 | Equilibrium density,
| | L1 1111 | I 1 | I | l | ‘I | | T eq
1 10 100 "
m 25
T

Decoupling from thermal equilibrium

Boltzmann Equation

In the absence of interactions the number density of the decoupled species, i, obeys
to the conservation equation:

dni

dt

This follows from the fact that the number of particles in a physical volume remains
constant after decoupling n; = ny; a=3.

+3gni =0
a

One can generalise this expression to include interactions:
1 d(n;a?)

5= = Cil{n;}]

Where the left hand side is equivalent to the above equation and in the right hand side

one adds a collision term, C; [{nj}], that accounts for sinks / sources of the density of

the species n; due to interaction (collisions) with other species n;.

The latter equation is known as the collisional Boltzmann equation.
When ¢;[{n;}] = 0 one obtains the collisionless Boltzmann equation (on the top)




Decoupling from thermal equilibrium

Boltzmann Equation

The form of the collision term C; [{n]-}] depends on the type of interaction. For interactions of
2 particles species (3 body interactions are in principle much less likely):

1+2 2 3+4

(this means that species 1 annihilates with species 2, giving rise to species 3 and 4. Conversely
species 3 and 4 annihilate back to species 1 and 2).

To follow the out of equilibrium evolution of, for example, n, one needs to take into account the
balance of efficiency of the reaction between 1 and 2, that originates a sink of density, and the

(reverse) reaction between 3 and 4, that originates a source of n,. This can be translated into
the collisional Boltzmann equation by replacing the collision term C; [{nj}] with 2 terms:

1 d(nia®)
ad dt
where anqn, is a sink term describing the destruction of particles (due to the
reaction to the right) and Bnzn, is a source term describing the creation of

particles of type 1 (due to the reaction to the left). 27
Naturally, each term should be proportional to the densities of each pair.

= —aning + fnang

Decoupling from thermal equilibrium

Boltzmann Equation

1 d(nia®
g% = —aning + Bngng

Now, the parameters « and g can be written as:
- a = (o) is the thermally averaged cross section (an;n, = I''n,)

- B needs to be related to a so that the right hand side of the equation vanishes
when particles are in equilibrium.

ning
B = o
n3ng J oq

Where the densities inside the parenthesis are equilibrium densities nfq. Thus:

1 d(nia?) (o) |nn ning -
—_— = — {0 —_—
ad dt 12 N3N4 ) o ST

28




Decoupling from thermal equilibrium

Boltzmann Equation
It is instructive to write this equation in terms of the number of particles in a commoving
volume, defined in chapter 3: =

NiE—
S

which is a conserved quantity (i.e. as long as the average number of particles is
conserved) resulting from the entropy conservation equation. Using n; = N;s one
finds:

dlan Fl 1 (N1N2) N3N4

dina ~ H N3Ny ) o, N1N3

Note that:

» The factor I'; /H describes the interaction efficiency.

« The 2" term in the parenthesis characterises deviations from equilibrium.

» IfI'; < H, the r.h.s of the equation is supressed and N, freezes out.

« If Ty > H equilibrium is rapidly established. For example, if N; > N; % the r.h.s
becomes negative (more particles are destroyed). If Ny < N “Itherh.s becomes

positive (more particles are created). Both of these effects push N; —» N; 4,

Decoupling from thermal equilibrium

Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)
Evolution of the distribution function

The evolution of the distribution function is obtained from the Boltzmann equation
Llf = CIf). (4.49)

where C describes the collisions and L = d/ds is the Liouville operator, with s the
length along a worldline. The operator L is a function of eight variables taking the
explicit form

— ni_ a B Wi
Lif) =P 5= —TayP"p ey (4.50)

In a homogeneous and isotropic space-time, f is only a function of the energy and
time, f(E,t), so that
6

Lif = P55

Using the definition (4.11) of the partncle denswy, and integrating this equation with
respect to the momentum p, we obtain’

(4.51)

d*p,
A + 3Hn; = C;, Pi

(pi, (4.52)




Decoupling from thermal equilibrium

Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)

The difficult part lies in the modelling and the evaluation of the collision term. Here,
we restrain ourselves to the simple case of an interaction of the form

i+3— k+1, (4.53)
for which the collision term can be decomposed as C; = Cixi—;; — Cij—x1 with

g:d%p: gdip
(2m)3 (2m)3

x8(p. +p; — px — PYIMIZ_ i fi f;(1 £ fR)(1 x f2), (4.54)

Cij—ax=128)" 8(E; — p; —m?)-- 8(E; — pi — m{)

with a + sign for bosons and a — sign for fermions. |[AM1];; ., are the matrix elements
describing the interaction. The Dirac delta function imposes the conservation of mo-
mentum and of energy. This form also shows that the probability for 2 to disappear is
proportional to f; f;, i.e. roughly to the density of the interacting species.® The factors
(1 £ fx) arise from quantum mechanics and are related to the Pauli exclusion principle
for fermions and to stimulated emission for bosons.

1f CP invariance holds, as we assume here, then Ciri—i; and C;j i1 involve a unique
matrix element, |AM|?, determined by the physical process. Indeed, this invariance
implies that the process we consider is reversible and thus that 2 + 3 — k& + { and
k+!— 2+ 3 have the same matrix elements. It follows that

3 3
C: = (2n)? / 5 (p. + p; — Pk — 1) 2?2':)?;;1 o 2?;?()?;5‘,
< |MI? (S fi(l £ £)QA £ £5) — fif5(0 £ f)(1 % )] (4E55)

Decoupling from thermal equilibrium

Boltzmann Equation (see, Peter & Uzan Section 4.2.2.1)

In cosmologically interesting situations, £ — u > 7. Quantum effects can thus be
neglected and 1 + f >~ 1.

g [dpi  d°p
(2m)?® / 2E; 2E,

n; +3Hn;= 5(4)(7)1+P,—DA-—191)|M|2 (fxi— 1 f;)- | (4.56)

In this limit, the distribution functions are of the form f o exp[(p¢ — E)/T) so that
the particle density (4.11) can be expressed as a function of that at . = 0 as

n; = e*/Th,, A = n,(u. =0]. (4.57)

Furthermore, the conservation of energy implies that Ex + E; = E; + E, such that the
termy frfi — fif; takes the form

e—(BEx+EN/T [e(llr.-+/-41)/T - e(ut+u,)/T] — o= (Bx+E)T [ BeTU _ BT},
Axf TRy

The Boltzmann equation (4.56) can thus be written as

7; + 3Hn; = —(ov) (n;nj — gi::j nkm) ) (4.58)
kT

where (ov) is defined as

—(E;+E,)/T

a*p, d3p se
89 (pi + p; — pr — 1) M| (27)®

2F; 2E,

(4.59)



