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Preface

This monograph is a student’s introduction to two experimental systems –
droplets of oil bouncing on the vibrating surface of the same liquid, and res-
onances in superfluids – whose equations of motion are analogous to the es-
tablished equations of relativistic quantum mechanics. In fact, they share the
same equations, with the speed c in the experiments being the speed of sound
or surface waves instead of light. Such experiments are at the heart of two new
fields of study: emergent quantum mechanics, often shortened to ‘EMQM,’ and
analogue gravity.

Here we explain in simple terms why bouncing droplets exhibit the sym-
metries of special relativity; they experience an inverse square force of attrac-
tion or repulsion which obeys Maxwell’s equations; their wave fields obey the
same equations as in quantum mechanics; and two droplets orbiting around
one another exhibit spin-half symmetry. This two-dimensional system has a
three-dimensional version: resonances in superfluid helium, called rotons, which
can be understood using a natural extension of the equations that emerge in the
droplet experiments. The field of analogue gravity is founded on the observation
that resonances in a superfluid have the symmetries of general relativity.

These experimental systems can help understand the natural phenomena
which they mimic. Repeatedly in historical times, hydrodynamic models were
advanced for electrodynamic, relativistic and then quantum mechanical phe-
nomena. They all amounted to pulsating or oscillating structures in a fluid.
They were not pursued because transverse waves, which seemed to be needed to
mimic light waves, were wrongly assumed to be impossible in a fluid. Transverse
waves had not yet been observed in superfluids.

This approach differs from string theory and loop quantum gravity in that
it makes definite predictions in the analogue acoustic systems, which can be
tested experimentally. It has the advantage that the mathematics is accessible
to undergraduates.

The material is aimed at mathematicians, physicists, chemists and engineers.
Each chapter covers a topic at a level that should be accessible to undergrad-
uates. The exercises and dialogues are an integral part, and should be read
even if you don’t do them. There is also ‘Track 2’ material which is aimed at
graduate students and the more ambitious undergraduates.

Robert Brady, Ross Anderson
Cambridge, March 2014
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Chapter 1

Periodic fluid motion

[water waves] that are easily seen by everyone and which are usually used as an
example of waves in elementary courses ... are the worst possible example ...
they have all the complications that waves can have

Richard Feynman

This chapter introduces the elementary equations of periodic fluid motion
which are required to understand the experiments in the later chapters.

Figure 1.1: North Pacific storm waves. (Courtesy National Oceanic and Atmo-
spheric Administration)

One of the experimental systems, a droplet of oil bouncing on the surface
of the same liquid, is largely unaffected by viscosity because the droplet always
rides on a cushion of air, and the other, superfluid 4helium, has no viscosity at
all, and so it is not necessary for us to include viscosity in the equations.
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Periodic fluid motion

1.1 Euler’s equation

The equation of motion for a fluid without viscosity was first published in 1757
by Leonhard Euler, a Swiss mathematician.

�

��

�

Figure 1.2: A fluid element discussed in the text

Consider a fluid element of thickness ∆x and area A, as shown in figure 1.2.
If the pressure P varies in the x direction, the pressure on the two surfaces will
differ by ∆x∂P/∂x and the net force on the element will be F = −A∆x∂P/∂x.
The mass of the element is m = ρA∆x, where ρ is the density, and so from
Newton’s second law the element must accelerate at a = F/m, or

du

dt

∣∣∣∣
x=ut

= −
1

ρ

∂P

∂x

The left hand side is the acceleration which would be measured by a probe that
moves with the element, often written in the shorter notation Du/Dt. Extended
to three dimensions, this is Euler’s equation

Du

Dt
= −

1

ρ
∇P (1.1)

where u means the vector (ux, uy, uz) and ∇ means (∂/∂x, ∂/∂y, ∂/∂z).

In general, we will study the solutions to Euler’s equation in a barotropic

fluid, whose density is a function only of the pressure, ρ = ρ(P ).

1.2 Circulation

Figure 1.3 illustrates a liquid flowing past a boundary. The flow is parallel to
the boundary and its speed increases with distance from it.

If you were to walk anticlockwise around the dotted line shown in the figure,
you would always be facing the flow or walking perpendicular to it. You would
never be facing away from it since the flow speed vanishes very close to the
boundary. To quantify this asymmetry, we define the circulation by

Γ =
1

2π

∮
u.dl (1.2)

Emergent quantum mechanics 8 Robert Brady, Ross Anderson
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Figure 1.3: Steady shear flow near a boundary. The dotted line shows a path of
integration dl.

where dl is a closed path wholly immersed in the fluid.

If the circulation vanishes on any closed path in a region, the flow is said to
be irrotational.

Exercise 1.1 This exercise is about a vortex such as you might see when
draining a bath.

�

An idealisation of the flow is shown in red in the figure. It speed at
distance r from the centre is u = Γ/r, where Γ is constant.

(a) By choosing a closed circular path of integration at fixed radius r,
show that the circulation is Γ

(b) By choosing another closed path such as P in the figure, show that
the flow is irrotational except very near the centre.

(c) Use your results to show that the circulation of the vortex does not
depend on the path of integration as long as it encloses the centre.

1.3 Kelvin’s circulation theorem

In 1869, Sir William Thompson (who was later Lord Kelvin) proved what is now
called Kelvin’s circulation theorem, which states that circulation is conserved in
a barotropic fluid without viscosity. The invariance of Γ with time follows from

Emergent quantum mechanics 9 Robert Brady, Ross Anderson



Periodic fluid motion

its definition,

2π
DΓ

Dt
=

∮
Du

Dt
.dl +

∮
u.
Ddl

Dt

= −

∮ (
1

ρ
∇P

)
.dl +

∮
u.

d(dl)

dt

∣∣∣∣
dl=dlo+tdu

= −

∮ (
1

ρ
∇P

)
.dl +

∮
u.du

= 0

where we have substituted Euler’s equation. The second term on the right hand
side equates to 1

2

∮
d(u2), which vanishes since u2 has the same value at both

ends of the loop, which are one and the same point. To see that the other term
vanishes, we use the property that the fluid is barotropic, so the density, being
a function of the excess pressure P , can be expanded as

1

ρ
=

1

ρo
(1 + a1P + a2P

2 + ..) (1.3)

where P is measured relative to the ambient pressure and the ai are constants.
Substituting we get
∮ (

1

ρ
∇P

)
.dl =

1

ρo

∮
(1 + a1P + a2P

2 + ..)∇P.dl

=
1

ρo

∮ [
∇P.dl + 1

2a1∇(P 2).dl + 1
3a2∇(P 3).dl+ ..

]

= 0

Each term is proportional to the change in Pn around the loop, which vanishes.

1.4 Potential flow of waves

If a fluid is initially stationary then it has no circulation and Kelvin’s circulation
theorem tells us it must remain so when a periodic wave passes through it. It
follows that the wave itself must be irrotational.

Irrotational flow is also called potential flow because it can be written

u = ∇φ

where φ is called the velocity potential. It follows automatically that the flow
is irrotational ∮

u.dl =

∮
∇φ.dl = 0

The second expression is the change in φ around a loop, which vanishes.

1.5 Alternative forms for Euler’s equation

Euler’s equation can also be written using ordinary partial derivatives rather
than the derivative D/Dt which moves with the fluid. Using the chain rule of
partial differentiation,

Emergent quantum mechanics 10 Robert Brady, Ross Anderson



Periodic fluid motion

Du

Dt
=

du

dt

∣∣∣∣
x=ut

=
∂u

∂t
+

dx

dt

∂u

∂x
+

dy

dt

∂u

∂y
+

dz

dt

∂u

∂z

=
∂u

∂t
+ ux

∂u

∂x
+ uy

∂u

∂y
+ uz

∂u

∂z
(1.4)

In vector notation, this is Euler’s equation in its alternative form [1]:

∂u

∂t
+ (u.∇)u = −

1

ρ
∇P (1.5)

In the case of potential flow, each component of u, say ui where i can mean
any of x, y or z, can be written in the form ui = ∂φ/∂xi. The last line of (1.4)
becomes

Dui
Dt

=
∂ui
∂t

+ ux
∂ui
∂x

+ uy
∂ui
∂y

+ uz
∂ui
∂z

=
∂ui
∂t

+
∂φ

∂x

∂2φ

∂x∂xi
+

∂φ

∂y

∂2φ

∂y∂xi
+

∂φ

∂z

∂2φ

∂x∂xi

=
∂ui
∂t

+ 1
2

∂

∂xi

(
∂φ

∂x

)2

+ 1
2

∂

∂xi

(
∂φ

∂y

)2

+ 1
2

∂

∂xi

(
∂φ

∂z

)2

=
∂ui
∂t

+ 1
2

∂

∂xi
(u2)

In vector notion, this is Euler’s equation for potential flow

∂u

∂t
+ 1

2∇(u2) = −
1

ρ
∇P (1.6)

This is the form of the equation which we will use for periodic waves.

1.6 Expectation values

Suppose we are not able to measure the periodic motion of a fluid directly. The
frequency of oscillation may be too high or the wavelength too short, or the
experimental apparatus might not be designed to measure oscillations at all. It
is still possible to detect the oscillations indirectly, using natural phenomena
which build up over multiple cycles. One such phenomenon was discussed by
George Forbes in 1881, when he wrote in Nature [2]

It has long been known that if a tuning fork be struck and held
near to a light object like a balloon it attracts it. This is an old
experiment ... Among others, Sir William Thomson gave the theory
in the Philosophical Magazine in 1867.

Emergent quantum mechanics 11 Robert Brady, Ross Anderson



Periodic fluid motion

The balloon is attracted to the source of sound because the average pressure
of the air is reduced there. To see why, it suffices to integrate Euler’s equation
for potential flow (1.6) over a period τ

1

τ

∫ τ

0

∂u

∂t
dt +

1

τ

∫ τ

0

1
2∇(u2) dt = −

1

τ

∫ τ

0

1

ρ
∇P dt (1.7)

The integral in first term on the left hand side is the change in u over a period,
which vanishes since the motion is periodic. If the amplitude of the motion is
small then we can approximate the density ρ to a constant and integrate, giving

< P > ≈ − 1
2ρ < u2 > + constant

where <..> is shorthand for the mean value over one or more a complete cycles.
We will call such a quantity an expectation value. In the historical experiment
discussed by Forbes, the oscillation near the tuning fork can be detected through
the reduced expectation pressure, which attracts the balloon.

Exercise 1.2 The density ρ of an inviscid fluid is related to its excess
pressure P by

1

ρ
=

1

ρo
(1 + a1P + a2P

2 + a3P
3 + ..)

where the ai are constants.

By substituting this expansion into Euler’s equation for potential flow
and averaging over a period, obtain an exact expression for the expectation
value < u2 > as an expansion in < P >,< P 2 >,< P 3 > and so on.

This reduced expectation pressure is related to a phenomenon which dates
back to Daniel Bernoulli in 1738, called the Bernoulli effect, in which the pressure
of a fluid decreases with its flow speed [3].

1.7 Expectation velocity of a fluid

When a periodic wave passes through a region, it does not change the expec-
tation velocity < u > of the fluid. The proof uses a similar line of reasoning
to Kelvin’s circulation theorem in section 1.3, where the integration is over a
wavelength rather than over a closed loop.

Emergent quantum mechanics 12 Robert Brady, Ross Anderson



Periodic fluid motion

The time derivative of the fluid velocity, averaged over a wavelength λ, is

∂

∂t
< u > =

∂

∂t

(
1

λ

∫ λ

0

u.dl

)

=
1

λ

∫ λ

0

∂u

∂t
.dl

= −
1

λ

∫ λ

0

1
2∇(u2).dl −

1

λ

∫ λ

0

1

ρ
∇P.dl

= 0

where we have substituted Euler’s equation for potential flow (1.6). The first
term is proportional to the change in u2 over a wavelength, which vanishes since
the motion is periodic. To see that the second term vanishes when the fluid is
barotropic, substitute the Taylor expansion of 1/ρ, which we saw in (1.3), giving

1

λ

∫ λ

0

1

ρ
∇P dl =

1

ρoλ

∫ λ

o

(1 + a1P + a2P
2 + ..)∇P.dl

=
1

ρoλ

∫ λ

o

∇P.dl + 1
2a1∇(P 2).dl + 1

3a2∇(P 3).dl+ ..

= 0

Each term is proportional to the change in Pn over a wavelength, which vanishes
since the motion is periodic.

It follows that if the fluid was stationary before the arrival of the wave, then
the expectation value of the fluid speed remains zero when the wave passes over,
and so < u >= 0 for the wave.

1.8 Continuity equation

When the density of a barotropic fluid varies, due to its compressibility, the
conservation of mass gives us a relationship called the continuity equation.

Consider a fluid element of area A and width ∆x, with flow u in the x
direction (figure 1.2). In the following argument, the boundaries of the region
do not move with the fluid but are considered to be fixed. The mass flowing
through each surface is Aρu and the net mass flowing into the region is the
difference between the flows on each surface,

∂m

∂t
= −A∆x

∂(ρu)

∂x

The mass inside the region is m = ρA∆x. Substituting gives

∂ρ

∂t
= −

∂(ρu)

∂x

and extending to three dimensions, this is the continuity equation

∂ρ

∂t
= −∇.(ρu) (1.8)
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1.9 Sound waves

We now obtain the equation of motion for sound waves in a barotropic fluid,
which is a good approximation at small amplitude. We have seen that a wave
propagating into a region of stationary fluid does not have any circulation, and
hence it has no shear flow, and so it seems a reasonable approximation to neglect
viscosity, even if the fluid has some.

In a barotropic fluid the density is a function of pressure and can be written

ρ = ρo(1 + b1P + b2P
2 + ..)

where P is measured relative to the ambient pressure and bi are constants.
Substituting into the continuity equation (1.8) gives

∂ρ

∂t
= − ρo∇.u − ρo∇.([b1P + b2P

2 + ..] u)

We will neglect the second term on the right hand side since P is small for low
amplitude motion. Differentiating gives

∂2ρ

∂t2
= − ρo∇

(
∂u

∂t

)

= ρo∇

(
1

ρ
∇P

)
+ 1

2∇
2(u2) (1.9)

where we have substituted Euler’s equation for potential flow (1.6). Again, we
will neglect the second term on the right hand side since u2 is small.

Treating 1/ρ as a function of P and using a Taylor expansion about the
ambient pressure gives

1

ρ
=

1

ρo
(1 + a1P + a2P

2 + ..)

Substituting into (1.9) gives

∂2ρ

∂t2
− ∇2P = ∇.[(a1P + a2P

2 + ..)∇P ]

Again, the right hand side can be neglected for low amplitude motion. Defin-
ing

c2 =
dP

dρ

so that ∇2ρ = c2∇2P , we get the wave equation

1

c2
∂2ρ

∂t2
− ∇2ρ = 0 (1.10)

The next exercise reviews the basics of the solutions to the wave equation.

Emergent quantum mechanics 14 Robert Brady, Ross Anderson



Periodic fluid motion

Exercise 1.3 When a sound wave propagates through the air, its density
ρ is given by

ρ− ρo
ρo

= A cos(kx− ωt)

where ρo the mean density, and A is the amplitude of the wave. By
considering the wave at the point x = 0, or otherwise, show that its
frequency is

f =
ω

2π

and by considering it at t = 0 show that its wavelength is

λ =
2π

k

The compressions and rarefactions of the wave propagate at a speed vφ
called the ‘phase velocity’. By substituting ρ = ρo(1 +A) for the densest
part of a compression, or otherwise, show that it propagates at speed

vφ =
ω

k
= fλ

Show by direct substitution into (1.10) that ρ is a solution to the wave
equation when ω = c |k|. Hence or otherwise show that it propagates at
speed vφ = ±c.

There is a wall at x = 0. Near it, there is a standing wave ρs where

ρs − ρo
ρo

= A cos(−ωt) cos(kx)

The minus sign is to conform to convention and has no other significance.
Show that ρs is another solution to the wave equation.

Show that this standing wave is a sum of of two propagating waves,
one travelling towards the wall and the other away from it, that is,

2
ρs − ρo
ρo

= A cos(kx− ωt) + A cos(−kx− ωt)

Hint. Look up a trigonomic identity for cosA cosB.

1.10 Surface waves

The waves on the surface of a liquid also obey the wave equation to a good
approximation when viscosity and the wave height are small. However, the
wave speed depends on the wavelength of the waves. This can be shown by
considering a wave of a single wavelength. Suppose the height h of the surface
is in the simple form

h = f(t) cos(kx) (1.11)
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where f(t) is a function of time to be determined.

The gravitational potential energy of this wave is just the energy required to
raise or lower a small column of liquid relative to the ambient level, integrated
over the surface

PEg = 1
2ρg

∫
h2 dx dy = 1

2ρgf
2

∫
cos2(kx)dxdy

where ρ is the density of the liquid and g the acceleration due to gravity.

The wave also increases the surface area. From Pythagoras’s theorem for a
right angled triangle, the area of the surface is

∫ [
1 +

(
∂h

∂x

)2
] 1

2

dxdy ≈

∫ [
1 +

1

2

(
∂h

∂x

)2
]
dxdy

Multiplying by the surface tension σ, the stretching of the surface contributes
potential energy of

PEσ ≈ 1
2σk

2f2
∫

sin2(kx) dxdy

It follows that the total potential energy of the wave is

PE = Af2 (1.12)

where A ≈ 1
2ρg

∫
cos2(kx) dxdy + 1

2σk
2
∫
sin2(kx) dxdy.

If the surface is large, then the total potential energy of any one component
is independent of the other components. Writing subscripts 1 and 2 for the two
components, at any given time the total potential energy is proportional to

PE ∝

∫
[A1 cos(k1x) +A2 cos(k2x)]

2
dx ∝ A2

1 +A2
2

The cross terms vanish as long as the integration is over a whole number of
wavelengths of the combined wave.

Likewise the kinetic energy is driven by the motion of the surface and it is
everywhere proportional to the square of the fluid speed,

KE = B

(
df

dt

)2

(1.13)

where B is proportional to the density, and geometric factors have also been
rolled up into it. The value of B depends on the detailed flow patterns. For
example, in deep oil the motion will extend vertically beneath the wave by of
order a wavelength, but in shallow oil the flows are constrained to be more con-
centrated. For more detail about the flow patterns in the various regimes, see
a textbook on fluid mechanics such as Tom Faber’s fluid dynamics for physi-
cists [1].

Equations (1.12) and (1.13) are the same as those for a harmonic oscillator,
such as a pendulum. If a bob of mass m is at angle θ(t) from vertical, then
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the potential energy is mgl(1− cos(θ)) ≈ 1
2mglθ

2 where l is the length, and the
kinetic energy is 1

2m(l dθ/dt)2. The sum of these must be constant, which is

satisfied when θ ∝ cos(ωt) with ω =
√
g/l, as may be seen by direct substitution.

The waves have f(t) in place of θ(t) and the same condition gives

h ∝ cos(−ωt) cos(kx) (1.14)

where ω =
√
A/B. The minus sign is conventional and has no physical signifi-

cance. By direct substitution, (1.14) obeys the wave equation when

c =
ω

k

The speed c = ω/k =
√
A/(Bk2) usually depends on depth and frequency,

but both of these were kept constant in any given experiment.

1.11 Interactions between waves

The wave equation is linear, which means that any two waves do not interact
with each other when they have low amplitude.

Exercise 1.4 Two water waves have heights h1(x, t) and h2(x, t). They
each obey the wave equation (1.10).

Show by direct substitution that their sum also obeys the wave equa-
tion.

When the motion has greater amplitude, the nonlinear terms we neglected
when deriving the wave equation will perturb this symmetry and cause two
waves to interact. Figure 1.4 shows what happens when two waves cross.

Figure 1.4: The interaction between shallow water waves. (Courtesy Douglas
Baldwin, University of Colorado)

The waves experience a local advance or retardation so they bend into tem-
porary alignment near the centre. However the interaction does not seem to
have much of a lasting effect. For example, by observing a wave, it is hard to
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tell whether or not another wave has crossed its path at some time in the past.
It is as if the interactions average out over a wavelength.

To understand why this is the case, consider one source of perturbation: the
non-linear term ∇(u2) in Euler’s equation for potential flow (1.6). Suppose the
two waves, A and B, have flow speeds a and b, so that u = a + b for the
combined flow pattern. The perturbation is

∇(u2) = ∇(a2) + ∇(b2) + 2∇(a.b)

The first two terms on the right hand side do not depend on the interactions
between the waves; it is the final term that is of interest here.

Let us suppose for simplicity that one wave in the photograph, say A, prop-
agates in the y direction and wave B, which perturbs it, propagates at an angle.
Figure 1.5 shows an idealisation of their wavefronts; it includes a second wave-
front of B to indicate a complete cycle.
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Figure 1.5: Idealisation of the waves photographed in figure 1.4.

The flow due to A is in the y direction, and so we do not need to consider
any components of velocity in the x direction when calculating the perturbation.
The perturbation term expands to

2∇(ayby) = 2ay∇by + 2by∇ay

We will calculate the expectation value of the perturbation by integrating along
a path shown in the figure. This is a reasonable estimate of the net effect of
the perturbation on any given part of wave A because the waves roll past one
another over time. This path is also convenient for calculation because the
parameters of A can be treated as constant and taken out of the integration.
The expectation value of the perturbation is thus

< 2∇(ayby) > =
2ay
λ

∫ λ

0

(∇by).dl +
2∇ay
λ

.

∫ λ

0

by dl

= 0

The first term on the right hand side is proportional to the change in by over a
complete cycle of wave B, which vanishes because the wave is periodic, and the
second term vanishes because of the conservation of expectation fluid velocity
discussed in the section 1.7.
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1.12 Fourier’s theorem

We have seen that we can treat components with different wavevectors k in-
dependently of one another, to a good approximation, if the motion is of low
amplitude, or, even if the amplitude is greater, if our instruments are only capa-
ble of measuring expectation values. In the terminology of the field, the waves
are ‘orthogonal’.

This approximate, but nevertheless rather good, symmetry enables us to
simplify the treatment of waves using a mathematical theorem first proved by
Joseph Fourier in 1822. Suppose for simplicity that a wave varies only in the x
direction, so the density of the fluid is ρ(x) at any given time. Fourier defined
his transformation by

ρ̂(k) =

∫ ∞

−∞
ρ(x) e−ikx dx

where k is real and is called the wavevector, and ρ̂(k) is a complex-valued func-
tion of k called the Fourier transform.

Under a wide range of conditions (which are wide enough to apply to the
waves we are interested in), Fourier proved that we can recover the original
density of the fluid as follows

ρ(x) =
1

2π

∫ ∞

−∞
ρ̂(k) eikx dk

For any given value of k, the integrand ρ̂(k)eikx has the simple properties of a
wave which we saw in section 1.9. For example, if ρ̂(k) is real then the integrand
is proportional to cos(kx)+i sin(kx). Both components are solutions to the wave
equation which oscillate at angular frequency ω = ck, as may be verified, for
example, by substituting ρ = cos(kx) cos(ωt) into (1.10).

Fourier’s theorem shows that any solution to the wave equation, however
complicated, can be treated as a sum of these simple solutions. The orthog-
onality allows us to neglect the interactions between these components to a
very good approximation, provided our measuring instruments are restricted to
measuring expectation values.

You may be familiar with the Fourier transformation from music. The pres-
sure of the sound waves reaching your ear is likely to be a complicated function
of time. Your ear and brain tend to analyse it as a sum of Fourier components
which you interpret as tones. For example, if a piano is played at middle C you
will perceive it as a tone, which is easier to analyse and understand than a wave
pattern.

It is common to simplify the treatment still further by not paying much at-
tention to the complex phase of ρ̂(k). This neglect might introduce an imaginary
part to ρ(x) after the inverse transformation, but, if necessary, it can be cor-
rected for by multiplying by a suitable factor, such as eiθ, or, more commonly,
by discarding the imaginary part at the end of the calculation.
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1.13 Scale invariance

Given a solution to Euler’s equation, we can immediately write down another
solution using the symmetry that the equation is scale invariant, that is, if a
flow field u(x, t) is a solution then so is u(αx, αt) where α is a scale factor.

This symmetry may be familiar in sound waves, where doubling the fre-
quency halves the period and wavelength. It is used in acoustic scale models.
Suppose you are singing in a bathroom at, say, middle C, which is 261.6 Hz.
The wave pattern, including reflections from the walls, might be rather compli-
cated. Using the scale symmetry of Euler’s equation, you could obtain the wave
pattern from a half-scale model. The scale model of your body must sing at the
C above middle C, 523.2Hz.

The proof is as follows. Consider the transformation

(x′, t′) = (αx, αt) (1.15)

where α is some scale factor. The chain rule of partial differentiation gives

∂

∂t
=

∂t′

∂t

∂

∂t′
= α

∂

∂t′

Likewise we get ∇ = α∇′ where ∇′ means (∂/∂x′, ∂/∂y′, ∂/∂z′).

The scale transformation leaves all velocities unaffected at the corresponding
positions in the two solutions. For example, in the x direction

u′ =
dx′

dt′
=

dx

dt
= u

Substituting these relationships gives

Du

Dt′
+

1

ρ
∇′P =

1

α

(
Du

Dt
+

1

ρ
∇P

)

If u(x, t) is a solution to Euler’s equation then the right hand side must vanish.
Equating the left hand size to zero shows that u(x′, t′) is also a solution.

In a barotropic fluid the pressure-density relationship, P = P (ρ), does not
depend on position or time and so it does not break the scale symmetry. The
symmetry might be disturbed if lossy processes are involved, such as thermal
conductivity, but we will only be interested in lossless fluids.

Exercise 1.5 By direct substitution of the scale transformation (1.15),
show that

1

c2
∂2h

∂t2
−
∂2h

∂x2
−
∂2h

∂y2
= α2

(
1

c2
∂2h

∂t′2
−
∂2h

∂x′2
−
∂2h

∂y′2

)

Use your result to show that if h(x, y, t) obeys the wave equation, so does
h(αx, αy, αt).
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1.14 Acoustic Lorentz covariance

If we are given a periodic solution to Euler’s equation in a barotropic fluid, we
can immediately write down another solution which is moving relative to the
fluid. This uses a symmetry called Lorentz covariance, which states that if
h(x, y, t) is a solution then so is h(x′, y′, t′) where

x′ = γ (x− vt)

y′ = y

t′ = γ
(
t−

vx

c2

)

γ =
1√

1− v2

c2

(1.16)

This is the same Lorentz transformation that is used in electromagnetism
and other areas of physics, but with an acoustic value for the characteristic
speed c. It is also used in aerodynamics and acoustics; see for example [4]. The
proof is as follows.

Applying the chain rule of partial differentiation to the Lorentz transforma-
tion (1.16), we get

∂

∂x
=

∂x′

∂x

∂

∂x′
+

∂t′

∂x

∂

∂t′

= γ

(
∂

∂x′
−

v

c2
∂

∂t′

)

and applying it a second time gives

∂2h

∂x2
= γ2

(
v2

c2
1

c2
∂2h

∂t′2
+

∂2h

∂x′2
−

2v

c2
∂2h

∂x′∂t′

)
(1.17)

Likewise, for t,

∂

∂t
=

∂x′

∂t

∂

∂x′
+

∂t′

∂t

∂

∂t′

= γ

(
∂

∂t′
− v

∂

∂x′

)

1

c2
∂2h

∂t2
= γ2

(
1

c2
∂2h

∂t′2
+

v2

c2
∂2h

∂x′2
−

2v

c2
∂2h

∂x′∂t′

)
(1.18)

Subtracting (1.17) from (1.18) and using γ2(1− v2/c2) = 1 gives

1

c2
∂2h

∂t2
−
∂2h

∂x2
−
∂2h

∂y2
=

1

c2
∂2h

∂t′2
−
∂2h

∂x′2
−
∂2h

∂y′2

If h(x, y, t) is a solution to the wave equation, the left hand side vanishes and
therefore, by equating the right hand side to zero, h(x′, y′, t′) is also a solution.

This proves the Lorentz covariance for small amplitude motion. At larger
amplitude, the Lorentz symmetry will be perturbed by the nonlinear terms in
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the equation of motion. In particular, the solution with primed coordinates
is moving relative to the fluid as constant speed v, so that the fluid velocity u

becomes u′ = u+v. This perturbs the quadratic term ∇(u2) in Euler’s equation
for potential flow (1.6),

∇(u′2) = ∇(u+ v)2 = ∇(u2) + 2∇(u.v)

The perturbation is in the second term on the right hand side. Taking v to be
in the x direction without loss of generality, its spatial expectation value is

< 2∇(u.v) > = 2vx
1

λ

∫ λ

0

∂ux
∂x

dx = 0

The expression vanishes because ux has the same value at points a wavelength
apart. Thus, the expectation value of this perturbation vanishes, and so it will
be difficult or impossible for an apparatus that is only capable of measuring
expectation values to detect it.

Exercise 1.6 We saw in section 1.9 that there is another perturbation
to the wave equation that depends on u, namely

ρo∇.([b1P + b2P
2 + ..] u)

By taking an average over a wavelength, show that the expectation value
of this term is unchanged by the transformation u′ = u + v where v is
constant.

It follows that the solutions to Euler’s equation in a barotropic fluid are
Lorentz covariant when the motion is low amplitude. This symmetry is per-
turbed at greater amplitude but the perturbations average to zero over a wave-
length, and so it will be difficult or impossible for an apparatus that is only ca-
pable of measuring expectation values to detect any deviation from the Lorentz
symmetry.

1.15 Momentum of a wave

We now show that the momentum p of a wave is related to its energy E through

p =
E

c
(1.19)

where c is the wave speed.

Figure 1.6 shows the horizontal flow speed for a wave propagating in the
+x direction. The flow near the submerged line A does not contribute to the
momentum, since it is symmetrical. The expectation velocity < u > vanishes
on this line (section 1.7).

But the elevations carry extra fluid. If you take a line of integration which is
not completely submerged, such as B, the elevations dominate and the integral
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Figure 1.6: In a simple propagating wave, the horizontal flow speed (red arrows)
is proportional to the wave height. The flow is symmetrical on the submerged
line A, so there is no net momentum when measured on this line. But the crest
carries extra fluid, so the wave has momentum due to its forward motion.

∫
u.dl does not vanish. The wave has net momentum,

p ∝

∫ λ

o

h u.dl > 0

since the mass of an element is proportional to the height. This does not vi-
olate Kelvin’s circulation theorem since the path of integration is not wholly
submerged.

The proof of equation (1.19) is as follows.

If the wave height is given by

h = A cos(ωt− kx) (1.20)

then substituting into (1.1) and integrating gives

u = ±
k

ω
gh = ±

g

c
h (1.21)

where the sign depends on the direction of propagation and will be dropped for
simplicity.

Consider a small vertical column of fluid whose area is dxdy. Its potential
energy is the energy required to raise its height by h above the ambient level
against the force of gravity, namely

Ep =
1

2

∫
ρgh2 dxdy

The potential energy of motion is equal to the kinetic energy when averaged
over a cycle. Substituting (1.20) and averaging over a cycle, the total is

E =
1

2

∫
ρgA2 dxdy (1.22)

The momentum of the column in the x direction is p = ρu(h + ho)dxdy. Sub-
stituting (1.21) gives

p =
1

c

∫
ρh(h+ ho) dxdy
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Substituting (1.20) and averaging over a cycle, the second term vanishes leaving

p =
1

2c

∫
ρgA2 dxdy =

E

c

where we have substituted (1.22). See [1] for an alternative derivation.

1.16 Longitudinal and transverse motion

It was believed for many years that a fluid can only support longitudinal

waves, which have their fluid velocity parallel to the direction of propagation.
Any component of motion in the Transverse direction, perpendicular to the
direction of travel (not counting vertical motion in the case of waves on the
surface of a liquid), was thought impossible. The proof assumes that the fluid
is initially stationary, as follows.

When a wave propagates into a region of stationary fluid, it cannot introduce
any circulation into the region, from Kelvin’s theorem, and so the wave cannot
have any circulation, which excludes shear flow and transverse motion. Some
may prefer the less rigorous, but more intuitive, argument that an ordinary fluid
has no resilience under shear, and so it cannot supply the restoring forces that
seem to be needed for transverse motion.

This proof assumes that the fluid was initially stationary. It does not apply
if the fluid is rotating, since a wave propagating towards the centre will have a
transverse component of velocity because of the Coriolis forces. Likewise it does
not apply when there are pre-existing shear flows.

An example of such a wave was photographed in 1980 by Michael Berry and
colleagues. They drained water from a tank, carefully refilling it so as not to
disturb the flow. This created a region of shear flow, in the form of a vortex.
They then sent waves into the region [5]. Figure 1.7 is a photograph of a light
pattern made by the waves.

Figure 1.7: Water waves near a vortex. (Courtesy Michael Berry [5])

If the vortex has circulation Γ then its tangential flow speed is u = Γ/r (see
the exercise in section 1.2). On the x axis, the velocity in the y direction is

uy =
Γ

x
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Figure 1.8: (a) The fluid flow near a vortex (b) When it is displaced in the
+x direction, the net effect is to increase the fluid velocity in the +y direction
everywhere except very near the centre (the figure is schematic only).

which constitutes shear flow.

Suppose the fluid is displaced by ∆x, as shown in figure 1.8. In the region
|x| > ∆x, the y component of velocity becomes

u′y = uy −
∂uy
∂x

∆x = uy +
Γ

x2
∆x (1.23)

The wave in the photograph will cause a displacement ∆x = A cos(kx−ωt).
Substituting into (1.23), they have an oscillatory transverse component

u′y = uy +
AΓ

x2
cos(kx− ωt)

As measured by a stationary observer, circulation is not, in general, conserved
when the wave passes, that is, ∂Γ/∂t 6= 0. This does not violate Kelvin’s
circulation theorem, which states that DΓ/Dt = 0, where the path used to
measure the circulation must move with the fluid.

A related example of transverse motion is when an ordinary sound wave in a
compressible fluid encounters shear flow. We predict the unusual property that
their direction of polarisation is not carried by the wave, but is determined by
the orientation of the shear flows through which it propagates. More generally,
if the shear flow is itself oscillatory, the polarisation might also depend on the
phase orientation between the wave and the flows.

We would expect this phenomenon in superfluid 4helium. When it is cooled
below 2.172 Kelvin at atmospheric pressure, liquid 4helium becomes a super-
fluid, which behaves in many respects like a compressible fluid with no viscosity.
Ordinary sound waves (called ‘first sound’) propagate at approximately 230 m
s−1, and shear flow continues indefinitely in it, as evidenced by the fact that
vortices do not decay. We are not aware of attempts to measure the polarisation
of sound waves in superfluid 4helium to date.

Another example of a transverse wave in a fluid dates to 1957 and the Soviet
physicist Lev Davidovich Landau. He predicted that one of the low temperature
phases of superfluid 3helium might exhibit transverse sound waves, where the
restoring forces for shear waves are supplied by the collective action of the
particles in the fluid. This phenomenon was later observed experimentally [6,7].
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The fluid has additional terms in Euler’s equation which are outside the scope
of this monograph.

1.17 Summary

In this chapter we derived the basic equations for periodic motion a barotropic
fluid.

If, for any reason, it is not practical to measure the oscillations of a wave,
for example if its frequency is too high for the instruments available, then the
only measurements that remain are those which are averaged over one or more
complete periods or a wavelengths. These are called ‘expectation values’ and
we saw an example of their use in an experiment from the 19th century where
a balloon is attracted towards a tuning fork.

We saw that the periodic solutions to Euler’s equation possess three sym-
metries. Firstly, they are ‘scale invariant’, a symmetry which relates larger and
smaller solutions. Secondly, solutions with different wavevectors are orthogonal
to one another. And thirdly, they possess a symmetry called ‘Lorentz covari-
ance’ which relates solutions in a stationary fluid to the corresponding solutions
in which the fluid is moving. The first symmetry is exact. The other two are
good approximations at low amplitude, and, at greater amplitude, the pertur-
bations to these symmetries average out over a cycle, making it difficult detect
them using an apparatus that is only capable of measuring expectation values.

Finally we discussed transverse motion of waves in a fluid. Their direction
of polarisation depends on the direction of shear in the fluid.
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Chapter 2

Bouncing droplets

A man came crashing through the crowds carrying in his hands a cage in which
the rightful owner of the music sat

Interruption at the Opera house by Brian Patten [8]

In 1978, Jearl Walker, writing in the Amateur Scientist department of Sci-
entific American, wrote about the curious phenomenon in which water droplets
glide across a water surface for several seconds before sinking into it [9]. The
droplet rides on a thin cushion of air which cannot escape quickly due to its
viscosity.

Walker went on to describe an experiment that can be performed at home,
using an electric hair clipper to vibrate the side of a cake pan containing a
solution of water and liquid detergent. This kept the droplets going for longer
by making them bounce, which replenishes the air film.
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Figure 2.1: Schematic of Couder’s experimental apparatus. The shape of the
container reduces unwanted waves from the edge by viscous damping.

Bouncing droplets began to be explored more systematically in 2005, when
Yves Couder, Suzie Protière, Emmanuel Fort and Arezki Badouad reported
in the scientific journal Nature that droplets of oil can be made to bounce
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indefinitely on the surface of the same oil when it is vibrated vertically [10].
The apparatus is illustrated in figure 2.1.

Today, researchers are interested in this phenomenon in its own right, and
also because it is an association between a particle (the droplet) and a wave: a
physical analogue for what happens in quantum mechanics. As we shall see in
this monograph, this interplay between the particle-like and wave-like aspects
of the motion yields many surprising results.

2.1 The bouncing motion

Figure 2.2 has six photographs of a bouncing droplet, and figure 2.3 illustrates
the vertical motion as a function of time.

Figure 2.2: A droplet of silicone oil bouncing on the surface of the same liquid
which is vibrated vertically. (courtesy Suzie Protière, Arezki Boudaoud and Yves
Couder [11])
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Figure 2.3: The height of the droplet (red) and the surface (blue) as it oscillates
vertically with time. In this simulation, the maximum forcing acceleration is
3.5g and surface waves are neglected. The labels cdefab refer to the photograph
in figure 2.2.
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In these photographs, the droplet touches down every other cycle of the
vertical vibration of the container. At lower forcing amplitudes there are less
interesting modes of bouncing, where the droplet grazes off the peak near f in
figure 2.3 or touches down every cycle.

These experiments have since been reproduced in laboratories around the
world, such as by Jan Moláček and John Bush at MIT [12]. You can get started
by running a free downloadable sine wave generator on your computer or mobile
phone, and using it to drive a loudspeaker with a dish of oil glued to it. Such
experiments are growing in popularity for student projects because they are so
simple. A research version uses a vibration exciter which is carefully coupled to
the oil tray so as to minimise horizontal motion; it has baffles to protect against
winds; and it is carefully tuned, for example using crocodile clips, to reduce
variations in the vertical motion around the container.

2.2 Surface waves

The horizontal motion of the droplet is guided by the surface waves. Like waves
on a pond, the waves on the surface of the oil obey the standard wave equation
to first order

1

c2
∂2h

∂t2
− ∇2h = 0 (2.1)

where h is the wave height. See section 1.10 for the proof. The parameter
c is the wave speed. It usually depends on depth and frequency, but both of
these were kept constant in any given experiment and so c can be treated as a
constant.

2.3 Wave field near a stationary droplet

The waves near a stationary bouncing droplet are circularly symmetric, and the
wave equation has a circularly symmetric solution,

h = ho cos(ωot) J0

(ωor

c

)
(2.2)

where ho is the maximum wave height and J0 is a Bessel function of the first
kind, which is drawn in figure 2.4. Compare this to the waves photographed in
figure 2.2.

Figure 2.4: The Bessel function J0(ωor/c) at small radius
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The definition of J0 and the proof that (2.2) obeys the wave equation are in
the advanced material below.

†Track 2 This material may be skipped on a first reading

In circular coordinates (r, θ), the wave equation (2.1) is

1

c2
∂2h

∂t2
−

∂2h

∂r2
−

1

r

∂h

∂r
−

1

r2
∂2h

∂θ2
= 0 (2.3)

A Bessel function of the first kind, Jm(z), is defined as a solution to
Bessel’s differential equation

z2
∂2Jm
∂z2

+ z
∂Jm
∂z

+ (z2 −m2)Jm = 0 (2.4)

Using this definition with m = 0, it is readily verified by direct substi-
tution that (2.2) is a solution to the wave equation in circular coordinates
(2.3).

The photographs in figure 2.2 confirm that the waves are predominantly
standing waves, as given by (2.2), rather than propagating waves. For example,
the waves have only a small amplitude in photographs (b) and (e) but they are
significantly larger at other points in the cycle. The reason for this is connected
with the vertical vibration of the oil tray, as we now examine.

2.4 Parametric reinforcement

A child on a swing can go higher by moving her body up and down at twice the
frequency of the swing. She does work when she accelerates her body upwards
against the centrifugal force near the bottom of the swing. In physics such a
processes is called parametric excitation.

The standing waves near a droplet are reinforced in a similar way by the
vertical acceleration of the oil tray. See figure 2.5. When the oil tray is at
its highest, it is accelerating downwards, typically with an acceleration of 3.5-
4.5g. This reverses the effective direction of gravity, lifting the wave crests and
enlarging the waves. As can be seen in the figure, the oil tray must oscillate at
twice the frequency of the standing waves for the reinforcement to build up.

This can also be understood in terms of propagating waves as shown in figure
2.6. Like a pebble thrown into a pond, a droplet creates outgoing propagating
waves when it lands. They are reinforced and reflected back when the oil tray is
at its greatest height. The combination of outgoing and incoming waves forms
the standing waves.

If the container is large enough, there will be multiple reflections which
reverberate and reinforce one another. A similar reflection mechanism is used
in the highest quality optical mirrors, which are called Bragg mirrors. Multiple
layers of material with alternating high and low dielectric constant are laid on
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Figure 2.5: Parametric reinforcement of the standing wave near a droplet. When
the oil tray is at its greatest height it is accelerating downwards, reversing the
effective direction of gravity. This lifts the wave crests and enlarges the waves.
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Figure 2.6: Bragg reflection. (a) When a droplet lands it creates a trough in
the surface which propagates outwards (marked ‘sound cone’). (b) When the oil
tray is at its greatest height it accelerates downwards. This reverses the effective
direction of gravity, reinforcing the wave and forming an inward-directed trough
that reaches the centre when the droplet next lands.

top of one another. Light is reflected weakly at each interface. By choosing the
geometry so that reflections reinforce, we can produce Bragg mirrors with up to
99.999% reflectivity.

When the parametric driving is large enough, each bounce of the droplet
influences the next through this mechanism. The system behaves as if it had a
memory of previous bounces; this is called the ‘high memory’ regime.

2.5 Wave speed

The speed c in (2.1) depends on frequency and depth, but these parameters
were not varied during an experiment. It is more relevant that the wave speed
is affected by the forcing acceleration, as follows.

Consider an isolated propagating wave. If it oscillates in-phase with the forc-
ing acceleration (similar to figure 2.5) at one position, it will have the opposite
phase a quarter of a wavelength away. Thus, any effect on the wave speed will
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approximately cancel and the average phase velocity is largely unaffected.

But the standing wave (2.2) near the droplet is always in-phase with the
forcing acceleration. Temporarily neglecting surface tension, the restoring force
on the wave is proportional to h{g − am cos(2ωot)} where am is the maximum
acceleration, so the net change of momentum on a half-cycle is

∆p ∝

∫ π

2

−π

2

cos(ωot){g − am cos(2ωot)}dt ∝ g −
am
3

Since am > 3g in all the relevant experiments, the parametric driving out-
weighs the net restoring force of gravity and reverses it, leaving only surface
tension to restore the waves. This substantially reduces the average speed c.
These standing waves are the ones that interact with the droplet and deter-
mine its motion, so we will need a reduced value of c in the equations that
follow. When higher order terms are included, surface tension is less effective in
restoring larger waves, which are slowed a little more than small waves.

If the forcing acceleration is increased further, eventually it also overcomes
the restoring force of surface tension. The average speed c approaches zero
and the surface becomes unstable, which is experimentally undesirable. This
instability is related to (but is not quite the same as) the Faraday instability as
discussed in the advanced material below.

†Track 2 This material may be skipped on a first reading

If the container is small, the waves from a droplet do not need to propagate
very far before they reach the edge. There is a shallower region there (see
figure 2.1) which is designed to damp the waves by inducing greater shear.
In the absence of reflected waves, the instability must be local in origin. As
the forcing acceleration is increased, eventually the net restoring force on
the waves vanishes and the surface becomes unstable, as discussed above.

There is a related phenomenon, the Faraday instability, which is associ-
ated with reflected waves. In a large container, there are multiple layers of
parametrically reflected waves, similar to figure 2.6, which build up because
they are all coherent. Under these conditions, the surface may become un-
stable at a lower forcing acceleration than in a small container. The onset
of instability is largely determined by the viscosity of the liquid [13].

In practice the container is of intermediate size and the damping at the
edge is not perfect, and so both of these phenomena must be considered.

2.6 Quasiparticles or ‘ghost droplets’

Sometimes a droplet encounters an imperfection in the surface, such as a small
air bubble, which causes it to merge with the liquid. In a high memory regime,
the experimenters observed what they called a ‘ghost droplet,’ in which the
oscillation continues for a significant time as if the droplet were still there (see
figure 2.7). The motion continues as the energy cannot escape, being continually
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Figure 2.7: Quasiparticle or ‘ghost droplet’. A droplet (a) collides with a small
floating bubble and coalesces (b). The continuing wave field is photographed 5
periods later (c) and 15 periods later (d). Courtesy Antonin Eddi, Eric Sultan,
Julien Moukhtar, Emmanual Fort, Maurice Rossi and Yves Couder [14]

reflected back to the centre by the parametric Bragg reflection shown in figure
2.6.

A ghost droplet behaves like a resonant association between a particle and a
wave, even though there is no actual droplet there. It is a collective phenomenon
of the fluid motion. We will call it a ‘quasiparticle’ after similar structures in
condensed matter physics, such as holes in a semiconductor.

In the calculations that follow, we will find that quasiparticles are among the
simplest and most tractable solutions. They occur in the high memory regime,
where the effects of viscosity are nearly balanced by the driving acceleration and
the wave equation can be used without viscosity. The Bragg reflection forms
the boundary condition.

2.7 Summary

The famous experiments of Yves Couder, Suzie Protière, Emmanuel Fort and
Arezki Badouad shows how a bouncing droplet can ride on a wave and the two
can sustain each other in a mutual association. These ‘Paris experiments’ hold
out the prospect of illuminating the underlying processes of quantum mechanics,
which also manifest themselves as an association between a particle and a wave.
This is one reason for the growing interest in the topic in laboratories around
the world. The experiments have been extended by the original team and col-
leagues [10, 15, 16] and reproduced by others, including Jan Moláček and John
Bush at MIT [12]. A portion of a television programme about it is available
online on YouTube: see [17] or just search for ‘Couder’. We’d strongly suggest
you watch it!
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Chapter 3

Walker

We accept the reality of the world with which we are presented

Christof in The Truman Show

The droplet photographed in figure 2.2 on page 28 advances to the right
as it bounces. The researchers dubbed a moving droplet a “walker” and found
they could control its speed by varying the amplitude of the vertical forcing
acceleration, as shown in Figure 3.1.
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Figure 3.1: The speed of a walker depends on the maximum vertical forcing
acceleration, graphed as a multiple of the acceleration g due to gravity. (Data
courtesy Antonin Eddi, published in [14])

Figure 3.2 has three photographs of droplet moving at various speeds. At
low speed, the droplet merely appears to be displaced slightly to the right of
the associated wave field, but as the forcing amplitude and the droplet speed
increase, the wave field supporting the droplet becomes more complex.

We will begin by deriving a simplified model of this motion using the symme-
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Figure 3.2: A moving droplet. At low speed (left) it has been displaced from
the centre; at higher speeds the wave field becomes more complex. (Courtesy
Antonin Eddi, Eric Sultan, Julien Moukhtar, Emmanual Fort, Maurice Rossi
and Yves Couder [14])

tries of the wave equation, and testing its predictions against the experimental
data.

3.1 The wave field near a walker

We saw in section 1.14 that if f(x, y, t) is a solution to the wave equation, then
there is always another solution, f(x′, y′, t′), which is moving relative to the
fluid. The primed coordinates are given by an acoustic Lorentz transformation
(1.16) which we repeat below

x′ = γ (x− vt)

y′ = y

t′ = γ
(
t−

vx

c2

)

γ =
1√

1− v2

c2

Applying this to the wave field (2.2) near a stationary droplet gives a wave
field that walks across the surface at speed v, namely

h = cos(ωot
′) J0

(
ωor

′

c

)

where r′2 = x′2 + y′2. It is illustrated in Figure 3.3.

In the moving solution, all lengths in the direction of travel have contracted
by the factor 1/γ (substitute t = 0 into the Lorentz transformation), while all
time periods have dilated by the factor γ (substitute x = vt). This is mathemat-
ically the same as the Lorentz contraction and time dilation of special relativity,
but with an acoustic value for the characteristic speed c.

This does not fully describe the wave field near a walker because its frequency
of oscillation has been reduced by the Lorentz factor, and so it does not match
the boundary conditions in this experiment, where the bouncing frequency is
fixed. To obtain the full solution we must also use the scale symmetry of Euler’s
equation.
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Figure 3.3: (a) The wave field near a stationary droplet cos(ωot)J0(ωor/c) (b)
The Lorentz-boosted wave field cos(ωot

′)J0(ωor
′/c) moves at speed v.

Given that h(x′, y′, t′) is a solution to the wave equation, then h(αx′, αy′, αt′)
is also a solution where α is a scale factor (see section 1.13 for the proof). The
wave field near a walker is obtained by choosing α = γ, giving

x′′ = γ2(x− vt)

y′′ = γ y

t′′ = γ2
(
t−

vx

c2

)

Applying this coordinate transformation to the stationary wave field in (2.2)
gives

h = ho cos

(
ωot−

γ2ωov

c2
∆x

)
J0

(ωo

c
r′′
)

(3.1)

where ∆x = x − vt. This is a reasonable approximation for the wave field of
a walker because it obeys the wave equation, it advances across the surface at
speed v, and it oscillates at constant frequency, matching the boundary condi-
tions imposed by the walking droplet.

3.2 The speed of a walker

We saw in section 2.4 that a stationary droplet lands in a depression due to
previous bounces. In that stationary case, the wave field is given by (3.1) with
v = 0, and for simplicity we will assume the droplet lands when ωot = π, 3π, 5π
etc. Any variation from this landing time will merely change the origin of the
analysis to follow.

As the forcing acceleration is increased, the droplet is thrown higher and
lands later in the cycle (see figure 2.3). Suppose the delay in its landing time is
T . Substituting into (3.1) with y = 0 gives

h = − ho cos

(
ωoT −

γ2ωov

c2
∆x

)
Jo

(
γ2ωo

c
∆x

)

and differentiating gives

∂h

∂x

∣∣∣∣
∆x=0

= − ho
γ2 ωo

c

(v
c
sin(ωoT )

)

∂2h

∂x2

∣∣∣∣
∆x=0

= ho
γ4 ω2

o

c2

(
v2

c2
cos(ωoT ) +

1

2

)
(3.2)
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This shows that the surface has a negative slope in the x direction when the
droplet lands, which can be thought of as the ultimate cause of the motion.

The droplet does not reach its terminal speed. It is always on a cushion of
air, so the terminal speed is relatively high. Its speed is limited by the speed at
which the entire wave field advances. In fact, the droplet and the wave field are
constrained to advance together since they must always be in alignment.

The sloping surface displaces the droplet from the centre of the wave field,
as seen in the photographs in figure 3.2. It will settle near ∂h/∂x = 0. Defining
xd = ∆x at this point, we have ∂h/∂x|∆x=0 ≈ −xd ∂

2h/∂x2 and, from (3.2),

γ2ωo

(
v2

c2
+

1

2

)
xd = vT

where we have approximated sin(ωoT ) = ωoT and cos(ωoT ) = 1. Subsequent
waves will always be generated at this displaced position, with the net result
that the wave field moves at speed v ∝ xd to first order, and

γ2
(
v2

c2
+

1

2

)
∝ T (3.3)

3.3 Comparison with experiment

The test for such a simplified model can only come from the experimental data.
Figure 3.4 plots the same data as figure 3.1 on new axes. We obtained the
landing time T from the intersection between the trajectory of the droplet, for
which d2h/dt2 = −g, and the vertical motion of the oil tray. Figure 2.3 shows
this graphically in the case where the maximum forcing acceleration was 3.5g.
We took the characteristic speed c of the standing waves near the droplet to
be 11.95 mm/s, which is 8% larger than the maximum speed measured. The
plot shows that the linear relationship we derive between T and γ2(v2/c2 + 1

2 )
is remarkably accurate out to an acoustic Lorentz factor of γ = 2.6.

���

Figure 3.4: The data in figure 3.1 plotted on new axes. T is the landing time
and τ is the bouncing period. The straight line is a best fit to the experimental
data. The final point has an acoustic Lorentz factor of γ = 2.6.
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There is further information in detailed velocimetry studies, reported by
Eddi, Sultan, Moukhtar, Fort and Couder in [14]. Figure 3.5 is the wave field
measured near a walker at high forcing amplitude. The echoes of successive
bounces of the droplet can be seen in the peaks marked A,B and C. We can
obtain an approximation to the wave field by treating these three peaks as the
centres of three wave fields given by (3.1). The three waves reinforce nearly
perpendicular to the direction of motion, as can be seen from the taller waves
there. They interfere destructively at an angle behind them, producing the lines
with nearly zero amplitude resembling a wake.

� � �

Figure 3.5: The wave field near a walker at large forcing amplitude. Courtesy
Antonin Eddi, Eric Sultan, Julien Moukhtar, Emmanual Fort, Maurice Rossi
and Yves Couder [14]

We saw in section 2.5 that taller waves have a reduced wave speed due
to the parametric forcing. This reduced speed compresses the wave pattern
perpendicular to the direction of motion. At the same time, the wave pattern
is elongated parallel to the direction of travel because the source (A,B,C) is
elongated. However, there is a counteracting effect. The Lorentz contraction
in (3.1) compresses the wave field in the direction of motion. As we can see
in figure 3.6, the resulting waves are roughly circular. See [14, 18] for further
studies of the wave field.

Figure 3.6: Contours of the waves in figure 3.5.
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3.4 Summary

The wave equation for the waves on the surface of a liquid is Lorentz covariant
with an acoustic value for the speed c, and experimental measurements confirm
that the wave field of a walking droplet is Lorentz covariant to a good approx-
imation, out to a Lorentz factor of γ = 2.6. In the experiments for which data
are available, the bouncing frequency was constrained to be constant, which
caused the wave field also to be reduced in size.
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Chapter 4

Discovering absolute rest

I would suggest that almost the only hypothesis that can reconcile this opposi-
tion is that the length of material bodies changes, according as they are moving
through the ether or across it.

George Francis Fitzgerald in 1889 [19]

Bouncing droplets can be assembled into crystal-like clusters as shown in figure
4.1. The droplets that bounce in-phase with one another are approximately an
integral number of wavelengths apart, so each bounces in a depression due to the
waves from its neighbours. It is possible to construct a wide range of different
structures. For example, the droplets in the photograph have been arranged
with some bouncing antiphase, namely those at the centre and at interstitial
positions.

Figure 4.1: Photograph of a crystal of bouncing droplets (Courtesy Yves Couder)

In this chapter we will examine whether or not it is possible to construct
an apparatus using bouncing droplets which is capable of discovering its own
velocity relative to the oil.
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4.1 Symmetry with respect to absolute rest

We saw in section 1.14 that oscillatory solutions to Euler’s equation are Lorentz
covariant with an acoustic value for the characteristic speed c. This symmetry
is exact with low amplitude motion, where the equations of motion reduce to
the wave equation which is symmetric under Lorentz transformation. It is also a
very good approximation with larger amplitude motion (provided measurements
are restricted to expectations values) because the perturbations due to Euler’s
equation average to zero over a cycle.

It follows that any structure fashioned out of bouncing droplets and prop-
agating waves, such as the crystal in figure 4.1 or anything else we may care
to make, must also be Lorentz covariant. In particular, it will suffer a Lorentz
contraction in the direction of motion when it is moving relative to the oil

We now show that any such structure has the symmetry that it is incapable
of discovering ‘absolute rest’, by which we mean measuring whether or not it is
stationary relative to the oil, through any ‘intrinsic measurement,’ by which we
mean any quantity that depends only on local interactions.

Let h(x, y, t) be a solution to Euler’s equation. An example is the wave
field photographed in figure 4.1, or any other structure we may care to build
from bouncing droplets and waves propagating on the surface of the oil. From
the Lorentz covariance (section 1.14), every such system must have a twin,
h(x′, y′, t′), which has received a velocity boost by an acoustic Lorentz transfor-
mation and which is also a solution of the wave equation. Some may prefer to
add a scale enlargement, which does not affect the proof.

We will treat h(x, y, t) as divided into two sub-systems, S1 and S2, and in-
troduce an ‘intrinsic measurement’ which relies on one or more local interactions
between S1 and S2. These interactions will be a result of the nonlinear terms,
as discussed in section 1.11, and it must take place at a single position and time,
(x1, y1, t1) = (x2, y2, t2). By applying a Lorentz transformation, precisely the
same interaction will occur in its moving twin at an equivalent position and time
(x′1, y

′
1, t

′
1) = (x′2, y

′
2, t

′
2). Therefore all local interactions, and hence all intrinsic

measurements, will be the same in the two systems and it is not possible to
discover absolute rest from them.

4.2 Attempt to discover absolute rest

To illustrate this symmetry, consider how we might try to discover absolute rest
using an apparatus fashioned out of bouncing droplets. The apparatus consists
of the crystal photographed in figure 4.1. We will suddenly disturb the central
droplet. It might be magnetised and a magnet moved near it, or, more crudely,
a small puff of air might be used. A disturbance in the wave field will propagate
outwards in all directions at speed c relative to the oil, until it is reflected from
the edge of the crystal.

If the crystal is at rest relative to the oil then it is easy to see that the
wavelets will return to the central position at the same time and with the same
phase, from the symmetry of the crystal. This phase alignment constitutes our
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measurement.

Now suppose that the crystal is, in fact, moving relative to the oil. This
might be achieved experimentally using a flow of oil. If we had expected to
discover this motion by measuring a change in the interference between the
returning waves, we would observe a null result, from the symmetry we proved
above.

Another way to calculate the same result is to assume (counterfactually) that
the dimensions of the crystal do not depend on its velocity through the medium.
Since the disturbance moves at speed c relative to the oil, not relative to the
crystal, we would expect the waves returning from different directions to have
different phases when they recombine. However, the crystal suffers a Lorentz
contraction in the direction of motion relative to the perpendicular direction,
which exactly corrects for this and produces the null result. You are invited to
prove this in the next exercise.

Exercise 4.1 This exercise is about the time for waves, which propagate
at constant speed c relative to the oil, to go from the centre of the crystal
photographed in figure 4.1 to the edge and back again.

If the radius of the crystal is ro and it is stationary with respect to the
oil, show that the time for the waves to return to the centre is

to =
2 ro
c

The crystal is now made to advance at constant speed v relative to
the oil, where |v| < c, and the experiment is repeated. Neglecting any
scale enlargement, show that the perpendicular waves (i.e. those whose
component of velocity in the direction of motion is v) travel a total distance

r⊥ = 2
√
r2o + v2t21

where t1 is the time for them to propagate to the edge of the moving
crystal. By equating this expression to 2ct1, show that they return after
time

t⊥ = γ to

where γ = (1−v2/c2)−
1

2 . Suggest a simpler way to derive this result using
the Lorentz symmetry of the wave equation.

Alice does not know that the crystal suffers a Lorentz contraction in
its direction of motion. Show that she would expect a wave travelling in
the same direction as the crystal to go from the centre to the edge in time
ro/(c − v). By adding the time for the return path, show that she will
expect the reflected wave to return after time

t|| = γ2 to (wrong)

Why might Alice expect to discover the velocity of the crystal relative to
the oil by measuring the interference between the returning waves?
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Alice did not take account of the crystal’s Lorentz contraction in the
direction of motion. Correct her mistake and show that her experiment
will yield a null result.

What effect, if any, does a scale enlargement have on your conclusions?

There are a number of practical difficulties to overcome in realising this
experiment. The crystal may tend to rotate rather than move with a linear
velocity; and a large surface is required to accommodate the motion, which
poses practical difficulties in keeping the excitation constant over a large area.
The null result will be perturbed by viscosity, which is not Lorentz covariant.
Whilst this is mitigated by the parametric forcing, it is at the cost of different
wave components having different characteristic speed c (section 2.5). If these
difficulties prove significant they might be corrected for mathematically or the
experiment might be conducted in computer simulation.

4.3 Resonances in a lossless fluid

We saw in section 1.9 that the air obeys the wave equation to first order. One
solution to this equation is

ρ

ρo
= 1 + A cos(ωot) j0

(ωor

c

)
(4.1)

where ρ is the density of the air, ρo its mean density, j0 is a spherical Bessel
function of the first kind, and A < 1. This solution is similar to the wave field
of a bouncing droplet, but in three dimensions. Compare it with equation (2.2),
which has a circular Bessel function in place of a spherical one.

These resonances are likely to decay away quickly due to viscosity. There are
two possible solutions to this experimental difficulty. Firstly, a mechanism might
be used to pump energy back into them. In chapter 7 we will see experiments
like this which were conducted in the 19th century. Secondly, of interest here,
we could use a compressible fluid that does not have any viscosity at all.

When it is cooled below 2.172 Kelvin at atmospheric pressure, liquid 4helium
becomes a superfluid, which behaves in many respects like a compressible fluid,
such as the air, with zero viscosity. The speed of ordinary sound waves (called
‘first sound’) is approximately 230 m s−1. Acoustic solutions such as (4.1) will
be excited by thermal motion.

In chapter 11 we will examine these solutions and their boundary conditions
in more detail. It turns out that there are multiple families of resonances, with
various conservation rules, which we will compare with the so-called rotons
which are observed in superfluids. When excited by thermal motion, we will
see that these resonances make a significant contribution to the specific heat
and the thermal conductivity of the superfluid, which are known otherwise to
be abnormally large.

We saw (section 1.14) that periodic solutions to Euler’s equation are Lorentz
covariant with respect to expectation values. If they can be clustered into
groups, like droplet crystals, then the clusters will be Lorentz covariant as well.
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It follows that any hypothetical experimental apparatus fashioned out of them
will suffer a Lorentz contraction in the direction of motion and will be difficult
or impossible for it to detect its own velocity relative to the medium through
any expectation value.

4.4 d’Alembert’s paradox

The foregoing symmetry aplies when the relevant motion has low amplitude
so it obeys the wave equation, or, if it has larger amplitude, the frequency of
oscillation is too high for the measuring apparatus to detect, so it is limited
to measuring expectation values. It means it will be difficult or impossible for
any apparatus fashioned out of resonances or other pulsations in an inviscid
barotropic fluid to discover its own velocity relative to the fluid through any
expectation value.

There is an alternative way to demonstrate this, using a result in fluid me-
chanics which was proved in 1752 by Jean le Rond d’Alembert, a French mathe-
matician. He showed that a solid object moving at constant velocity through an
incompressible fluid of infinite extent without viscosity experiences no drag. His
proof was called d’Alembert’s paradox because it seemed to fly in the face of
common experience. Everyday fluids have at least some viscosity, so moving ob-
jects experience drag that increases with velocity and quickly becomes evident
unless the speed is very small. But d’Alembert’s demonstration only applies if
there is no viscosity.

A simple demonstration of d’Alembert’s paradox follows from the conserva-
tion of energy. The kinetic energy in the pattern of fluid flow is

∫
1
2ρu

2dx3 where
ρ is the density of the fluid and u the flow speed. There is only one irrotational
flow pattern near a solid object of a given shape (d’Alembert did not consider
turbulent motion, which does not arise without viscosity), and so the kinetic
energy must be constant and there can be no drag [1]. In particular, it is not
possible to detect the velocity of the fluid through drag forces.

It is straightforward to extend this demonstration to oscillatory systems such
as bouncing droplets and resonances in a superfluid. When measured at a fixed
point in the cycle, such as when the droplet is at its maximum height or the
resonance is at its greatest extent, the wave pattern is the same except in so far
as it has translated with the droplet. It follows that the energy is constant and
there can be no net drag when considered over a full cycle.

4.5 Summary

We have seen that bouncing droplets cluster into crystals which are Lorentz
covariant to a good approximation, with an acoustic value for the characteristic
speed c. If perturbations such as viscosity can be neglected, we saw that it is
diffucult or impossible for such a structure to discover its own velocity relative
to the fluid using local expectation values.

More generally, we saw that resonances in a lossless fluid such as superfluid
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4helium possess the same symmetry provided that only ‘expectation values’
(those taken over a complete cycle) are measured.

4.6 Dialogue

Three friends meet on a regular basis to discuss the experiments in this mono-
graph. Alice describes the conventional models of physics; Bob applies Alice’s
models to bouncing droplets and superfluids; and Carol advances an alternative
interpretation.

On the first day of their dialogue, the friends are discussing the observation
that material bodies change their dimensions as they move.

(a) Alice says that material bodies change their dimensions as their speed is
varied relative to an observer. She concludes that the fabric of space and
time has been compressed.

(b) Bob says that crystals of bouncing droplets change their dimensions as their
speed is varied relative to the fluid. He concludes that the fabric of space
and time has been compressed.

(c) Carol says both bodies are resonances obeying the wave equation in a fluid,
and so their dimensions must change by the amount that is observed. The
fabric of space and time is not compressed since this would cause additional
distortion, contrary to observation.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Chapter 5

Inverse square force

Outside of physics we know nothing of action at a distance

Albert Einstein [20]

When a walker approaches the edge of the container, it does not actually
touch the edge but is deflected away. The stroboscopic photograph in figure
5.1 shows a droplet travelling three times round a rectangular dish. In this
experiment, the walls of the dish were vertical, without the region of reduced
depth near the edge in other experiments. This photograph yield data which
gives a deep insight into one of the hydrodynamic forces between bouncing
droplets.

←boundary

Figure 5.1: Stroboscopic photograph of a droplet’s path (dots) deflected near the
walls of the container (solid). (Courtesy Suzie Protière, Arezki Badaoud and
Yves Couder) [11]
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5.1 Velocity normal to the boundary

The velocity normal to the boundary, V⊥, can be measured from the photograph
in figure 5.1, using the fact that an equal time passes between each stroboscopic
image. Figure 5.2 plots V 2

⊥ as a function of the inverse distance 1
r from the

boundary.
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Figure 5.2: The square of the velocity normal to the boundary, V 2
⊥, as a func-

tion of inverse distance from the boundary. The data are extracted from the
stroboscopic images near the bottom of figure 5.1.

Exercise 5.1 Figure 5.2 was obtained by measuring the stroboscopic
images near the bottom of figure 5.1. The apparatus is 10cm across and
the walker velocity is 18mm/s. By measuring a blow-up of a different part
of the same figure, produce your own graph of the square of the normal
component of velocity against inverse radius.

For each branch in figure 5.2, the data near the boundary (towards the right
of the graph) fall very nearly on a straight line, before deviating at greater
distances. This straight line can be written

V 2
⊥ = V 2

o −
B

r
(5.1)

where the slope of the graph is −B and it depends on the branch.

Extrapolating to 1/r = 0 from the collinear points to the right of the upper
branch, Vo ≈ 18mm/s, which is the same as the speed of the droplet to the
accuracy of measurement. The lower branch has Vo ≈ 14mm/s. We will examine
this reduced value later in this chapter, along with the reason for the deviation
from the straight line when the droplet is further from the boundary.
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These experimental results show there is an inverse square force of repulsion
when the droplet is near the boundary. This can be seen by multiplying equation
(5.1) by 1

2m where m is a constant mass. The left hand side is the kinetic energy
and the right hand side the change in potential energy under an inverse square
force.

Exercise 5.2 Obtain equation (5.1) directly by integrating Newton’s
second law of motion F = ma with an inverse square force.

Hint a = dV
dt = dV

dr
dr
dt = V dV

dr = 1
2d(V

2)/dr.

5.2 Inverse square force in bubble experiments

Figure 5.3: Degassing oil by applying ultrasonic vibration. The process takes
about 5 seconds. (courtesy Hielscher Ultrasonics GmbH)

The phenomenon responsible for the repulsion from the boundary is called
the secondary Bjerknes force. It is used to remove unwanted bubbles of gas
from oils and other liquids using ultrasonic vibration, as in figure 5.3. Ultrasonic
pressure waves cause nearby bubbles to expand and contract in phase with one
another, inducing oscillatory radial flows in the liquid. Near the mirror plane
equidistant from the two, the flows reinforce as illustrated in figure 5.4. The
increased velocity results in a reduced Bernoulli pressure on the mirror plane,
and a force of attraction between the bubbles which merge and rise to the
surface.

You can experience the same attractive force by putting your hand in a high-
speed hand-dryer such as in figure 5.5. The air flow near your hand is similar to
one half of figure 5.4, with your hand in place of the mirror plane. As long as
you do not physically block the flow, you will feel your hand attracted towards
the nearest nozzle due to the reduced Bernoulli pressure.

The exact same mechanism causes a bouncing droplet to avoid the boundary
of the dish. The boundary has the same effect as an imaginary image droplet
on the other side, at the same distance, and bouncing antiphase. Each droplet
drives radial three dimensional flows in the liquid, which are similar to those near
the bubbles in the degasser – except that the bouncing droplets are antiphase,
so the force is one of repulsion rather than attraction.
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Figure 5.4: Schematic of the flow from two sources. The flows reinforce near the
mirror plane, resulting in a reduced Bernoulli pressure which causes the sources
to be attracted to one another.

Figure 5.5: A high-speed hand-dryer (copyright image reproduced by kind per-
mission of Dyson Research Limited)

5.3 Magnitude of the force

In figure 5.6, a vacuum cleaner nozzle ingests volume Q1 of air per unit time.
If the exhaust is at a large distance and the flow is spherically symmetric, the
air speed at radius r will be U = Q1/(4πr

2). A second nozzle at this radius,
with volume Q2 per unit time, will ingest momentum along with the moving air
particles

dp

dt
= ρoUQ2 = − ρo

Q1Q2

4πr2
(5.2)

and so it will experience an inverse square force of attraction towards the other
nozzle.

The direction of flow, and hence of the force, will be reversed if one of them
is set to blow; then the force will be reversed for both hoses, by conservation
of momentum (we assume the flow remains spherically symmetric, which might
be achieved using a baffle on the end of the hose). More generally, oscillatory
motion results in an attractive force if it is in-phase, and a repulsion if it is
antiphase. The magnitude of the force is given by (5.2) averaged over a cycle.

In the droplet experiments, the force in (5.2) must be doubled due to the
hemispherical geometry but halved to average over a cycle, leaving its magnitude
unchanged.

Suppose a droplet of volume V bounces at frequency f . It will induce a
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Figure 5.6: The flow near two vacuum cleaner nozzles. (copyright images of
Dyson machines reproduced by kind permission of Dyson Research Limited)

flow fV directly, which will be enhanced by secondary flows due to entrained
fluid and the resonance, giving Q = βfV where β is a factor into which we
will also incorporate the effects of higher harmonics. Substituting into (5.2) and
remembering to invert the sign, the acceleration of a droplet is

a = −
F

ρoV
=

V β2f2

4πr2

Using f = 25Hz and a droplet radius of 0.35mm (a typical value; the size was
not reported in this run), the acceleration measured in the upper branch of
figure 5.2 gives an apparently reasonable β ≈ 5.

5.4 The force expressed in conventional form

An inverse square force can always be written in the form

F = α
b̄c

r2
(5.3)

where α is a dimensionless constant and b̄ is a constant with the dimensions of
energy × time.

Suppose the radius of a bubble is given by

rb = ro(1 +A sinωt)

We will simplify the calculation by assuming that A is small. The flow speed at
the surface is

vs =
drb
dt

= A roω cos(ωt)
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Multiplying by the area, the flow is Q = 4πr2ovs. Substituting into (5.2) gives

F = 4πρor
3
o.r

3
oA

2ω2 cos2(ωt)
1

r2

= 3md.r
3
oA

2ω2 1

2r2

where md is the displaced mass of the bubble and we have replaced cos2(ωt) by
its average value, 1

2 .

This can be rearranged into the conventional form (5.3) using the fact that
the inertial mass of the bubble, due to the motion of the displaced fluid around
it, is approximately m = 1

2md [1]. Thus

α = 3A2
(roω
c

)3

b̄ =
mc2

ω
(5.4)

The dimensionless constant α depends on whether the bubbles are resonant
or not. Consider the resonant case. Neglecting geometric factors (which are of
order 1), the bubble radius will vary from a small value to 2ro, giving A ≈ 1.
The maximum surface speed roω will also increase, but it cannot much exceed
the speed of sound in the fluid since the pressure would reduce to zero due to
the Bernoulli effect. Therefore, if the bubbles are resonant then both A and the
ratio roωo/c will be of order 1, and so α is also of order 1.

5.5 Constant of the motion

To the extent that viscosity can be neglected, so the Lorentz symmetry is not
perturbed, b̄ in (5.4) is a constant of the motion. This follows from its di-
mensions, energy × time, which are Lorentz invariant as illustrated in the next
exercise.

Exercise 5.3 A body of mass m has energy mc2 when stationary, and
kinetic energy 1

2mv
2 when at speed v ≪ c. Show that its total energy is

E ≈ mc2
(
1 +

v2

2c2

)

An oscillator of period To is set in motion at speed v ≪ c. By applying
the Lorentz transformation (1.16) with x = 0 show that its period, when
measured at a fixed position, is

T =
To
γ

≈
To

1 + v2

2c2

By considering a series of infinitesimal velocity boosts, show that E × T
is a constant of the motion at all speeds.
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Another way to see that b̄ is a constant of the motion is to consider the wave
field of an acoustic resonance which remains stationary in a moving fluid. The
inertial mass m of the resonance is proportional to its volume, so the Lorentz
contraction multiplies it by 1/γ, whilst its angular frequency ω is multiplied by
the same factor, so b̄ ∝ m/ω is independent of velocity.

Experimentally, the fit with the inverse square force in (5.3) confirms that b̄
is constant, and in particular it does not depend on position, direction, or the
perpendicular component of velocity. However the speed |v| = (v2⊥+v2||)

1

2 of the
droplet was kept constant by the experimental conditions and so it is not possible
to verify from the data that b̄ is independent of speed. One way to test for this
might be to vary the forcing amplitude and frequency, but this would introduce
experimental difficulties since the variation is known to affect the proximity to
the Faraday instability, particularly near a boundary. A better test might be
to make the droplet out of a ferrofluid and de-weight it magnetically so it lands
later in the cycle and travels faster. The factor (1 − v2/c2)

1

2 from the scale
enlargement in (3.1) could be corrected for as in chapter 3. In such a test, of
course, the mass of the droplet itself must be treated separately from the inertial
mass of the wave field.

5.6 Comparing the force between electrons

In (5.4), the constant of motion b̄ is defined in exactly the same way as Planck’s
reduced constant

h̄ =
mc2

ω

where m is the mass of an electron and ω its angular frequency. The expres-
sions differ, of course, in that the speed c has an acoustic value in the droplet
experiments.

Further, equations (5.3) and (5.4) for the force between droplets are also
in exactly the same form as those for the electrostatic force between electrons,
which is given by

F = α
h̄c

r2

α ≈
1

137.036

The dimensionless quantity α is called the ‘fine structure constant’ and it is used
to gauge the strength of the electromagnetic interaction.

In addition to having an acoustic value for the speed c, the force between
droplets differs from the force between electrons in two respects. Firstly, they ap-
pear to have opposite signs, since like droplets (those that bounce in phase with
one another) attract and unlike ones (which bounce antiphase) repel, whereas
like electrical charges repel and unlike one attract. Secondly, the mechanical
force between droplets is about two orders of magnitude stronger than the force
between electrons on a comparable basis, since the fine structure constant for
the force between droplets is α ∼ 1.
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This suggests a limitation of these simple bouncing droplets as an analogy
with quantum mechanics, namely that spherically-symmetric solutions are not
a good model for the electron. In chapter 10 we will see that pairs of droplets
can orbit around one another. There is an inverse square force between them
which has the opposite sign and a reduced fine structure constant.

5.7 The effect of fluid depth

The above analysis assumed the droplet is closer to the boundary than the depth
of hte oil. When the droplet’s distance from the boundary exceeds the depth,
the flows can no longer remain three-dimensional because they are restricted
by the bottom of the oil tray, and they become more two-dimensional. This
reduces the force of repulsion, as shown in the next exercise.

Exercise 5.4 The force was calculated in section 5.3 for three dimen-
sional motion.

By a similar analysis where the flow is confined to a two-dimensional
region, show that the flow speed is U = Q2

2πr . Hence or otherwise show that
the force is proportional to 1/r and the potential energy of the interaction
is proportional to log r.

By comparing the slopes of the graphs of 1/r and log r, show that the
force is reduced in the latter case.

The depth of the liquid in this experiment was not reported, but it was
typically 5mm in similar experiments. In figure 5.2, we see that the deviations
from the straight line begin after about 10mm, as we might expect.

5.8 Maxwell’s equations

When the droplets or bubbles are stationary, we saw that there is an inverse
square force between them. This obeys the same equations as the electrostatic
field near a charged particle, since both are inverse square.

These equations can be extended to the case of moving droplets by noting
that the solutions are acoustically Lorentz covariant to a reasonable approxima-
tion. So we need equations that are Lorentz covariant and that reduce to the
equations of electrostatics when stationary.

These conditions are met by Maxwell’s equations with an acoustic value of
c. In fact, they are unique in that Maxwell’s equations (more strictly, equations
that are equivalent to them when they are averaged over a cycle) are the only
ones that satisfy them. Suppose the contrary, that there existed a different set of
Lorentz covariant equations that produce the same electric field with the same
boundary conditions. The only difference between the two solutions can be in
the magnetic field. But a Lorentz transformation turns a pure magnetic field
into one with an electrical component, and so the electrical fields differ in the
new reference frame. This is a contradiction.
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†Track 2 This material may be skipped on a first reading

Here we assume familiarity with the electromagnetic four-potential rep-
resentation of Maxwell’s equations, which we review very briefly before
considering how to apply it to the force between the droplets.

Maxwell’s equations can be written as

(
1

c2
∂2

∂t2
−∇2

)
Aα = µoJ

α (5.5)

The electromagnetic four-potential Aα = (φ/c,A) comprises the electro-
static potential φ and the magnetic vector potentialA, and the four-current
Jα = (cρ,J) contains the charge density ρ and the current density J.

In a static situation, the time dependence and the current J both vanish,
so Maxwell’s equations reduce to

−∇2φ =
ρ

ǫo
(5.6)

where µoǫoc
2 = 1. In the case of a single charge Q the solution to this

equation is

φ = −
Q

4πǫor

and a particle of charge q experiences an inverse square force,

F = q∇φ =
Qq

4πǫor2

The interaction between droplets maps on to this formalism because it is
also a Lorentz covariant inverse square force. Consequently, the interaction
between stationary droplets can be described using the same equations as
those of electrostatics, with an appropriate choice of constants.

Note that (5.6) has omitted any time dependence, so it is not valid when
the droplets are in motion. To reinstate the time dependence, the term on
the left hand side must be extended to a Lorentz covariant form,

(
1

c2
∂2

∂t2
−∇2

)
φ =

ρ

ǫo

Further, a moving droplet forms a current which obeys the continuity
equation

∂ρ

∂t
+ ∇.J = 0

This is only possible if the current J also obeys the same equation. There-
fore the interaction between the droplets obeys Maxwell’s equations (5.5).
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5.9 Magnetic component of the force

We now turn to the lower branch of figure 5.2.

A walker’s speed is fixed by the driving amplitude as discussed above. As
the walker’s velocity normal to the boundary slows down and reverses in the
experiment, it must accelerate parallel to the wall to maintain constant speed.
This velocity boost is observed in the experiment. The researchers estimated
the angle of incidence (relative to the normal to the boundary) at about 38◦,
and of reflection at about 53◦.

In addition to the force of repulsion between the droplets, which obeys the
same equations as those of electrostatics, there is a force of attraction when they
are moving at a common velocity v parallel to the boundary. This obeys the
equations of magnetism. It is like the magnetic force of attraction between two
electrons moving at a common velocity parallel to one another. The magnetic
force reduces the total force by a factor 1−v2/c2, as shown in the next exercise.

Exercise 5.5 A long straight wire carries electrical charge ρ per unit
length. Show that the electric field at radius r from it has magnitude

E =
ρ

2πǫor

The wire is set moving at velocity v parallel to its length. Show that the
moving charges constitute a current I = ρv which generates a magnetic
field of magnitude

B =
µoρv

2πr

A second wire, identical to the first, is placed parallel to it and moves at
the same velocity. Write down expressions for the electrostatic force Fe

and the magnetic force Fm that it experiences per unit length.

By using the identity µoǫoc
2 = 1, show that their ratio is

Fm

Fe
= −

v2

c2
(5.7)

and therefore the total force has been reduced by a factor 1− v2/c2.

(Harder) By using Maxwell’s equations in the four-potential representa-
tion (5.5), write down an expression for the ratio of the electrostatic po-
tential to the magnetic vector potential due to a charge that is moving at
velocity v. Hence or otherwise show that the ratio of forces in the above
experiment is given by (5.7), irrespective of the shape of the wires.

This reduced force accounts for the reduced slope of the lower graph in figure
5.2. We will take the approximation that the upper branch in figure 5.2 has no
velocity perpendicular to the direction of travel, but by the time the droplet
has reached the lower branch it has been accelerated to the full perpendicular
speed, v = 18 mm s−1 by the tangential force. The force is proportional to the
slope of the graph, whose ratio is 14/18. Equating these two gives v = 0.47c,
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which suggests the droplets were moving at about half the relevant wave speed
near the droplets.

5.10 Propagating waves

Since the force between bouncing droplets obeys Maxwell’s equations with an
acoustic value of c, and Maxwell’s equations tell us that propagating waves
will be emitted when a source is accelerated, it follows that a droplet will send
out propagating waves into the medium if it is disturbed. These waves are
modulations of the standing waves surrounding the source. We discussed similar
waves in the droplet crystal experiment (section 4.2) but we are not aware of
attempts to test for them experimentally to date.

To the extent that nonlinearities such as the parametric forcing can be ne-
glected, these wave will have momentum

p =
E

c

where E is the energy they transport. The proof follows by treating the wave as
a sum of propagating Fourier components. Each component has momentum p =
E/c where E is the energy transported by the component (section 1.15). The
energy and momentum must both be counted as positive or negative according
to the direction of travel, and so it follows that the sum of these components
must have the same energy-momentum relationship. For example, suppose two
components propagate in opposite directions with energies E1 and E2. The total
energy transported is E = E1 − E2 and the total momentum is p = p1 − p2 =
(E1 − E2)/c = E/c.

These waves are analogous to light waves in that they obey Maxwell’s equa-
tions and have the same energy-momentum relationship.

5.11 Summary

We have seen that droplets experience an inverse square force of attraction or
repulsion whose sign depends on their relative phases. The force obeys Maxwell’s
equations with an acoustic value for the speed c. An analogue of the magnetic
force was observed in the experiment.

The fine structure constant of the interaction is order 1, which is two or-
ders of magnitude larger than that of the electromagnetic interaction, and it is
associated with a constant of motion, b̄ , which is defined in the same way as
Planck’s constant, again with an acoustic value for the speed c.

When a droplet is suddenly disturbed we predict it will emit propagating
waves which obey Maxwell’s equations and have the same energy-momentum
relationship as light waves. However, we are not aware of attempts to measure
them experimentally.
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5.12 Dialogue

On day 2 of their dialogue, Alice, Bob and Carol are discussing the concept of
action-at-a distance.

(a) Alice says there is an inverse square force between electrons, even when they
do not touch. This action at a distance shows the failure of mechanistic
theories which seek to reduce all interactions to local collisions.

(b) Bob says there is an inverse square force between bouncing droplets, even
when they do not touch. This action at a distance shows the failure of
mechanistic theories which seek to reduce all interactions to local collisions.

(c) Carol says the forces are all transmitted by local collisions in a fluid.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Diffraction

Entia non praeter necessitatem multiplicandur.

William of Ockham

We saw that a droplet is repelled from a barrier. When the barrier has one
or more slits in it, some droplets pass through as we can see in figure 6.1.

Figure 6.1: A droplet passing through an aperture in a submerged barrier.

When the Paris team measured which direction they went, they found almost
the same diffraction patterns as you see for light waves, water waves or quantum
mechanical particles, as in figure 6.2. Diffraction is only observed in the high
memory regime. In the low memory regime the waves from a droplet have little
effect because they propagate away and are lost to viscosity.
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Figure 6.2: Histogram showing the number N of droplets (out of 125) that emerge
at angle α to the normal at large distance. The solid line is a single-slit diffrac-
tion pattern. Courtesy Yves Couder and Emmanuel Fort [15].

6.1 Wavelength

We saw (equation 2.2) that the surface height h near a stationary droplet has
two component factors which we will now write ψ and χ where

h = ψ χ

ψ = cos(−ωot)

χ = − ho J0(krr) (6.1)

The forcing frequency and amplitude, and hence the walker velocity |v|,
were kept constant in these diffraction experiments. The variation was in vx
and vy, and so the wave field of the moving droplet can be obtained by an
acoustic Lorentz transformation (1.16) in the x direction, Lx, followed by a
transformation in the y direction Ly, so that L = LyLx. The scale enlargement
in (3.1) can be treated as a constant and neglected since |v| is constant.

We are interested in the wave field of a droplet that passes through the
aperture in the x direction, perpendicular to the barrier. The component of
velocity in the y direction has a mean of zero, but it perturbs the following
analysis, as we will shortly see. Applying Lx to (6.1) gives

ψ = cos(−ωot
′)

χ = − ho J0(krr
′)

In this moving solution, the wave field χ advances with the droplet at speed vx,
and ψ has become a planar wave

ψ = cos(kx− ωt) (6.2)

where the values of k and ω can be obtained by defining S = −ωot
′ and noting,

from (1.16),
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k =
∂S

∂x
=

∂S

∂t′
∂t′

∂x
=

γωo

c2
vx

ω = −
∂S

∂t
= −

∂S

∂t′
∂t′

∂t
= γωo (6.3)

The wavelength of ψ is λ = 2π/k, or

λ =
2πc2

ωvx
=

b

p
(6.4)

where p = mvx is the momentum of the wave and b = 2πb̄ where b̄ = mc2/ω.

We have already encountered b̄ with the inverse square force. In section 5.5
we saw it is a constant of the motion. This suggests an experiment using a
single droplet in which the value of b̄ is inferred by two different methods: from
the wavelength and from the inverse square force. The experimental constants
might be eliminated by noting that the ratio of the two inferred values should be
independent of the droplet size as long as second-order terms can be neglected.
We are not aware of such experiments being conducted.

Equation (6.4) is the same as the de Broglie wavelength of a quantum me-
chanical particle with the constant of motion b in place of Planck’s constant h.
It can be extended to arbitrary axes. If the velocity is v = (vx, vy) then ψ in
(6.2) becomes

ψ = cos(k.x− ωt) (6.5)

where
p = b̄k (6.6)

and p = (px, py) is the momentum.

Exercise 6.1 By substituting λ = 2π/|k| into p=b̄ k, and choosing
suitable axes, show the wavelength of the waves is the same as in (6.4).

6.2 The diffraction pattern

We now compare the histogram in figure 6.2 with the diffraction pattern of ψ
through the aperture.

Exercise 6.2 Waves of wavelength λ propagate normally towards an
aperture of width L. The diffraction pattern is plotted against angle θ.

By considering two small elements of the aperture that are a distance
1
2L apart, show that the wavelets from one of them have to travel an
extra distance 1

2L sin θ compared to the other. Show that they interfere
destructively, and hence that the diffraction pattern has a minimum, when
λ = L sin θ.
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The width of the aperture was 14.8 mm and, based on measuring the vertical
distance from the barrier to the first node (measured near the corner to the right
of the aperture), the wavelength of ψ near the aperture was λ = 7.3 mm. When
waves of wavelength λ diffract through a single aperture of width L, the first
minimum of amplitude is at angle θ where λ = L sin θ. The above measurements
predict this will occur at θ = 30◦. The minimum in the experimental histogram
occurs between 30◦ and 35◦.

So we observe that the minimum in the histogram occurs where the waves of
ψ interfere destructively. It is as if the droplet were repelled from these regions.
This can be understood as follows. Bigger waves have deeper wave troughs, so a
droplet bouncing in them will be physically lower than one bouncing elsewhere.
Consequently it will be attracted towards them by the force of gravity. This
deflects them away from the regions of destructive interference of ψ where the
waves are smaller and the droplets cannot bounce as low.

Figure 6.2 superposes this theoretical diffraction pattern (solid line) on the
experimental data. In comparison, more droplets are deflected at large angle
than would be expected. Droplets that approach the aperture normally will
produce the usual diffraction pattern, but droplets that are aimed, say, to the
right of it will be accelerated parallel to the boundary (as we can see in figure
5.1). When they go through the aperture they will have momentum towards
the left and will be more likely to end up at a large angle in that direction.

6.3 Double-slit diffraction

In another experiment, the droplet was made to diffract through two slits.

Figure 6.3: Droplet passing through a double slit

The histogram of the directions taken by the droplets after they had passed
through one or other of the slits is shown in figure 6.4.
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Figure 6.4: Histgoram of the deflection angle for 75 droplets that have passed
through one of two slits. The solid lines show a possible fit to a double-slit
diffraction pattern. Courtesy Yves Couder and Emmanuel Fort [15].

Exercise 6.3 Waves of wavelength λ propagate normally towards two
slits which are distance L apart. After the waves have passed through, the
diffraction pattern at angle θ to the normal is measured at large distance.
Show that the waves from one slit have to travel an extra distance L sin θ
compared to the other.

Use your result to show that the diffraction pattern has a minimum
where λ = 2L sin θ.

The distance between the slits was 14.3mm. Using the above parameters we
would expect the first diffraction minimum to be at approximately 15◦, which
is what the researchers observed.

6.4 Classical approximation

Defining a quantity with the dimensions of energy

E = b̄ω

then, from (6.3),

ω2 − c2k2 = ω2
o

E2 − p2c2 = m2
oc

4

where we have used p2 = b̄2k2 from (6.6) and the definition of b̄ in (5.4).
This is analogous to the relativistic equation of motion for a classical particle
of rest mass mo and energy E, which has the same form. The low-velocity
approximation is

E = Eo

(
1 +

p2c2

E2
o

) 1

2

≈ Eo +
p2

2mo
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which is the Newtonian equation of motion.

In order to include the inverse square force between the wave fields which
we have seen in the previous chapter, it suffices to add a term to the energy,
namely

b̄ω = E = mc2 − V (6.7)

where V is the potential energy associated with the interaction.

These equations of motion are valid when coherent effects such as diffraction
are not relevant.

6.5 Klein-Gordon equation

From (6.1), the factor ψ for a stationary particle obeys the equation

∂2ψ

∂t2
= − ω2

oψ (6.8)

In order to extend this equation to the case of a droplet that is moving
relative to the fluid, we need a Lorentz covariant equation with an acoustic
value of c that reduces to (6.8) in the stationary case, namely

∂2ψ

∂t2
− c2∇2ψ = ω2

oψ (6.9)

since the left hand side is Lorentz invariant.

Equation (6.9) is the same as the Klein-Gordon equation of quantum me-
chanics for a relativistic particle, with an acoustic value for the speed c.

6.6 Schrödinger equation

If the wave field for a stationary droplet (6.1) receives a Lorentz boost with
velocity v ≪ c then we get ψ = cos(−ωot

′) = cos(vxωo/c
2−ωot) where we have

approximated γ = 1. Writing this in the form

ψ = R cos(θ − ωot) (6.10)

gives θ = vxωo/c
2. Extending to arbitrary axes gives the velocity of the droplet

as determined by the local waves

v =
c2

ωo
∇θ (6.11)

The function in (6.10) can be analytically continued into the complex plane
by defining

ψs = R eiθ (6.12)

so that ψ = ℜ(e−iωotψs) where ℜ means the real part. Now, ψ obeys the Klein-
Gordon equation (6.9), and we will seek a solution where both the real and
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imaginary parts of e−iωotψs obey this same equation, which is satisfied when

i
∂ψs

∂t
= −

c2

2ωo
∇2ψs (6.13)

where we have neglected the term in ∂2ψs/∂t
2, which is small when the velocity

is small.

Substituting (6.7) in the form b̄ωo = moc
2 − V gives

i b̄
∂ψs

∂t
=

(
−

b̄2

2mo
∇2 + V

)
ψs (6.14)

This is the same as the Schrödinger equation for the wavefunction of a quan-
tum mechanical particle, with the constant of motion b̄ in place of Planck’s
reduced constant h̄.

6.7 Probability density

If the starting position of a droplet is not known precisely, and it is allowed to
evolve over time, then there will be a range of final positions which we can calcu-
late probabilistically. We will borrow part of the reasoning of David Bohm [21],
who solved this problem in 1952. Madelung [22] and de Broglie [23] had inde-
pendently derived similar equations in 1926 and 1927 respectively. They had
all unknowingly written down the probabilistic equation for the motion of a
bouncing droplet.

Substituting the definition ψs = Reiθ (equation 6.12) back into (6.13), and
taking the imaginary part when θ = 0 gives

∂R

∂t
= −

c2

2ωo
(R∇2θ − 2∇R∇θ)

which can be rearranged into

∂R2

∂t
+ ∇(R2 v) = 0 (6.15)

where v is the velocity of the droplet in (6.11).

This equation has a simple interpretation. When the velocity v of a com-
pressible fluid, such as the air, varies with position, its density ρ obeys the
continuity equation ∂ρ

∂t +∇(ρ v) = 0 (see the proof is in section 1.9). This is the
same as (6.15) with R2 replaced by ρ. Since the velocity of the droplets is v,
it follows that the probability density for the position of the droplet, averaged
over nearby trajectories, must be R2 = |ψs|

2 (provided the initial value of |ψs|
2

is appropriately calibrated, or ‘normalised’). An analogous probability density
|ψ2

s | is assumed as a postulate in the Copenhagen interpretation of quantum
mechanics.

This is confirmed by the experimental results in figure 6.5. A droplet is
repelled from a region of reduced depth for the reasons given in chapter 5.
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Figure 6.5: Droplets encounter a region of reduced depth, which repels them. The
x axis is the width of the barrier, and the y axis is the probability the droplet
tunnels through the barrier, plotted on a logarithmic scale. Courtesy Antonin
Eddi [24]

When it reaches such a barrier, it is usually reflected but occasionally it passes
through or ‘tunnels’. The graph shows that the probability a droplet crosses the
barrier reduces exponentially with its width. If you solve Schrödinger’s equation
with a barrier, you get the same exponential decay of |ψ2

s | with width, as shown
in the next exercise.

Exercise 6.4 Consider a stationary solution to the Schrödinger-like equa-
tion (6.14), where ib̄∂ψs/∂t = Eψs. In the region 0 < x < D, there is a
barrier where V > E.

The waves near x = 0 are given by ψs = f(t), where f(t) is a function
of time with |f |2 = 1. Show that ψs = e−axf(t) inside the barrier where
a is a constant. You are not required to evaluate a.

Just on the other side of the barrier, show that ψs = e−aDf(t) and
|ψs|

2 = e−2aD.

The foregoing calculation led Bohm to hypothesise the existence of a tiny
particle which moves at the velocity v in (6.11), guided by waves that obey
Schrödinger’s equation (6.13), whose probability density is |ψ2

s |. He had un-
knowingly obtained the equations of motion for a bouncing droplet at low ve-
locity (but without the factor χ in (6.1)). His insight is remarkable. For him,
this was purely an abstract exercise; he did not have the droplet model to inspire
him to derive these equations from Euler’s equation.

Based on these equations, Bohm showed the resulting mechanics to be in-
distinguishable from the Copenhagen interpretation of quantum mechanics. He
subsequently found that Louis de Broglie had suggested a similar idea in 1927,
and the model is now called the de Broglie-Bohm interpretation of quantum
mechanics. He does not appear to have known about Madelung’s related hy-
drodynamic interpretation of 1926.
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6.8 Same equations, same solutions

Given that we have the same mathematics up to a constant factor, we might
expect the calculations of quantum mechanics to carry over to other aspects of
the droplet experiment.

Figure 6.6: A droplet in a rotating bath is attracted towards the centre, and
exhibits quantized orbits. Courtesy Emmanual Fort [16]

In figure 6.6, the experiment was conducted in a rotating bath, where the
droplet was attracted towards the centre. They exhibited quantized orbits. See
also later reports of self-organization into quantized eigenstates of a classical
wave-driven particle [25].

6.9 Summary

In the approximation that viscosity can be neglected, we have seen that the
wave field of a bouncing droplet has two component factors, ψ and χ. The
former obeys the same equations of motion as the wavefunction of a relativistic
quantum mechanical particle, with an acoustic value for the speed c and the
constant of motion b̄ in place of Planck’s reduced constant h̄. When its starting
position is not known precisely, the motion of the droplet can be calculated
probabilistically, with |ψ|2 being the probability it arrives at a given position.
These results are confirmed by experiments on single-slit diffraction, double-slit
diffraction, tunnelling and quantised energy levels.

In the most common ‘Copenhagen’ interpretation of experiments in quantum
mechanics, it is assumed that the wavefunction ψ is a complete description of
the system. This is not true in the droplet experiments, where ψ is only one
factor in the wave field near a droplet. We will turn to the factor χ in chapter
10.
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6.10 Dialogue

Sensational new experimental results have recently been reported in the US
by a team that claimed to reproduce quantum mechanical diffraction precisely,
but in a completely classical system. They reproduced the double-slit droplet
experiment, but in a dark room so it was not possible to photograph the droplets
during their path (which they said mirrored quantum mechanics, where you
cannot observe the exact path of a particle). The droplets were detected at the
outer boundary and produced a double-slit diffraction pattern like figure 6.4.

On day 3 of their dialogue, Alice, Bob and Carol learn of these new results,
and argue for the following propositions.

(a) Alice says an electron splits in two when it encounters two slits. One part
goes through one slit, while the other goes through the other slit. They
recombine at the exact moment they are detected, producing the diffraction
pattern. There is a special faster-than-light process that prevents the two
parts from being detected at the same time.

(b) Bob says a bouncing droplet splits into two when it encounters two slits.
One part goes through one slit, while the other goes through the other
slit. They recombine at the exact moment they are detected, producing the
diffraction pattern. There is a special supersonic process that prevents the
two parts from being detected at the same time.

(c) Carol says an electron and a bouncing droplet are both resonances that obey
the wave equation in a fluid. They only go through one slit; the diffraction
pattern is due to the interaction with the waves from the other slit.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Historical context

I have been judged vehemently suspected of heresy, namely of having held and
believed that the sun is the centre of the world and motionless and the earth is
not the centre and moves .... I abjure, curse, and detest the above-mentioned
errors and heresies

Galileo Galilei

In the 19th Century, the Norwegian mathematician and physicist Carl Bjerk-
nes studied the forces between pulsating bubbles in a bath of water. His exper-
imental apparatus, drawn in figure 7.1, used pistons to create pressure waves
and make the bubbles pulsate [26]. His work is part of a chain of ideas which
we must examine in order to place the experiments we have discussed into their
historical context.

Figure 7.1: Bjerknes’s apparatus (from Scientific American in 1881)
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7.1 Pulsating bubbles

In 1875, Carl Bjerknes predicted that bubbles in a bath of water would attract
one another with an inverse square force when they are made to pulsate in phase
with each another, and repel with the same force when they are antiphase. He
confirmed his theory experimentally in 1880. Figure 7.2 is a reproduction from
the relevant papers.

Figure 7.2: Reproduction of Bjerknes’s prediction in 1875 of an inverse square
force (top) and a figure from his experimental paper in 1880 (bottom) [26, p164].

He had discovered the inverse square force which was measured more than a
century later in the bouncing droplet experiments (chapter 5). Although Bjerk-
nes correctly predicted that the force is inverse square, he did not discover that
it obeys the full set of equation which Maxwell had advanced for electromag-
netism, with an acoustic value of the speed c (section 5.8). The speed of sound
in water was too large to have a measurable effect in his experiments, and his
theory assumed the water was incompressible.

Nevertheless, he made a connection with electromagnetism. Maxwell’s the-
ory of electromagnetism lacked an explicit mechanism for transmitting the forces
between charged particles, but Bjerknes’s bubble experiments showed there are
inverse square hydrodynamic forces acting at a distance between the bubbles
(Hydrodynamische Fernkräfte), and they can be understood using purely local
interactions in the fluid.

Furthermore, Maxwell had originally modelled a magnetic field in 1861 as a
vortex in a lossless medium with rolling elements which resembled a fluid [27].
In the final version, his equations of electromagnetism were carefully expressed
in abstract mathematical terms which did not require or exclude any particular
substrate, fluid or otherwise, but Bjerknes’s theory and experiments seemed
to support the original, and seemingly more physical, formulation. This made
some impact at the time. Writing in Nature in 1881, George Forbes wrote [2]

From a scientific and purely theoretical point of view there is no
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object in the whole of the Electrical Exhibition at Paris of greater
interest than the remarkable collection of apparatus exhibited by R.
C[arl] A. Bjerknes of Christiana, and intended to show the funda-
mental phenomena of electricity and magnetism by the analogous
ones of hydrodynamics.

7.2 Lorentz’s model of the electron

These experiments were among the factors that led Hendrik Antoon Lorentz to
model what he called ‘electrons’, as covibrating particles. He acknowledged
the contribution of Bjerknes in his Nobel prize acceptance speech in 1902 [28]

I am thinking in particular of the experiments of Prof. Bjerknes in
Christiania on transmitted hydrodynamic forces and of his imitation
of electrical phenomena with pulsating spheres.

Lorentz suggested three alternatives for the medium in which the particles
vibrate: it might be an elastic medium, an incompressible frictionless fluid, or
a jelly [28]. It seems that he did not examine a compressible frictionless fluid.
Vibrations in such a fluid are Lorentz covariant (sections 1.14 and 4.3) and there
is a force between them that obeys Maxwell’s equations where the speed c is
the speed of waves in the fluid (section 5.8).

Lorentz inferred what is today called the Lorentz transformation, not from
the properties of vibrations in a compressible fluid, but from the results of
an experiment conducted in 1881 by Albert Michelson and Edward Morley.
Michelson and Morley had sent light waves in different directions from a central
position and reflected them back to the starting point. We saw an analogous
experiment with a crystal of bouncing droplets in section 4.2. Thinking, wrongly,
that the dimensions of their apparatus were unaffected by its motion, they
expected that the interference between the returning waves would discover the
motion of the earth relative to the ‘light medium’ through which the waves were
presumed to propagate, but they obtained a null result.

Figure 7.3: The Michelson-Morley experiment floating on mercury

The original drawings of their apparatus are reproduced in figures 7.3 and
7.4. Light from a source (marked f in the figure) encounters a beam splitter, b.
The beams follow two paths at right angles to one another. They are reflected
by mirrors d and e, and return along the same paths to recombine at b. The
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Figure 7.4: The apparatus of Michelson and Morley [29]

phase difference between the returning waves is viewed as an interference fringe
at a.

The experimenters mounted their apparatus on a stone slab which they
floated in a pool of mercury. If it had been moving with respect to the light
medium, they expected to see the interference fringes change as it rotated, but
they found no change at all. So they measured the interference at different times
of the day and the year, when they presumed the velocity of the earth through
the medium had different values, but still obtained a null result. More recent
and accurate experiments have shown that the anisotropy in the apparent speed
of light inferred from the measurements must be less than 10−17.

In 1889 George Fitzgerald pointed out that, given reasonable-sounding as-
sumptions, the molecular forces holding the apparatus together will be affected
by the motion through their light medium, resulting in a change in its dimen-
sions [19]. Three years later, in 1892, Lorentz independently came to the same
conclusion and calculated the magnitude of the contraction by assuming the
null result [30]. His result is the same as the contraction which we have seen is
suffered by ordinary vibrations in a compressible frictionless fluid.

7.3 Properties of the light medium

When scientists considered the properties of the light medium of Michelson and
Morley in the early 20th century, they discovered a number of constraints.

Firstly, they believed there was evidence for a medium of some sort, rather
than none at all. Einstein gave the reason in a lecture in 1920. An experimenter
who is far from any gravitational source can tell by intrinsic measurement, with-
out looking outside, whether or not her laboratory is accelerating with respect
to a nearby non-accelerating laboratory, for example by weighing objects. Be-
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lieving that all interactions are local, Einstein concluded that the correlation
between the two laboratories must be transmitted by a medium occupying the
space between them [20].

Secondly, the medium cannot be a solid or semi-solid like a jelly. It was
proved that these substances cannot be Lorentz covariant and so they are not
consistent with Michelson and Morley’s experimental result [20].

Thirdly, the medium cannot be a stationary fluid. We proved in section 1.16
that a stationary fluid cannot support propagating waves with any component
of transverse motion. So the waves cannot be polarised and they do not behave
like light waves.

It seems that the only remaining possibility is that the medium is a fluid
which is not stationary. We saw in section 1.16 that when a wave propagates
through a fluid with shear flows, it has a transverse component of velocity and
it is polarised. In the coming chapters we will compare this possibility against
measurements of the polarisation of light (section 8.9) and of oscillatory shear
flows in bouncing droplets and superfluid helium (chapters 10 and 11).

A fluid with shear flows does not appear to have been considered histori-
cally, leaving only one way forward: simply not to consider the question, but to
concentrate on equations that make definite testable predictions.

7.4 Two models of the Lorentz contraction

In 1905 a treatment was advanced which, like Maxwell’s equations before it,
was framed in abstract mathematical terms that did not require or exclude any
particular substrate, fluid or otherwise. Albert Einstein’s theory of special rela-
tivity obtained Lorentz’s formulae from symmetry arguments similar to those in
chapter 4. The paper begins by conjecturing a ‘principle of relativity’ based on
assuming the experimental result of Michelson and Morley [31]. This principle
states that no intrinsic measurement can detect absolute rest.

In the years that followed, Lorentz maintained his belief that the Lorentz
contraction was caused by the moving medium perturbing the molecular forces
in a material body, whilst Einstein thought the light medium was ‘superfluous.’
Neither could come up with a testable difference between their opinions. The
droplet experiments tell us why: the two theories are mathematically equivalent
to one another, provided the medium is a compressible frictionless fluid and
the only measurements that are used are expectation values (chapter 4). The
principle of relativity is a symmetry of Lorentz’s model of the electron under
these circumstances.

7.5 Successive re-discoveries

A discovery, or, it may be argued, the first of several re-discoveries of Lorentz’s
model of the electron, was made in 1926 when Madelung rearranged the equa-
tions of quantum mechanics into the same form as those for vibrations in a
fluid [22]. Unaware of Madelung’s work, de Broglie in 1927 and Bohm in 1952
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separately and independently re-discovered similar equations [21,23]. In chapter
6 we used part of these historical calculations to predict the motion of bouncing
droplets, finding good agreement with experiment.

Lorentz’s model of the electron was once again seemingly re-discovered when
it was noticed that vibrations in an ideal compressible fluid have the symmetries
of general relativity. These observations have grown into an active field of study
called analogue gravity: see the review article by Carlos Barceló, Stefano
Liberati and Matt Visser [32].

Modern research in analogue gravity is usually regarded as having begun in
1981 when Bill Unruh’s paper, ‘Experimental black hole evaporation,’ described
an analogue model based on fluid flow, which he used to probe the Hawking
radiation from ‘real’ general relativistic black holes [33]. In 2010, Oren Lahav,
Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott, Alona Zayats and Jeff
Steinhauer conducted experiments in a Bose-Einstein condensate and observed
negative energy excitations in accordance with the predicted Hawking-Unruh
radiation [34]. The book by Grisha Volovik, The universe in a helium droplet,
builds on this field by suggesting pulsating particle-like solutions which resemble
those of Lorentz [35].

7.6 Summary

In 1875 Carl Bjerknes predicted an inverse square force between pulsating bub-
bles in a tank of water, and confirmed his prediction experimentally in 1880. He
envisaged these forces to be analogous to those of electromagnetism.

Bjerknes’s experiments led Hendrik Lorentz to model electrons as covibrat-
ing particles. He discussed a number of possibilities for the medium in which
the particles vibrate, but did not consider a compressible frictionless fluid. Vi-
brations in such a fluid are Lorentz covariant, and the force between them obeys
Maxwell’s full set of equations of electromagnetism.

Lorentz’s model was rejected in the early 20th century because polarised
waves cannot propagate in a stationary fluid. However they can propagate
through a region of shear flow. We will examine polarisation due to shear flows
in the forthcoming chapters.

Mathematical results which appear to point back to Lorentz’s electron were
subsequently discovered in quantum mechanics and in analogue gravity.

7.7 Dialogue

On day 4 of their dialogue, Alice, Bob and Carol are discussing the fact that
Lorentz’s 19th century model of the electron and bouncing droplets can both
be treated as pulsation in a fluid medium.

(a) Alice says she can successfully predict the motion of light waves and of
charged particles in a very wide range of circumstances. It suffices to as-
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sume the postulates of mechanics, electrodynamics, special relativity and
quantum mechanics. The light medium is superfluous.

(b) Bob says he can successfully predict the motion of surface waves and of
bouncing droplets in a very wide range of circumstances. It suffices to as-
sume the postulates of mechanics, electrodynamics, special relativity and
quantum mechanics, with the characteristic speed c having an acoustic
value. The equations of fluid mechanics are superfluous.

(c) Carol says she can successfully predict the motion of both systems from
Euler’s equation. The postulates of mechanics, electrodynamics, special
relativity and quantum mechanics are superfluous.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Chapter 8

Scale invariance

But on one supposition we should, in my opinion, absolutely hold fast: the real
factual situation of the system S2 is independent of what is done with the system
S1 which is spatially separated from the former.

Albert Einstein, cited by John Bell [36]

Fluid mechanical systems seem to exhibit non-local behaviour. For example,
when two vortices are created together, say by stirring, Kelvin’s circulation
theorem (section 1.3) tells us they have opposite circulations, and, furthermore,
if an external disturbance changes the circulation of one of them, it must change
the other by the opposite amount at exactly the same time. This remains true
even if their centres become separated by a large distance – which seems to
demand instantaneous (non-local) interactions between the distant vortices.

In this chapter we will see that this non-local behaviour is, quite generally,
a consequence of the scale invariance symmetry of fluid mechanics. Quantum
mechanics has the same symmetry.

8.1 Self-similarity

Figure 8.1: A Sierpiński triangle

Scale invariant systems are said to be self-similar because they contain
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structures with a wide range of length scales. One example is the Sierpiński
triangle in figure 8.1 which contains triangles of many different sizes.

The geometrical properties of self-similar systems can be counter-intuitive.
For example, when the side L of a Sierpiński triangle is doubled, the number N
of triangles is trebled, by inspection of the figure. It follows that N ∝ LD where
D = log(3)/ log(2) ≈ 1.6. The exponent D is called the Hausdorff dimension.
Its value can seem counter-intuitive in comparison with ordinary systems in a
plane, which are two-dimensional with D = 2.

Sierpiński’s triangle began as a mathematical construct in 1915 [37]. In 1967,
Benoit Mandelbrot showed its relevance to the physical world by studying the
unusual geometrical properties of the coastline of Britain, which has crinkles at
all relevant length scales [38]. This inspired the discovery of further self-similar
systems. For example, the copper deposit when electrolysing copper sulfate
solution sometimes appears black; it is self-similar with a Hausdorff dimension
D ≈ 2.43 [39]. More recently, structures with self-similar features such as the
Mandelbrot set in figure 8.2 became popular for their beauty.

Figure 8.2: A Mandelbrot set

This is relevant to fluid motion because it, too, is scale invariant. As we saw
in section 1.13, if u(x, t) obeys Euler’s equation, so does u(αx, αt) where α is a
scale factor.

Figure 8.3: Turbulence is a self-similar solution to Euler’s equation. Courtesy C.
Fukushima and J. Westerweel, Technical University of Delft, The Netherlands
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The turbulent motion in figure 8.3 obeys Euler’s equation to a reasonable
approximation. The eye can pick out components that are approximately similar
(but not precisely the same) which span a wide range of length scales.

8.2 Drawing systems apart

There is another geometrical difference between ordinary systems and scale in-
variant systems, which is that they behave differently when they are drawn
apart. This is illustrated in figure 8.4.
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Figure 8.4: (a) Two systems, S1 and S2, initially overlap. (b) Normally, the
overlap reduces as they are drawn apart, so they become independent of one
another. (c) But if they are scale invariant, the systems inflate as they separate.
They remain in direct contact and do not become independent.

Suppose two systems, S1 and S2, initially overlap, and are then drawn apart
by some process. We would normally expect the systems to remain the same
size, so their overlap reduces until eventually it is eliminated and the systems
become independent of one another. This is illustrated in figure 8.4(a) and (b).

But scale invariant systems, including those in fluid mechanics, are different.
See figure 8.4(c). Suppose two systems, S1 and S2, are scale invariant and the
distance between their centres is d. If they are carefully drawn apart by the
factor α, so the distance between their centres is now αd, then, from the scale
invariance symmetry, there is a solution in which all distances and times have
been inflated by the factor α. In the enlarged solution, S1 and S2 have grown
in size by the factor α and the overlap between them remains unchanged. The
systems remain in contact and do not become independent of one another.

8.3 Separation principle

There is a principle, due to Einstein, called the separation principle (Trennungs-
prinzip) which is usually cited as follows

But on one supposition we should, in my opinion, absolutely hold
fast: the real factual situation of the system S2 is independent of

Emergent quantum mechanics 77 Robert Brady, Ross Anderson



Scale invariance

what is done with the system S1 which is spatially separated from
the former.

Albert Einstein, cited by John Bell [36]

John Howard gives an account of the history of this principle [40]. The
separation principle applies, of course, to all systems, including scale invariant
ones, when they are spatially separated. But when two scale invariant systems
are created together and carefully drawn apart, we saw that they do not become
spatially separated, and so it would be wrong to assume that the separation
principle applies to them. It may be helpful to take a concrete example.

Consider two vortices, far from any boundary, which have been created to-
gether as in figure 8.5. To a good approximation the air obeys Euler’s equation,
which is scale invariant, and so, by the reasoning set out above, the vortices will
inflate as they are drawn apart and they will not become independent of one
another. The separation principle does not apply to them.

Figure 8.5: A vortex pair. Courtesy National Center for Atmospheric Research

Another way to arrive at the same conclusion is to follow the reasoning of
John Kosterlitz and David Thouless, who showed in 1973 that there is an inti-
mate pairing between vortices that were created together, which is independent
of the distance between them as long as the fluid is below a critical temper-
ature [41]. For simplicity they considered vortices that are trapped between
between two large parallel plates, which we will take to be a distance W apart.

Suppose an isolated vortex could be created with circulation Γ so that its flow
speed is u = Γ/r. The kinetic energy density is 1

2ρu
2 where ρ is the density of

the fluid and the total is
∫

1
2ρu

2.2πrWdr. This energy diverges logarithmically
at large r, which shows that it is impossible to create an isolated vortex far from
a boundary at low temperature, since it would be too costly energetically.

Indeed, vortices are not created in isolation. They are created in pairs of
opposite circulation, as shown in figure 8.5. Their velocity fields are opposed at
large distance, and so the total energy does not diverge as long as the correlation
is maintained between them. Kosterlitz and Thouless went on to show that this
intimate pairing is broken when the fluid is above a critical temperature, at
which the so-called Kosterlitz-Thouless phase transition occurs (discussed
further in section 11.15) but here we are only interested in low temperatures.
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It follows that the circulations of the two vortices must remain precisely
opposed since a large amount of energy would be required to make their circu-
lations different. This remains true whatever their separation. This intimate
pairing of their energy means that the separation principle does not apply to
them.

A third way to picture this phenomenon is from Kelvin’s circulation theo-
rem (section 1.3). Kelvin proved that the vortices must always have opposite
circulations, whatever their separation.

†Track 2 This material may be skipped on a first reading

The scaling of the two vortices has an additional factor: amplitude.

In a more precise description of the vortices as they separate, all dis-
tances and times grow by the factor a and the amplitudes of all disturbances
reduce by the same factor a. The net effect is that the flow speed due to
each vortex remains u = Γ/r, independent of their separation.

Near the core of a vortex, the fluid velocity would diverge if there were
no other effect. Here, viscosity and nonlinearities in the equation of state
become relevant. A different solution emerges, which is observed in the eye
of a hurricane [1]. The size of the core does not scale with the separation
of the vortices because the processes involved are not scale invariant.

8.4 Paradox

When viewed from a certain perspective, the foregoing system seems to demand
a type of instantaneous action at a distance. The paradox is as follows.

We have seen that when two scale invariant systems are created together,
they thereafter remain ‘entangled’ in the sense that external events affect them
simultaneously, even when their centres are spatially separated. For example, if
some external event changes the circulation of one vortex, the circulation of its
anti-vortex partner must change instantaneously. This might seem to suggest
some non-local process that operates instantaneously over a distance, that is,
faster than light. But faster-than-light processes are impossible. Indeed, there
is a stronger constraint: in the fluid motion under consideration, there is no
mechanism for transmitting information faster than the speed of sound.

The mistake in this paradox is illustrated in figure 8.4(c). It is not necessary
to assume anything goes faster than light (or sound) since it is only the centres
of the systems which are separated. The systems themselves remain in direct
contact through their overlap.

Another way to see this is shown in figure 8.6. The apparent paradox of
faster-than-light processes relies on the fallacy that a small disturbance, such as
small paddles, can change the circulation of a large vortex instantaneously. As
shown in the figure, if small paddles are set into rotation, they may affect the
fluid nearby but they cannot affect the fluid at large distance instantaneously.
This means they have no immediate effect on the circulation Γ = 1

2π

∮
u.dl
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around them at large distance. In particular, a disturbance due to small paddles
cannot instantaneously affect the circulation of an existing vortex which has been
inflated by being separated from its anti-vortex partner.

�������

Figure 8.6: Small rotating paddles can disturb the fluid nearby (blue shadow)
but they do not immediately affect the fluid at large radius, and so they cannot
immediately change the circulation Γ = 1

2π

∮
u.dl at large radius.

Yet another way to visualise this is by a thought-experiment in which we
try (as we shall see, unsuccessfully) to manipulate a vortex S1 by changing its
circulation without simultaneously affecting its co-created partner S2. In the
thought experiment we will try to achieve this using paddles. We have seen
that the system S1 extends over a large region, with its energy residing at large
distance, and so the paddles must be large in order to couple to it effectively.
In fact, they must be large in relation to the separation of the centres of S1 and
its partner S2. Paddles this large will affect the circulation of S2, defeating the
purpose of the thought experiment.

8.5 Scale invariance of quantum mechanics

The Klein-Gordon equation (6.9) for a quantum mechanical particle is also scale
invariant. It inherits this symmetry from Euler’s equation, from which we de-
rived it in section 6.5. The scale symmetry can also be verified by direct sub-
stitution of a scale enlargement (x′, t′) = (αx, αt), giving

∂2ψ

∂t′2
− c2∇′2ψ + ω′2

o ψ =
1

α2

(
∂2ψ

∂t2
− c2∇2ψ + ω2

oψ

)

where ω′
o = ωo/α from the scale enlargement. If ψ(x, t) obeys the Klein-Gordon

equation then the right hand side vanishes. Equating the left hand side to zero
shows that ψ(αx, αt) is also a solution.

This suggests that particles obeying the Klein-Gordon equation will be scale
invariant. In particular, if two particles are created in a single process and then
carefully drawn apart, without interacting with any external systems, then they
do not become separated and the separation principle does not apply.
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8.6 EPR paradox

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen (‘EPR’) considered
just such a system [42]. They assumed

(a) Particles obey the equations and postulates of quantum mechanics,

(b) Particles which are created together and then carefully drawn apart become
independent of one another.

We have just seen that these two assumptions are mutually inconsistent.
If (a) is true, then particles obey the Klein-Gordon equation. From the scale
invariance symmetry, we would expect its solutions to inflate in proportion to
their separation when they are carefully drawn apart, as shown in figure 8.4.
They consequently remain in direct contact and the separation principle does
not apply. It follows that (b) is false.

The authors EPR reached the same conclusion, that (a) and (b) are mutu-
ally inconsistent, using a different method starting with the detailed postulates
of quantum mechanics. This conclusion is now known as the EPR paradox

because it can seem counter-intuitive. It was not until 1967 that Mandelbrot
began to write about physical systems with counter-intuitive geometrical prop-
erties due to their scale invariance [38].

Thinking their result to be unphysical, Einstein, Podolsky and Rosen hy-
pothesised that the equations of quantum mechanics be modified by adding
new variables, called hidden variables, which would have the effect of making
assumption (b) true. We can immediately observe that these hidden variables,
were they to exist, would break the scale invariance symmetry of quantum me-
chanics.

8.7 Non-locality

In the terminology of the field, the hidden variables hypothesised by Einstein,
Podolsky and Rosen are local, by which we mean they have the effect that any
two systems will become independent of one another when drawn apart. Using
this terminology, the known equations of inviscid fluid mechanics (as well as
those of quantum mechanics) are non-local because they are scale invariant
and their solutions do not become independent when carefully drawn apart.

If you assume the existence of local hidden variables in fluid mechanics, as
defined above, then you can make a prediction about the circulations of vortices
which does not agree with Kelvin’s circulation theorem. If you were to test this
prediction experimentally it would be violated and you would conclude that the
hypothesis of local hidden variables can be excluded. You are invited to show
this in the next exercise.
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Exercise 8.1 This exercise is about the experiment in fluid mechanics
discussed in section 8.3, in which two vortices are created with zero total
circulation and they are drawn apart before their individual circulations
are manipulated.

You are asked to assume the existence of local hidden variables in fluid
mechanics, the effect of which is to cause the circulations of the vortices
to become independent of one another when they are drawn apart.

(a) Assuming the hidden variables exist, predict what will happen after
the vortices have been drawn apart if the circulation of one of them is
suddenly disturbed by an external influence. How will this affect the
total circulation of the two vortices?

(b) Show that your prediction is inconsistent with Kelvin’s circulation
theorem.

8.8 Bell’s inequality

In 1964, John Bell proposed an experiment in quantum mechanics which is
analogous in a number of respects to the experiment in exercise 8.1. He proposed
an experiment in which two particles are created together with zero total spin
(or angular momentum, see section 10.5) and they are drawn apart before their
spins are measured. He devised a statistical measurement, which is now called
Bell’s inequality, to test for the existence of local hidden variables. If the
equations of quantum mechanics are as originally formulated, Bell showed that
his inequality would be violated in the experiment, so that local hidden variables
could be excluded [36].

In its original form, Bell’s inequality does not appear to have been tested
directly (but see the experiments on a different system in the next section).
However, in view of the success of quantum mechanics in predicting the be-
haviour of matter, it is generally believed that the inequality is violated, and
therefore the local hidden variables which Einstein, Podolsky and Rosen had
hypothesised can be excluded.

The geometrical properties of scale invariant systems were still not widely
appreciated in 1964 when Bell’s paper was published. Mandelbrot’s first paper
about scale invariance in physical systems was not until 1967 [38]. Unaware that
local hidden variables, as defined above, can be excluded in all systems which are
scale invariant, many scientists thought such exclusion was unique to quantum
mechanics. Some believed it was evidence for faster-than-light processes, due
to the paradox discussed in section 8.4. Others thought this explanation to
be unsatisfactory since no signals have ever been observed to propagate faster
than light, and a number of alternative mechanisms entered mainstream physics,
including the hypothesis of backwards-in-time processes [43] and the creation of
a new universe with each measurement [44]. There is an extensive literature on
this topic, which has spawned a field of study called quantum computing. For
further discussion see Bell’s collected papers [45], the dialogue at the end of this
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chapter, our more detailed mathematical treatment of this topic [46,47], and the
alternative approaches of David Ferry, Verner Hofer and Joy Christian [48–51].

8.9 CHSH inequality

In 1969, John Clauser, Michael Horne, Abner Shimony and Richard Holt (collec-
tively known as ‘CHSH’) proposed an experiment similar to figure 8.7, in which
two waves are created together at a source S and their polarisations are mea-
sured after they have propagated some distance. The alignment of the detectors
could be changed in the period between emission and detection.

�

Figure 8.7: Waves emanate from a source S and their polarisation is measured

The polarisations were perfectly correlated when the waves are emitted, and
the authors CHSH predicted the correlation between the polarisations when
they are measured using the known equations of quantum mechanics. Their
predictions were later confirmed experimentally by Alain Aspect and colleagues
in experiments with light waves [52,53].

After the alignment of the detectors was changed, there was not time for
information, travelling at the speed of light, to reach both detectors. But the
experiment showed a correlation which seemed to demand that the information
travelled faster than light. More precisely, the observed correlation between the
measurements would be impossible in an ordinary classical system provided that

(a) The polarisation is an intrinsic property of the waves

(b) Information can never travel faster than light

If you assume (a) is true, then the experiment indicates the existence of
faster-than-light or backwards in time processes, or the creation of a new uni-
verse with each measurement. The reasoning is similar to that discussed in
section 8.8. For more information see [45,54].

The alternative possibility was raised in section 7.3. The polarisation of the
waves in a fluid medium is not an intrinsic property of the waves themselves,
but it depends on the phase alignment between the wave and the shear flows
near the detectors. The experiment appears to indicate that there must be very
long-range order in these shear flows. We will see the origin of this order in the
next chapter.
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8.10 Summary

Euler’s equation for a barotropic fluid is scale invariant, that is, for every solution
u(x, t) there exists a larger or smaller solution, u(αx, αt) where α is the scale
factor. The Klein-Gordon equation for a quantum mechanical particle has the
same symmetry.

When two scale invariant systems are drawn apart, they inflate in proportion
to the distance between them so their overlap remains constant. This means
they remain in contact and do not become independent of one another.

This behaviour is known in fluid mechanics, but it was first noticed in quan-
tum mechanics in 1935, when Einstein, Podolsky and Rosen showed that the
equations of quantum mechanics are inconsistent with the assumption that two
systems always become spatially separated when they are carefully drawn apart.
It is often believed that this is unique to quantum mechanics, but vortices in
fluid mechanics behave in the same way. In quantum systems this behaviour is
often interpreted as due to faster-then-light or backwards-in-time processes, or
the creation of a new universe with each measurement, but these do not occur
in fluid mechanics as far as we are aware.

8.11 Dialogue

On day 5 of their dialogue, Alice, Bob and Carol discuss the experiment proposed
by John Bell [36], and argue as follows.

(a) Alice says that electrons can be created together with opposite spins and
then drawn apart. If they remain ‘entangled’ it is not possible to change one
spin without the other. If you do manage to change one spin, she concludes
that the other must be affected instantaneously, which means information
of a special sort must travel faster than light or backwards in time, or a new
universe must be created at that instant.

(b) Bob says that vortices can be created together with opposite circulations
and then drawn apart. If they remain coupled it is not possible to change
the circulation of one without the other. If you do manage to change the
circulation of one of them, he concludes that the other must be affected
instantaneously, which means information of a special sort must travel faster
than the speed of sound in the fluid or backwards in time, or a new universe
must be created at that instant.

(c) Carol says Bob has made the mistake of assuming it is possible to change
the circulation of a vortex by an instantaneous local process, such as using
small paddles. The energy of a vortex extends out to very large distance,
and so large paddles must be used, which span both vortices. Alice’s ridicu-
lous conclusions show that she must have made an equivalent mistake with
electron spins.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Coherent motion

And it didn’t stop being magic just because you found out how it was done

Terry Pratchett

In 1665 a letter from Cristiaan Huygens was read to the Royal Society of
London about maritime clocks. It talked of ‘an odd kind of sympathy perceived
by him in these watches suspended by the side of each other’. [55,56]. Huygens
had mounted two pendulum clocks so they were weakly coupled by ‘impercep-
tible movements’ in the mounting. Whatever their initial configuration, after
about half an hour the pendula always ended up swinging in opposite directions
or ‘antiphase’ as in the lower photograph of figure 9.1.

Figure 9.1: Multi-exposure images of two pendulum clocks mounted on a movable
cart so the mechanical coupling between them could be adjusted by weights at
the centre. Even when they are started in-phase (upper image) they eventually
oscillate stably antiphase (lower image). Courtesy Matthew Bennett [56].
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The coherent motion in Huygens’s clocks is a simple example of a wider
phenomenon: the spontaneous appearance of an intimate correlation between
oscillators which are weakly coupled to one another. This correlation is seen in
a wide range of systems, ranging from the flashing of fireflies at night, to the
firing of neurons in the brain, to superfluids. In this chapter we will see that
the same correlation is observed in bouncing droplets.

9.1 Minimising energy loss

In 1906, Diederik Korteweg, a Dutch mathematician, noticed that Huygens’s
clocks have spontaneously arranged themselves into a configuration that min-
imises energy loss into the environment via mechanical movements in the mount-
ing [57].

��� ���

Figure 9.2: Korteweg’s explanation for the emergence of coherent motion in Huy-
gens’s clocks. (a) When the pendula oscillate in-phase with one another, they
induce displacements in the mounting (red arrow) whose energy is eventually lost
to friction. (b) When the pendula oscillate antiphase, they exert opposite forces
on the mounting, so less energy is lost. The extra energy loss in (a) induces that
mode to decay until (b) dominates.

When the pendula oscillate in-phase with one another, as in figure 9.2(a),
Korteweg reasoned, they will exert forces on the mounting which reinforce each
other, causing small movements (red arrow) whose energy is eventually lost to
friction. But when they are antiphase, as in (b), the two pendula exert opposite
forces on the mounting and less energy is lost. This mechanism preferentially
drains energy from the in-phase mode, which decays until the antiphase mode
dominates. See Bennett [56] for further treatment in terms of nonlinear dynam-
ics.

9.2 General solution for Huygens’s clocks

When Huygens’s clocks oscillate in their preferred antiphase mode, the difference
in the angles is

δ = θ1 − θ2 ∝ cos(ωot)

where θ1 and θ2 are the angles of the pendula and ωo is the angular frequency.
Just as we saw in the previous chapter, it is convenient to extend this definition
into the complex plane by writing

δ = Aδ e
−iωot

Emergent quantum mechanics 86 Robert Brady, Ross Anderson



Coherent motion

where it is understood that the imaginary component has no direct physical
meaning and will be discarded at the end of the calculation. This represen-
tation has the advantage that an arbitrary phase (or origin of time) can be
accommodated by choosing a complex value for the amplitude Aδ.

When the clocks swing in-phase with one another, their frequency is reduced,
as shown in the next exercise.

Exercise 9.1 Two pendula swing in-phase with one another as in figure
9.2(a). The apparatus is on a strong spring so that the displacement of
the mounting, shown by the red arrow, is proportional to the angle θ.

By considering the extra distance a bob must swing due to the dis-
placement of the mounting, show that the in-phase mode has a slightly
reduced frequency.

For the in-phase motion it is usual to define σ = θ1 + θ2 and extend it into
the complex plane in the same way as above, σ = Aσ e

−i(ωo−Ω)t where Ω is the
frequency difference.

We can immediately write down the general solution for Huygens’s clocks,
which is a sum of these two modes

2θ1 = δ + σ = e−iωot (Aδ + Aσ e
iΩt)

−2θ2 = δ − σ = e−iωot (Aδ − Aσ e
iΩt) (9.1)

This is illustrated in figure 9.3.

�
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Figure 9.3: Argand diagram showing the general solution for Huygens’s clocks
(equation 9.1 for θ1, omitting the factor e−iωot). The dominant mode has ampli-
tude Aδ. It is perturbed by the in-phase mode (amplitude Aσ). The perturbation
oscillates at the difference frequency Ω, and it slowly decays due to Korteweg’s
effect.

Here the antiphase mode is dominant and given by Aδ. The in-phase mode,
Aσ, can be regarded as an oscillatory perturbation which slowly decays due to
the effect described by Korteweg.

9.3 Order parameter

There is a common factor in equations (9.1) for the two pendula, namely

ψ = e−iωot (9.2)
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This common factor is called an order parameter. There is a similar com-
mon factor, of the same origin, when there are many weakly coupled oscillators
rather than just two. The associated patterns of synchronisation and reso-
nance are studied in a branch of physics called Kuramoto theory after its
Japanese founder, Yoshiki Kuramoto. This field has successfully tackled phe-
nomena ranging from the flashing of fireflies at night through the oscillations of
coupled Josephson junctions to the firing of neurons on the brain. A good ref-
erence is a survey article by Juan Acebrón, Luis Bonilla, Conrad Pérez Vicente,
Félix Ritort and Renato Spigler [58].

9.4 Minimising energy loss into the environment

When multiple oscillators are phase locked by an order parameter, they readily
exchange energy amongst themselves so the energy of the correlated motion
becomes equilibrated.

There is another, equivalent, way to view the same phenomenon. Each
oscillator radiates energy into the medium, so the sympathetic motion would
die away if there were no other effect. The sympathy is maintained because the
surrounding oscillators reflect the energy back with the correct phase to keep
the synchronization alive.

This can be understood as a manifestation of Korteweg’s effect, which we saw
in the two pendula. Any modes where the energy is not reflected back with the
right phase will decay away, leaving only those modes that minimise the escape
of energy into the surrounding medium. This Darwinian-type mechanism is
responsible for the appearance of an order in the oscillators, namely, that they
spontaneously arrange themselves into the state that minimises energy loss into
the environment.

9.5 Thermodynamic considerations

When an order parameter appears, the system is, obviously, more ordered. It
has less entropy. For example, initially the pendula in Huygens’s experiment
are able to move in two different modes: in-phase or antiphase. But in the final
state they can only move antiphase. The final state is therefore more ordered
than the initial one.

The increase in order is made possible because energy and entropy are ex-
changed with the environment. The total entropy of the system plus its envi-
ronment has not been reduced, of course. What has happened is that some of
the modes have become stilled because their energy has escaped into the envi-
ronment, leaving a smaller number of modes and a more ordered arrangement
in the system, at the expense of greater entropy in the environment.

The same process occurs when a liquid slowly crystallizes as its latent heat
escapes. If the energy lost is ∆E and the temperature is T , then the entropy
of the system is reduced by ∆E/T and that of the environment is increased by
the same amount. A spontaneous increase in order has occurred in the crystal.
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This effect is observed in the bouncing droplets, which spontaneously form
into crystal-like structures as photographed in figure 9.4.

Figure 9.4: Self-assembled cluster of droplets. (Courtesy Suzie Protière, Arezki
Badaoud and Yves Couder) [11]

Like Huygens’s clocks, these droplets have aligned themselves into a configu-
ration that minimises the escape of energy into the surrounding medium. They
are approximately one wavelength apart. At this separation, the waves coming
from the outer droplets reinforce at the centre, so the energy radiated by the
central droplet is reflected back on to it. If the droplets were to move closer or
further apart the reflection would be reduced and more energy would escape by
radiation into the medium.

Another way to visualise the alignment in the photograph is that the outer
droplets act as one layer of a Bragg mirror, reflecting outgoing radiation and
minimising energy loss. (Bragg reflection was discussed in section 2.4). Adding
further layers would further reduce the energy per droplet that is lost by radi-
ation, which is one way to account for the appearance of very large crystal-like
structures.

A third way to visualise the same effect is in terms of a sign reversal of the
secondary Bjerknes force between two pulsating bubbles as they approach one
another closely. See for example Ida [59] and references therein.

9.6 Perturbations to the order parameter

In addition to the correlated motion which is described by the crystalline struc-
ture or the order parameter, there may be other components which are of ther-
modynamic or mechanical origin. For example, in Huygens’s clocks the other
component is given by Aσ in figure 9.3. As the temperature increases, there
comes a point where these perturbations disrupt the order parameter and a
phase transition occurs. We will see this quantitatively in section 11.15 on
the Thouless-Kosterlitz phase transition. For the present we are interested in
systems that are below this transition temperature.
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In figure 9.3, the perturbations to the order parameter have amplitude Aσ.
They are oscillatory, or very nearly so. At low temperature, when the amplitude
is small, these perturbations obey equations which are the same as those for a
mass that is subject to a restoring force, such as a pendulum. The next exercise
invites you to demonstrate this.

Exercise 9.2 A large number of oscillators are phase locked together
and may be assumed to have a fixed angular frequency ωo. One of the
oscillators is perturbed so that its phase relative to the others is

∆θ = ∆θo cos(Ωt)

This perturbation is illustrated in the Argand diagram in figure 9.3. Ex-
plain why this is a reasonable model when Aσ and the Korteweg decay
are both small.

Show that the angular frequency of the perturbed oscillator is

ω = ωo − Ω θo sin(Ωt)

and hence that
d2ω

dt2
= − Ω2ω

Show that a mass subjected to a restoring force, such as a pendulum,
obeys an equation of the same form.

The foregoing analysis is for the case where the other oscillators are unaf-
fected. This is not true if the interactions are local, since the perturbation will
transmit to the nearby oscillators, by symmetry. In a wide range of circum-
stances when oscillatory motion is transmitted by purely local interactions, the
motion obeys the wave equation (2.1) to first order. Examples include deep
sea waves, shallow sea waves, waves determined by surface tension, longitudinal
sound waves in the air and transverse waves in a solid.

We will be interested in the case where the perturbations to the order pa-
rameter, and hence the order parameter itself, obey the wave equation to first
order.

9.7 Equations of coherent motion

With large number of locally coupled oscillators, such as the cluster of bouncing
droplets in figure 9.4, we have seen that the order parameter is oscillatory and
obeys the wave equation to first order.

The surface waves in the droplet experiments in chapter 6 are also oscillatory
and obey the same equation. The analysis of that chapter can be applied, since
the same equations have the same solutions.
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Exercise 9.3 A set of locally coupled oscillators are correlated by an
order parameter that is oscillatory and obeys the wave equation.

By apply the method of chapter 3, or otherwise, show that the order
parameter must be Lorentz covariant with a characteristic speed equal to
the speed of transmission c.

When it does not vary with position, the order parameter is given by
ψ = e−iωot. Show that this obeys

∂2ψ

∂t2
= − ω2

o ψ

This equation does not take account of phase difference between loca-
tions. and it must be extended to a Lorentz invariant form in order to
take them into account. By applying the method of chapter 6, show that
, namely the Klein-Gordon equation

∂2ψ

∂t2
− c2∇2ψ = − ω2

oψ (9.3)

Hence or otherwise show that the order parameter obeys Schrödinger’s
equation when the spatial variation is small.

In particular, the order parameter for the cluster of droplets photographed
in figure 9.4 is Lorentz covariant with a characteristic speed equal to the speed
of propagation, and it obeys the Klein-Gordon equation, which approximates
to the Schrödinger equation at low velocity. It behaves like a ‘field’ in quantum
mechanics.

If one of the droplets is accelerated horizontally, it will emit waves into the
field. We saw in section 5.8 that these waves obey Maxwell’s equations.

9.8 Superfluid

The appearance of an order parameter obeying the Klein-Gordon equation (9.3)
is observed in a number of fluids at low temperature, called superfluids. In
superconductors the order parameter is usually labelled δ, and in superfluid
helium it is usually labelled ψ and called the wavefunction [60, 61]. Superfluids
will be discussed in more detail in chapter 11.

9.9 Gauge symmetry

The equations governing classical oscillators are symmetrical under a transfor-
mation in which the phases of all the oscillators are advanced by an arbitrary
amount. For instance, if they oscillate at the same frequency then the increase
in phase corresponds merely to a change in the origin chosen for time.
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Such systems are said to have gauge symmetry. To be more precise, the
absolute phase cannot be measured by any expectation value (section 1.6).

Superfluids have the same gauge symmetry. This is usually explained as
due to an underlying gauge symmetry of quantum mechanics, but we have seen
that the same symmetry is exhibited by the classical motion of weakly coupled
oscillators according to Newton’s laws.

Even though absolute phase cannot be measured, the interactions between
oscillators might depend on their relative phases. Relative phase can be mea-
sured. This subject was studied by Brian Josephson in superconductors. His
analysis is set out in his highly readable thesis on his work for which he was
awarded a fellowship at Trinity College Cambridge in 1962 [60], and, later, a
Nobel prize.

The key to Josephson’s analysis is a process called spontaneous symmetry

breaking. A sphere of ferromagnetic material has the symmetry that it has no
preferred direction in space. Nevertheless, the atoms prefer to align in the same
direction as one another. In order to achieve this alignment, they must choose
a specific direction, which is measured by the magnetic moment. Thus, the
order parameter associated with the magnetic alignment breaks the overlying
symmetry.

The order parameter in superconductors is associated with a similar spon-
taneous symmetry breaking. The elementary components in a bulk supercon-
ductor prefer to align themselves with the same phase, which requires that they
choose a particular value. The absolute phase cannot be measured, but if two
bulk superconductors are in weak contact then the interaction between them
depends on their relative phases. This is the broken symmetry at the heart of
the Josephson effect. We have seen that classical oscillators exhibit the same
broken symmetry.

9.10 Summary

An isolated oscillator usually radiates its energy into the surroundings until its
motion dies away. There is an exception when it is surrounded by other oscilla-
tors with which it is weakly coupled. The surrounding oscillators spontaneously
align themselves as if conspiring to impede the energy loss. This was first ex-
plained in 1906 by Diederik Korteweg in the case of coupled pendula. There is
a Darwinian-like selection process, where those modes whose energy loss is not
impeded by nearby oscillators will die away, leaving a more ordered arrangement
where the oscillators conspire collectively to reflect the energy back.

We saw that this phenomenon is responsible for the crystal-like clusters
photographed in bouncing droplets. These structures are more ordered and
have less entropy. Ordinary crystals likewise have less entropy when they are in
their ordered arrangement, a phenomenon which is usually explained in terms of
the postulates of thermodynamics rather than the motion of classical oscillators
according to Newton’s laws.

The same alignment phenomenon leads to the appearance of a so-called ‘or-
der parameter’ in multiple coupled oscillators. There is a literature on this in
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Kuramoto theory; see the survey article by Juan Acebrón, Luis Bonilla, Conrad
Pérez Vicente, Félix Ritort and Renato Spigler [58]. When the coupling be-
tween the oscillators is weak and local, we saw that the order parameter obeys
the Klen-Gordon equation, just like the order parameter that is observed in
superconductors and in superfluid helium. Superfluids are usually explained in
terms of the postulates of quantum mechanics rather than the motion of clas-
sical oscillators according to Newton’s laws. They are the subject of chapter
11.

9.11 Dialogue

On day 6 of their dialogue, Alice, Bob and Carol discuss the spontaneous appear-
ance of order in systems that are in contact with a low-temperature environment.
They argue the following positions.

(a) Alice says that, in any group of interacting molecules, you can find an
alignment that maximises their interaction energy. Any molecules that are
out of alignment will have excess energy, which escapes into the environment
as heat, coercing them back into alignment. This is why an order parameter
emerges or they form into crystals.

(b) Bob says that, in any group of interacting oscillators, you can find an align-
ment that reflects energy back and minimises the rate at which they lose
energy into the environment. Any modes of oscillation that are out of align-
ment will quickly lose energy, coercing them back into alignment. This is
why an order parameter emerges or they form into crystal-like clusters.

(c) Carol says it is no coincidence that Alice’s molecules and Bob’s oscillators
arrange themselves in the same way. It is known that molecules are oscilla-
tors with a frequency of order 1020 Hz. The mechanism Bob has described
is the ultimate cause of the spontaneous alignment in both systems. Alice’s
implicit assumption, that heat always flows so as to maximise entropy, is
superfluous.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Chapter 10

Rotational motion

The world is full of magical things patiently waiting for our wits to grow sharper.

Bertrand Russel

We have so far only considered waves with circular and spherical symmetry.
The photographs in figure 10.1 suggest we also have to think about solutions to
the wave equation which depend on angle.

Figure 10.1: The waves with two droplets. The side drawings show a Bessel
function J1, which is the lowest relevant component of the standing waves be-
tween the droplets. The bouncing is antiphase in (a) and (c) and in sympathy
in (b) and (d). (Photograph courtesy Suzie Protière, Arezki Boudaoud and Yves
Couder [11])

In this experiment, the droplets orbit around one another with a period of
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approximately 20 bouncing periods in (a), and longer in (b)-(d). Their veloc-
ity is approximately that of an ordinary walker driven with the same vertical
acceleration, which is why the period increases with radius.

10.1 Harmonic solutions

The motion in the photographs can be described using the solutions to the wave
equation in circular coordinates (r, θ), namely

hm = ho cos(ωot−mθ) Jm(krr) (10.1)

where Jm is a cylindrical Bessel function of the first kind, m is an integer whose
sign is significant, and ωo = c kr. The waves near the two droplets contain
components with various values of m, but the main experimental results can
be understood from the lowest order rotating components, with m = ±1. We
neglect higher harmonics as well as Jo in (b) and (d).

Exercise 10.1 Harder A Bessel function is defined in (2.4) and, in cir-
cular coordinates, the wave equation is given by (2.3).

Show by direct substitution that (10.1) obeys the wave equation.

The drawings to the side of figure 10.1 shows the Bessel function J1, which
gives the wave height of the lowest rotating component on a line joining the
droplets. As we have seen, the droplets prefer to land in the wave troughs, so
they are in free flight over the crests, as shown. The rotating wave pattern is

h = 1
2h0 [cos(ωot+Ωt− θ) J1(k1r) + cos(ωot− Ωt+ θ) J1(k2r)]

≈ ho cos(ωot) cos(Ω t− θ) J1(krr) (10.2)

where ck1 = ωo + Ω and ck2 = ωo − Ω. In the second expression we have used
the identity cos(A + B) + cos(A − B) = 2 cosA cosB, and have approximated
k1 ≈ k2 ≈ kr, which is valid at small r and Ω. This can be regarded as a
standing wave that rotates with the droplets at angular frequency Ω.

The factor cos(Ωt−θ) vanishes on the node line θ = Ωt± 1
2π. On either side

of this line, its sign reverses; we see in the photographs in figure 10.1(b) – (d)
that the crests turn into troughs and the troughs crests. The node line is nearly
normal to the line joining the droplets, indicating that they are bouncing close
to the angle with the largest wave amplitude. The pattern is not so evident
in (a), due to the greater angular velocity and the presence of higher-order
components.

The Bessel function J1 gives the amplitude of the standing waves on a line
joining the droplets, and it is drawn to the side in figure 10.1. As we have
already seen, the droplets prefer to land in the wave troughs, so they are in free
flight over the crests. The modes (a)-(d) are the result.
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10.2 Flux

Figure 10.2 shows how the wave height h1 in (10.1) varies with angle at fixed
radius. The wave propagates in the +θ direction.

�

� ���

�

�

Figure 10.2: The wave h1 in (10.1) at fixed radius at the instant ωot = π/2.
The red arrows show the flow speed, which is proportional to the wave height.

There is an integer number n of wavelengths in the diagram (which shows
the case where n = 1). An equivalent way to express this condition is in terms
of the phase of the wave, S, which must advance by 2nπ when going around the
centre,

∮
∇S.dl = 2nπ

The advance of phase around a loop can also be seen in the experiment of
Michael Berry and colleagues in which water waves propagate past a vortex
(figure 10.3. As the strength of the vortex increases, more wavelengths appear
on one side of the vortex than the other, so that

∮
∇S.dl 6= 0 where S is the

phase of the wave. For example, there is one flux quantum (n = 1) in the
photograph labelled 1.

An analogous phase change also occurs in a quantum mechanical interaction
with a magnetic field, called the Aharonov-Bohm effect, and the authors also
showed that the water waves exhibited an analogue of this effect.

The same condition is associated with the quantisation of magnetic flux
in superconductors and the quantisation of angular momentum in superfluid
helium, where S is the phase of the order parameter (see section 9.8).

10.3 Irrotational vortex

Returning to the solution to the wave equation h1 shown in figure 10.2, the flow
velocity u is irrotational (

∮
u.dl = 0) when the path of integration dl is on the
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Figure 10.3: Water waves near a vortex (Courtesy Michael Berry [5]

submerged line A, as we would expect from Kelvin’s circulation theorem (section
1.2). This can also be seen from the symmetry of the figure. Nevertheless
the wave is quantised in the angular direction. Such a wave field is called an
‘irrotational vortex’.

The vanishing of the circulation on the submerged line A does not mean the
wave has no angular momentum, since the circulation does not vanish at B, a
line which is not wholly submerged and to which Kelvin’s circulation theorem
does not apply. Physically, the elevations carry extra fluid around the centre.

In fact, at large radius, the net flow around the centre approximates to that
of a vortex when averaged over a period and a wavelength. This is because the
Bessel function in (10.1) approximates to a standing wave in the radial direction,

whose amplitude reduces as A ∼ r−
1

2 . The flow speed is u ∝ A so the net flow
is proportional to uA ∼ r−1, which is the same as a vortex.

At small radius the flow diverges from that of a vortex, and in particular
there is no singularity. It is illustrated in figure 10.4.
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Figure 10.4: (a) Schematic drawing of the rotating droplet pair photographed in
figure 10.1(a), and its image in the boundary. At the instant drawn, the green
circles are the wave troughs (where the droplet lands) and the red circles are
crests. (b) The fluid flow due to the rotational motion. The trough has negative
volume and contributes to the flow in the same Cartesian direction as the crest.

10.4 Attraction to the boundary

If two vortices of opposite circulations are held so their centres cannot move,
they will attract one another because their flows reinforce in the region between
them, giving a reduced Bernoulli pressure. Rotating pairs of bouncing droplets
will similarly be attracted towards their images in the boundary, which rotate
in the opposite direction as illustrated in figure 10.4.

In the 19th century, Bjerknes had found that like bubbles (with the same
phase) attract and unlike ones (with opposite phases) repel, as shown in figure
7.2. Inconveniently, this appeared to have the opposite sign to the electro-
magnetic forces he was attempting to model. But the forces between rotating
droplets have the same sign as the forces between electrons, namely that unlike
circulations attract and like ones repel. What of their fine structure constant?

We saw that individual droplets are repelled from the boundary by an inverse
square force (chapter 5). This static force obeys the equations of electrostatics,
with a fine structure constant of order 1. We also saw evidence for a motion-
dependent force which obeys the same equations as magnetism, in which a
droplet and its image in the boundary are attracted towards one another when
they both move in the same direction parallel to the boundary.

Turning to a pair and its image in the boundary, the static forces nearly
cancel out, since if one droplet of a pair is attracted to the image then the
other, being antiphase, will be repelled. However, the motion-dependent force
is always attractive. For example, consider the interactions with the wave crest
marked in red on the left of figure 10.4. It is moving in the same direction as
the (green) trough in the image, an alignment which we saw produces a force
of attraction (section 5.9). The crest in the image (red) moves in the opposite
direction and with the opposite phase. Each of these individually reverses the
direction of the interaction, so the combination leaves the sign unchanged.
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The ratio of the moving to the static forces is v2/c2 (the same as the ratio
of the magnetic to the electrostatic forces for particles moving at velocity v).
The force on each droplet is doubled, since there are two images, but it must
be averaged over a rotation, giving a factor of 1

2 . The fine structure constant of
the interaction is thus

α2 =
v2

c2
α1 (10.3)

where α1 is the fine structure constant for the static force between individual
droplets. The strength of the interaction depends on the rotational speed, which
can be varied in the experiment. A typical value might be v = 1

4c and α1 ∼ 0.3
giving α2 ∼ 1/50.

Our model predicts that an orbiting droplet pair will be attracted towards
the boundary with this reduced fine structure constant. This phenomenon has
been noted by the experimenters; orbiting pairs that approach a submerged
boundary at a shallow angle can stick to it and then move along it, playing
‘hopscotch’ as each droplet takes it in turn to leapfrog the one in front. However
an experiment with precise measurements has not yet been performed.

10.5 The emergence of spin-half behaviour

The rotating waves in (10.1) can be treated as independent because they are
orthogonal in the sense that

∫ 2π

0

hm hn dθ = 0 (m 6= n) (10.4)

Exercise 10.2 By direct substitution into (10.1), show that this is true.

We have seen that the angular momentum of the wave h1 in (10.1) is in the
+z direction (vertically upwards), and it is in the −z direction for h−1. The
photograph in figure 10.1 shows the case where the waves have nearly equal
amplitude. What if the amplitudes are not equal?

It simplifies the analysis to consider ‘degenerate’ solutions, that is, solutions
that have the same energy. (Solutions of arbitrary energy can be obtained by
scaling the wave height.) The degenerate solutions are

h = cos(α) h1 + sin(α) h−1 (10.5)

where α is a real parameter. This is a solution to the wave equation because
it is a sum of solutions. Its energy is proportional to cos2 α + sin2 α, which is
constant, so the waves are degenerate. The angular momentum is

L = Lo(cos
2 α− sin2 α)

= Lo cos(2α) (10.6)
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where Lo is the angular momentum of h1. The angular momentum and the
wave pattern h vary continuously with the parameter α, as shown in the table
below

α L/Lo h

0 1 h1

π
4 0 1√

2
(h−1 + h1)

π
2 -1 h−1

3π
4 0 1√

2
(h−1 − h1)

π 1 −h1

As we can see in the table, the wave field reverses sign after the direction
of the angular momentum has gone through a complete cycle. Two cycles are
needed to return to the starting position.

Fermions are like these waves, in that their wavefunctions reverse sign if the
direction of their angular momentum is rotated through 360◦. It is commonly
believed that this behaviour cannot emerge from classical mechanics. However
the rotating droplets show that this belief is wrong.

In fact, double symmetry is already known in systems that contain two
harmonic sub-systems. Leroy, Bacri, Hocquet and Devaud provided another
example in 2006 when they showed that two weakly coupled pendula with nearly
the same frequency also have this symmetry [62].

10.6 Bloch sphere

The elementary waves in (10.1) are the real part of

ξm = A e−i(ωot−mθ) Jm(krr) (10.7)

where A is the amplitude. This can be factored as before into

ξ = ψ χ

ψ = e−iωot

χ = A eimθ Jm(krr) (10.8)

In chapter 6 we showed that ψ obeys Schrödinger’s equation. Now let us
examine the factor χ.

When the wave height in (10.5) is extended into the complex plane as in
(10.8), we get a simple way to provide an arbitrary origin of time for each of
the two components

χ = eiS
[
cos
(
1
2β
)
χ1 + eiϕ sin

(
1
2β
)
χ−1

]
(10.9)

where S is an arbitrary overall phase, ϕ is the relative phase of the two compo-
nents, and we have defined β = 2α.
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Figure 10.5: A Bloch sphere.

The parameters in this equation can be represented on a sphere as shown in
figure 10.5. The angular momentum normal to the surface (in the z direction)
is proportional to cosβ. When β = 1

2π, the angular momentum vanishes and
there are standing waves whose amplitude is greatest at angle ϕ to the x axis.
However, this diagram should not be over-interpreted. It would be wrong to
conclude that the system is physically oriented in the direction indicated in the
figure. The existence of a simple geometrical way to picture the parameters in
(10.9) should not blind us to the fact that we are describing ordinary surface
waves which cannot rotate out of the plane of the surface.

Nonetheless, equation (10.9) is the same as that of a spin-half particle whose
wavefunction is χ where χ1 is the spin-up state and χ−1 the spin-down state,
which is usually represented on the ‘Bloch sphere’ in figure 10.5. By inspection,
the sign of χ reverses when β increases by 2π, which is characteristic of spin-half
systems.

10.7 Pauli spin matrices

The mapping of the wave height near a droplet onto the Bloch sphere can be
shown more formally by writing (10.9) as a dot product of two vectors a and χ

χ = a.χ = (a1, a2).(χ1, χ−1)

where the values of ai are obtained from (10.9). The angular momentum of the
first component is proportional to |a1|

2, and that of the second component is
proportional to −|a2|

2, so the normalised total is

σz =
|a1|

2 − |a2|
2

|a1|2 + |a2|2
(10.10)
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This can also be written

σz =
a∗. σ̂z a

a∗.a
(10.11)

where σ̂z = ( 1 0
0 −1 ) is the same as the Pauli spin matrix for the z direction.

As in quantum mechanics, we can extend this as follows. The Pauli matrices
are σ̂x = ( 0 1

1 0 ), σ̂y = ( 0 −i
i 0 ), σ̂z = ( 1 0

0 −1 ), and spin projections σi are defined
by

σi =
a∗. σ̂i a

a∗.a

where i can be x, y or z. The eigenvectors of σ̂i are

β ϕ (a1, a2) (σx, σy, σz) Eigenvector of

1

2
π 0 1

√

2
(1, 1) (1, 0, 0) σ̂x

1

2
π 1

2
π 1

√

2
(−i, i) (0, 1, 0) σ̂y

0 0 (1, 0) (0, 0, 1) σ̂z

It will be noticed that (σx, σy, σz) correspond to the Cartesian coordinates
of a unit vector at the spherical angle (β, ϕ) in figure 10.5. This is the basis of
the Bloch sphere, which maps between the two representations. The mapping
is a double covering because χ reverses sign when β increases by 2π. The same
mathematics is used to describe fermions in quantum mechanics.

10.8 Antisymmetry

When the driving amplitude is reduced, the rotation speed of the droplets pho-
tographed in figure 10.1 slows to zero. Figure 10.6 is a schematic of two droplet
pairs near each other. A is a solution to (10.9) with (β, ϕ) = ( 12π, 0) and B has
( 12π,

1
2π).

�� ��

�

�

�

�

Figure 10.6: Schematic of two droplet pairs near each other. Elevations are
marked red and depressions green.

The droplets in B have opposite phases, so one will attract the other pair
whilst the other repels and the net forces cancel. However, there is still an effect
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involving orientation. One droplet in A is closer to B than the other, which will
cause B to rotate anticlockwise. This prediction might be tested experimentally.

After B has rotated into the preferred alignment, the solutions will be ori-
ented in the x direction and the wave height is the real part of

ξ = ξa(x, t) − ξa(x− d, t) (10.12)

where ξa is the wave due to A and d is the separation of the pair, B −A.

Equation (10.12) is antisymmetric, and, in particular, exchanging A and B
reverses the sign of the wave field. This may be compared to the principle,
formulated by Wolfgang Pauli in 1925, that the total wave function for two
identical fermions is anti-symmetric with respect to exchange of the particles.

10.9 Summary

We have seen photographs of circular solutions to the wave equation on the
surface of a liquid. The waves are described by a parameter β. As this parameter
advances, the wave changes continuously and reverses sign, whilst its angular
momentum goes through a complete cycle and returns to its starting value. Two
complete cycles of the direction of the angular momentum are needed to return
to the starting state.

The same mathematics that describes these waves is also used for spin-half
particles in quantum mechanics.

10.10 Dialogue

On day 7 of their dialogue, Alice, Bob and Carol argue for the following propo-
sitions

(a) Alice says electrons reverse sign when you rotate their angular momentum
vectors through 360◦. She concludes they cannot be modelled as classical
systems, which are unchanged after rotation through a complete circle.

(b) Bob says waves on the surface of a liquid reverse sign when you rotate their
angular momentum vectors through 360◦. He concludes they cannot be
modelled as classical waves, which are unchanged after rotation through a
complete circle.

(c) Carol says the waves do not physically rotate with their angular momentum
vectors. Alice and Bob have wrongly assumed the contrary.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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Superfluids

Perhaps, if a more complicated wavefunction were tried, some special linear
combination representing a kind of microscopic vortex ring or one with intrinsic
angular momentum has in fact a lower energy.

Richard Feynman in 1954 [63]

The phenomena we have seen so far are governed by Euler’s equation for
a fluid, with viscous losses replenished by an external driving mechanism. We
now turn to superfluids, where there are no viscous losses and external driving
is superfluous.

Figure 11.1: The energy as a function of wavevector in superfluid helium from
neutron scattering data, calculated neglecting compressibility (solid line), and
from specific heat capacity data (dotted line) [63].

In 1953 and 1954, Richard Feynman proposed a model of superfluid helium
that neglected its compressibility [63–65]. He showed (figure 11.1) that his
model did not agree with the experimental data, and he concluded there must
be unidentified low-energy excitations in the fluid, which he presumed to be ‘a
kind of microscopic vortex ring or one with intrinsic angular momentum’ [63].
He called these presumed excitations rotons, a term first introduced by Landau.
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We will see that there has since emerged ample experimental evidence for rotons,
but their precise nature remains unknown.

In this chapter we will treat superfluid helium as an ordinary compressible
fluid that obeys Euler’s equation. The helium atom is spherically symmetric, so
it has no rotational modes into which energy can be dissipated, and there is no
contribution to the viscosity. By applying what we have learnt from the droplet
experiments, we will find excitations that have many features in common with
what is observed for rotons.

11.1 Introduction to superfluid helium

Figure 11.2: The specific heat capacity of liquid helium as a function of temper-
ature.

In 1937, Pyotr Kapitsa, Jack Allen and Don Misener discovered that when
4Helium is cooled below about 2.17K it becomes superfluid, with zero viscosity
in certain limited respects. The normal fluid is often called He I and the super-
fluid He II. The onset of superfluidity is characterised by a second-order phase
transition, with a discontinuity in the specific heat capacity of the liquid (figure
11.2). With some imagination this graph looks like the Greek letter lambda (λ),
so it’s called the ‘lambda point’.

Below the transition temperature it was believed for many years that there
was a mixture of He I and He II, with the proportion of the latter increasing
as the temperature falls, until below about 1.1K it behaves almost entirely as a
superfluid. The superfluid component will pass through small capillaries where
viscosity would prevent normal flow (in a ‘superleak’), and it will creep over the
surface of vessels while the other component will not.

The superfluid phase is compressible, as evidenced by the fact that it sup-
ports sound waves like those in the air. These waves are called ‘first sound,’
and they propagate at about 230 m s−1 at low temperature and atmospheric
pressure.

If helium flows at more than about 4 cm s−1 then it can acquire some vis-
cosity. This is usually thought to be due to the creation of vortices which carry
energy away, but this model is unsatisfactory in a number of respects, in partic-
ular there is a difficulty with the conservation of vorticity in the fluid. See for
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example Seth Putterman’s textbook [61].

The modern view is that liquid helium below the lambda point consists of a
superfluid, plus excitations that are of thermal or mechanical origin (instead of
the normal fluid with viscosity which was previously supposed). These excita-
tions are thought to be the rotons originally suggested by Feynman in the 1950’s,
but their precise nature remains mysterious. Experimentally, they bounce off
surfaces and so they cannot easily pass through apertures smaller than a few
microns. Above about 1.1K there are enough of them that they collide with
one another, so their mean free path becomes shorter than the size of the con-
tainer. In this regime they behave collectively like a gas or a normal fluid,
whose pressure can be observed experimentally. This gas supports compression
waves, called ‘second sound’, whose propagation speed is typically an order of
magnitude slower than first sound.

11.2 Wave equation

Superfluid helium is a compressible fluid, like the air, and so it supports sound
waves (first sound) that obey the wave equation (section 1.9).

�

�

Figure 11.3: The simplest rotating solution in a superfluid, given by (11.1)
with m = 1. The regions of compression (red, schematic and near-field only)
and rarefaction (green) rotate anticlockwise. They both contribute in the same
direction to the flow u (arrows in the cross-section).

Systems that obey the same equations have the same solutions. In partic-
ular, the rotating solution (10.1) photographed in the previous chapter has a
superfluid twin. In cylindrical coordinates (r, θ, s)

ρm
ρo

= 1 + A cos(mθ − ωot) Jm(krr) (11.1)

where ρo is the ambient density of the fluid. We will refer to this solution as an
‘eddy.’ Figure 11.3 is a schematic drawing of the m = 1 case, and figure 11.4 is
a cross-section.

Just as with surface waves, we can get a more convenient and concise de-
scription of an eddy by extending the excess density into the complex plane.
The imaginary part is purely for mathematical convenience and is discarded at
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Figure 11.4: Cross-section of the flow near an eddy. The entire flow pattern
rotates around the centre, as if it were rigid, with angular speed ωo.

the end of the calculation. The usual convention in fluid mechanics is to define

ρ− ρo
ρo

= ℜ(ξ)

where ℜ means the real part. The excess density in (11.1) is thus the real part
of

ξ = ψ χ

ψ = e−iωot

χ = A eimθ Jm(krr) (11.2)

You will notice that this is exactly the same as equation (10.8) for the wave
near a rotating pair of droplets. It should be no surprise that the two solutions
can be written in the same way, since they obey the same equations.

11.3 Energy and angular momentum of an eddy

We saw in the previous chapter that the flow underneath the rotating wave in
(10.1) is irrotational, but if the entire wave is included then there is a net flow
around the centre. At large distance, averaged over a wavelength and a period,
the flow reduces to that of a vortex. This was illustrated graphically in figure
10.2.

The same holds for an eddy, as can be seen by replacing the wave height h
by the density ρ. As we saw in the previous chapter, the flow is irrotational,∮
u.dl = 0, but the angular momentum L depends on

∮
ρ u.dl, which does

not vanish because ρ and u are correlated. If the frequency of the eddy and its
amplitude are kept constant, then the angular momentum inside a large cylinder
of fixed length and radius R centred on the eddy is the same as that of a vortex,
namely L ∝ R2. This is shown explicitly in the advanced material below.
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Here we explicitly translate the treatment of the rotating waves near a
droplet (chapter 10 to the case of an eddy. The principal difference is that
the wave height h is replaced by the density ρ.

The flow velocity near an eddy is proportional to the excess density.
Expanding the Bessel function in (11.1) at large radius gives

u ≈ cos(mθ − ωt) uo

√
ro
r

cos
(
r +

π

4

)

where uo is the maximum tangential velocity at some radius ro where the
Besssel function has a maximum or a minimum.

Inside a cylinder of radius R and length l centred on the eddy, the
kinetic energy is

KE =

∫ R

o

1
2ρu

2.2πr l dr

This must be doubled to get the total energy, since the potential energy
is the same as the kinetic energy over a cycle. After substitution, this
expression evaluates to

E ≈ 1
2ρu

2
o Rrol

where we have replaced each of the cosine terms by their average over a
cycle, 1

2 .

Similarly, from the momentum p = E/c, the angular momentum inside
the cylinder is

L =
1

2πc

∫ R

o

ρu2.2πr2 l dr

which evaluates, after substitution, to

L ≈ 1
8ρu

2
o R

2rol

Angular momentum is conserved in a superfluid, so it follows that eddies
must be created and destroyed in pairs (or larger groups), or at the boundary –
which contains an image of opposite angular momentum and thus is a natural
place for creation and annihilation events. In the absence of annihilation events,
the lifetime of an eddy is infinite.

11.4 Comparison with a vortex

We have seen that an eddy and a vortex are both long, linear structures which are
created in pairs and have infinite lifetime in the absence of annihilation events.
In both cases the flow speed is elevated near the centre. Fluid is physically
transported around the centre in the direction of rotation, with average velocity
proportional to 1/r at large r, and the angular momentum increases as R2 in
both cases.
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In an ordinary viscous fluid, viscous losses eventually suppress the oscillatory
motion. The surviving features are those of a vortex. In this sense, a vortex
can be thought of as a ‘classical’ approximation to an eddy. The principal
difference between the two is that an eddy is well-behaved everywhere, but the
1/r behaviour of a vortex cannot apply very near the centre, where there is a
singularity.

There is one further correspondence which will be relevant. A vortex has
what is called a ‘tension’ along its length, as if it were a stretched rubber band.
The tension can be seen by supposing it is terminated on two surfaces. There is
a negative Bernoulli pressure near the centre, where the flow velocity is greater,
so the surfaces will be attracted towards one another due to the reduced pres-
sure [1]. An eddy is similar: the pressure is reduced when averaged over a
cycle.

11.5 Quantization

An eddy is characterised by an integer m, given by

m =
1

2π

∮
−i

ξ

∂ξ

∂θ
dθ (11.3)

This can be seen by direct substitution into (11.2). At its heart, this equation
tells us that the phase θ increases by 2mπ on any loop around the centre.

There is another way to write this equation. The following representation is
less intuitive, and arguably it is unnecessarily complicated, but it is mathemat-
ically equivalent.

We define a quantity (which we will call ‘momentum’) by

p = − ih̄
∇ξ

ξ
(11.4)

With this definition, (11.3) becomes

m =
1

2πh̄

∮
p.dl (11.5)

as may be verified by direct substitution and choosing a path of constant radius.

An eddy is a completely classical phenomenon, but equations (11.4) and
(11.5) are precisely the same as those used in the quantum mechanical theory
of superfluid vortices. In that formalism, there is an ‘order parameter’ δ (for
superconductors) or a ‘wavefunction’ ψ (for superfluid helium). The momentum
is defined, axiomatically, by pψ = −ih̄∇ψ (or p δ = −ih̄∇δ for a superconduc-
tor), which is the same as in (11.4) with ψ or δ in place of the complex excess
density ξ. The quantization condition for a superfluid vortex is exactly the same
as (11.5). Note that the constant h̄ cancels out when the definition of p is sub-
stituted. For further information see a textbook on quantum mechanics such
as Alastair Rae’s [66], or Brian Josephson’s original and very clear treatment of
the quantum mechanical phase of a superconductor [60].
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It follows that the eddies in a classical compressible fluid obey the same
equations of quantization as vortices in a superfluid. The principal difference
is that an eddy is well-behaved everywhere but the conventional equations of
superfluid motion break down at the centre of a vortex due the high flow speeds.
It is usual to explain this difficulty by asserting that the order parameter or
wavefunction must vanish near the centre.

It is usually thought that 4Helium at low temperature is a ‘Bose-Einstein
condensate,’ an inherently quantum mechanical state of matter predicted by
Satyendra Nath Bose and Albert Einstein in the mid-1920s. However, see Adrian
Wyatt’s review of the evidence for this, which he says is less clear cut than
usually supposed [67]. The principal reason for this belief is vortex quantization.
We have seen that the same equations of quantization emerge naturally from
the motion of a classical compressible fluid obeying Euler’s equation.

11.6 Simple eddy ring

Vortices are easily distorted into rings, such as smoke rings, which can be en-
ergetically favourable by reducing their length. Eddies are similar. Figure 11.5
shows a simple eddy ring. The flow pattern erupts from the centre, carrying
material with it.

Figure 11.5: A ring based on the eddy in figure 11.4. The red line is a region
of compression; the rarefaction opposite it is not visible as it is inside the ring.
This eddy ring will be written ξ10.

An eddy ring will collapse to microscopic size under the influence of the
natural tension along its length discussed in section 11.4. As it collapses, the
conservation of energy means the flow speed near the centre will increase until
it approaches the speed of sound, c, where there would be a large negative
Bernoulli pressure. The collapse halts at this point since it is not sustainable
for the total pressure to become negative due to cavitation.
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A vortex ring, such as a smoke ring, does not collapse in this way. A moving
vortex experiences a Magnus force, like the lift of an aircraft wing. As the
ring moves forward theough the fluid, this lift prevents it from collapsing
under the natural tension along the length of the vortex [1].

An eddy is irrotational and so its collapse cannot be opposed by Magnus
forces, which require rotational motion.

When describing an ordinary vortex ring in fluid mechanics, it is usual simply
to ask the reader to imagine the s axis curved into a ring. The above eddy ring
can be described in this way, in which case it is given by the real part of (11.2).
We will refer to the spatial factor as χmo for reasons that will soon become clear.

There is an equivalent description in terms of spherical Bessel functions that
is easier to work with. Suppose an eddy ring has radius Ro, so that ds = Rodϕ

′

where ϕ′ is the angle around the ring. The eddy ring is a sum of spherical
solutions to the wave equation, given by the real part of

ξ = ψ χmo

ψ = e−iωot

χmo =

∫ 2π

0

e−imθ′

jm(krσ)krRodϕ
′ (11.6)

where jm is a spherical Bessel function of the first kind.
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Figure 11.6: The integral at the point P in (11.6) is a sum of spherical solutions
to the wave equation, one of which is indicated by the sphere. The centre of each
solution (red) follows the path of integration (dotted).

This integral is illustrated in figure 11.6. Each element of the integrand is a
solution to the wave equation, and the integral is a sum of them, so it must be
a solution too. By inspection it has the required topology. See [46] for a more
detailed mathematical treatment.

By symmetry, these simple eddy rings have no angular momentum and there-
fore they might not have to be created in pairs.
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11.7 Rotons

The precise nature of rotons has remained a mystery. Many physicists assume
they are to do with local circulation and vorticity, with Feynman having de-
scribed them as ‘a ghost of a vanishing vortex ring’. There have been other
proposals; in 2004 Philippe Nozières described the roton as a ‘beautiful theo-
retical challenge’ and proposed that it is the ghost of a Bragg spot [68]. But
no-one has so far come up with a concrete model that fits the data.

When writing about the missing low-energy excitations in liquid helium in
the original paper on the subject [63, p267], Feynman suggested

Perhaps, if a more complicated wavefunction were tried, some special
linear combination representing a kind of microscopic vortex ring or
one with intrinsic angular momentum has in fact a lower energy.

An eddy ring has these properties, and it relies on the compressibility terms
Feynman had neglected. The eddy ring drawn above has no net angular mo-
mentum, from the symmetry, but we will shortly see there are higher-order rings
which do have intrinsic angular momentum.

More generally, eddy rings are oscillatory quasiparticle solutions to Euler’s
equation for a fluid. We saw in chapter 3 that all expectation values for such
solutions are Lorentz covariant with characteristic speed equal to the speed of
sound in the medium.

Exercise 11.1 By reproducing the treatment in chapter 3, replacing the
wave height h by the density ρ, show that all expectation values for the
ring in (11.6) are Lorentz covariant.

Further, being solutions to Euler’s equation, eddy rings obey the same equa-
tions as in chapter 6, and accordingly they will interfere and diffract like quan-
tum mechanical particles with a modified value of Planck’s constant. When
coherent effects are not relevant, they obey the same equations of motion as
classical relativistic particles, with a characteristic speed equal to the speed of
sound rather than light.

Exercise 11.2 By reproducing the treatment in chapter 6, replacing
the wave height h by the density ρ, show that an eddy ring obeys the
Schrödinger-like equation (6.14) when averaged over a cycle.

11.8 Thermal conductivity

Superfluid helium is observed to have high thermal conductivity, and Feynman
supposed that rotons and phonons (ordinary sound waves) together are respon-
sible for the heat transport. Eddy rings will contribute as follows. There is
a range of ring sizes for each topology, giving a spectrum of intrinsic energies
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Eo for the non-walking solutions. More eddy rings will be created on hotter
boundaries, where more energy is available, and they will preferentially be anni-
hilated at cooler boundaries. From the Lorentz symmetry, their walking velocity
through the fluid is given by E = γEo where E is the total energy and γ is the
acoustic Lorentz factor.

Exercise 11.3 By expanding the acoustic Lorentz factor γ, show that
an eddy ring travels through the fluid at speed

v = c

√
1−

1

γ2
= c

√
E2 − E2

o

E2

Suggest why most eddy rings created on the boundary will travel through
the fluid at a speed of order the speed of sound.

Harder Taking a simplified model, the number of eddy rings of a given
type with energy E is proportional to e−E/KT where K is Boltzmann’s
constant and T is the temperature. Estimate the distribution of veloci-
ties.

The large velocity means the eddy rings will carry energy efficiently from
a hotter to a cooler region, making a significant contribution to the thermal
conductivity.

11.9 Pressure

Feynman also suggested that the excitations might exert a pressure on the walls
of the container and on the surface. The next exercise invites you to calculate
this pressure in the case of an eddy ring.

Exercise 11.4 Show that the momentum of an eddy ring is

p =
Ev

c2
=

E

c

√
E2 − E2

o

E2

Estimate the pressure exerted by a single eddy ring with energy E =
KT ≫ Eo, assuming it is reflected specularly from the walls of a container
1cm across filled with liquid helium at 1K. The speed of sound in liquid
helium is about 230m/s.

This pressure is confirmed rather spectacularly in the ‘fountain effect’: see
Alfred Leitner’s video online [69]. The apparatus is illustrated schematically in
figure 11.7.

In the experiment, a glass tube protrudes into a bath of superfluid helium. It
has a plug of jeweller’s rouge at the bottom, which has gaps of about one micron
through which He II can pass but eddy rings cannot. When the liquid in the
tube is heated, the pressure of the eddy rings increases and the level of helium
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Figure 11.7: The fountain effect in superfluid helium.

rises above the surrounding bath. If the pressure is large enough, a fountain of
liquid helium sprinkles out of the tube.

Eddy rings are non-linear near the centre, and so they will interact with
one another when they approach close enough. As the temperature rises their
density in the superfluid helium will increase until their mean free path becomes
smaller than the size of the container. They can be modelled as an ideal gas,
with the usual pressure and density relationship. Such a gas supports waves
of compression, like sound waves. These are observed in ‘second sound’, which
travels at about a tenth of the speed of ordinary pressure waves (first sound).
Second sound is observed to transport heat and to reflect off the walls of the
container, as we might expect.

11.10 Quantum-like phenomena

We saw single-slit and double-slit diffraction patterns in the bouncing droplet
experiments. The excitations in a superfluid obey the same equations and so
they should exhibit the same phenomena. We are not aware of systematic
attempts to measure diffraction patterns in rotons.

Neither have there been systematic attempts to measure stationary states
which are solutions to the Schrödinger-like equation (6.14), but they may have
been observed in experiments with a different purpose. Recently Anssi Salmela,
Juha Tuoriniemi, and Juho Rysti at Aalto university in Finland measured the
resonant frequency of an electronic tuning fork which was coupled to second
sound in a container of superfluid helium [70, 71]. They found unexplained
variations in the resonant frequency of the tuning fork and in the width of
the resonance, shown in figure 11.8. Note the spikes in the width ∆f of the
resonances. Wider resonances are usually associated with greater dissipation.

We hypothesise that the tuning fork excites eddy rings at its resonant fre-
quency. Solving the Schrödinger-like equation for these species, they will have
stationary states whose energies depend on the details of the apparatus. The
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Figure 11.8: The resonant frequency of an electronic tuning fork coupled to
second sound in superfluid helium, as a function of temperature. The symmetry
is because the speed of sound was a maximum at about 1.2K. Courtesy Juho
Rysti [71]

spikes in the experimental data correspond to conditions where these stationary
states are excited. They drain energy into other modes, like in atomic absorption
spectra, thereby increasing the width of the resonance. Further experimental
work is indicated in this area.

11.11 Ejection of atoms by eddy rings

If an eddy ring encounters the surface of the liquid, as in figure 11.9(a), the high
amplitude wave crests near the centre will crash into the surface, like a storm
wave crashing onto a sea wall, and helium atoms may be ejected.

This was observed in 1984, when Adrian Wyatt and colleagues fired high
energy rotons towards the surface of liquid helium from below, and found that
atoms were ejected from the surface as a gas.

The intrinsic motion of an eddy ring can be in either direction. As illustrated
in figure 11.9(b), the helium atoms will be ejected in the opposite horizontal
direction if the intrinsic motion is reversed. The effect is indirect and would be
expected to be a little weaker. This was observed in 1999. Mark Tucker and
Adrian Wyatt created high energy rotons and arranged that they approached
the surface at an angle. One type of roton (which they called the R+ roton)
induced atoms of helium to be ejected from the surface in the same horizontal
direction as the direction of travel, and the other (the R− roton) induced atoms
to be ejected at an angle [72]. The reverse process was weaker, the helium atoms
having a maximum energy about 3

4 of that seen in the R+ case.

The researchers suggested that the momentum of the R− roton was in the
opposite direction to its direction of travel. The analysis in chapter 6 suggests
the fountain effect would be significantly reduced if half of all rotons had negative
momentum. We hypothesise that the atoms were ejected only where the waves
are powerful enough to overcome the latent heat of evaporation. To analyse this
more completely, we will have to look more more closely at possible structures
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Figure 11.9: (a) An eddy ring encounters the surface of the liquid. The high
amplitude wave crests near the centre crash into the surface and eject helium
atoms as a gas. (b) When the intrinsic motion is in the opposite direction, the
atoms will be ejected in the opposite horizontal direction, by an indirect and
weaker mechanism.

for the eddy ring.

11.12 Chiral eddy

�

�

Figure 11.10: Schematic drawing of a solution to the wave equation which varies
along its length. The cross section is the same as in figure 11.4.

Figure 11.10 is a schematic drawing of an eddy solution to the wave equation
which varies along its length (in the s direction). The rotation resolves into
motion in the +s direction, away from the reader. The excess density is the real
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part of

ξ = ψ χ

ψ = e−iωt

χ = A ei(mθ+kss) Jm(krr) (11.7)

Exercise 11.5 By applying a Lorentz transformation in the s direction
to the eddy in (11.2), show that (11.7) is a solution to the wave equation
when

ω2 = c2(k2s + k2r)

Harder Obtain the same result by direct substitution into the wave
equation in cylindrical coordinates.

This eddy has both angular and linear momentum.

11.13 Chiral eddy rings

Figure 11.11: A chiral eddy ring, ξ11. The flow pattern erupting from the centre
resolves into rotation around the axis of the ring.

Figure 11.11 shows the simplest ring based on this eddy, in which there is
one complete twist around the torus. Imagine the s axis of 11.10 curved into a
ring; then the excess density is given by the real part of (11.7) with

χmn = A ei(mθ+nφ) Jm(krr)

where φ is the angle around the ring. We can give a fuller description in the
coordinates in figure 11.6

χmn =

∫ 2π

0

ei(mθ′+nϕ′)jm(krσ) krRodϕ
′

which reduces to equation (11.6) when n = 0.

This eddy ring has a wave propagating in the φ direction (around the axis
of the ring). As we saw in section 11.4, such waves carry fluid with them and
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thus have angular momentum. It follows that chiral eddy rings have intrinsic
angular momentum. Like a classical vortex, the angular momentum of an eddy
ring at the centre of a sphere of radius R is proportional to R2, as shown in the
next exercise.

11.14 Conservation rules

The creation and annihilation of chiral eddy rings are subject to a number of
conservation rules.

First, angular momentum is conserved in a superfluid. So unlike achiral
rings, chiral rings must be created in pairs (or in more complicated events).
Their lifetimes are infinite in the absence of annihilation events.

It is usually not possible to create (or annihilate) a pair of eddy rings if they
both have the same chirality, since the energy would have to be supplied by a
wave or other process, which would not couple effectively to the motion unless
it were itself chiral. It follows that chirality is conserved, at least at moderate
energies.

One consequence of the conservation of chirality is that eddy rings with the
same chirality but angular momentum in opposite directions, such as ξ11 and
ξ−1−1, shown in figure 11.12(a) and (d), co-exist and are unable to annihilate
one another. As we saw in section 10.5 on spin-half symmetry, the degenerate
states can be written

ξ = cos(α)ξ11 + sin(α)ξ−1−1

where α is a real parameter. As α increases continuously by π, the angular
momentum rotates through 360◦ and ξ reverses sign. It follows that chiral eddy
rings have spin-half symmetry.

Exercise 11.6 By applying the treatment in section 10.5 onwards, write
down the Bloch representation of a chiral eddy ring.

It is conceivable that a chiral eddy ring will be created or destroyed by its
image in the boundary, which has the opposite chirality. However, such events
appear to be very unlikely. Refer to figure 11.12, which shows the ξ11 eddy ring
and its reflections in the boundary. It is not possible to create or annihilate the
pair (a) and (c), since it is forbidden by the conservation of angular momentum.
If the fluid is liquid helium, chiral eddy rings can be destroyed at the surface,
where energy is taken out by the emission of helium atoms as in the experiment
in figure 11.9.

Similar conservation rules have been observed experimentally in rotons. In
1976, David Allum, Roger Bowley and Peter McClintock showed that ions be-
ing drawn through liquid helium at a pressure of 25 bar and a temperature
below 0.45K gave rise to the creation of pairs of rotons. There were additional
complicated effects from the creation of ordinary vortex rings, and presumably
from the creation of achiral rings as well [73]. This confirmed a hypothesis that
rotons were created in pairs by Roger Bowley and Fred Sheard.
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Figure 11.12: (a) A ξ11 eddy ring. The − sign indicates its chirality and the
red arrow indicates the flow erupting from the centre. The figure also shows its
reflections in the boundary. (b) ξ1−1 (c) ξ−11 (d) ξ−1−1.

11.15 Phase transition

As the temperature continues to rise, the density of excitations continues to
increase until they dominate and the fluid behaves as a normal fluid above the
superfluid transition temperature. The relevant thermodynamics were first de-
scribed in 1973 by Kosterlitz and Thouless [41]. They considered the simplified
case where the excitations are vortices in two dimensions.

Kausterlitz and Thouless idealised a vortex as a core of radius a, with fluid
flowing around it at speed u = C/r where r is the radius and C is called
the circulation. The kinetic energy density (per unit area) is proportional to
u2 ∝ r−2, and so if it is at the centre of a cylindrical container of radius R then
the total kinetic energy is proportional to

∫
u2.2πrdr, or

E = Eo log

(
R

a

)
(11.8)

where the energy Eo depends on the circulation and other details of the system.

The energy in (11.8) grows without limit as the container becomes large.
This means that the vortex must be paired with another vortex of opposite
circulation, so that their velocity fields are opposed at large distance and the
total energy is limited, even in a very large container.

In the Kosterlitz-Thouless transition, this vortex-antivortex pairing is broken
by the thermal motion. This occurs above a specific transition temperature, as
outlined in the advanced material below.
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Here we assume familiarity with the thermodynamic concept of free energy,
which is minimised.

A vortex whose core is of size a could be placed in a container of radius
R in of order W = (R/a)2 different positions. Its entropy S = K logW is
given by

S = 2K log

(
R

a

)
(11.9)

where K is Boltzmann’s constant.

Substituting (11.8) and (11.9) into the free energy F = E − TS, where
T is the temperature, gives

F = (Eo − 2KT ) log

(
R

a

)

In thermodynamics, the free energy is minimised. At low temperature,
the energy required to create an isolated vortex dominates, and so each
vortex must be paired with an antivortex. However, there is a transition at
the temperature Tc = Eo/2K. Above this temperature the entropy term
dominates, irrespective of the size of the container, and unpaired vortices
can be created at will. They will dominate the motion and swamp the
superfluidity. This is the Kosterlitz-Thouless transition.

This method might be extended to three dimensions. In a full calculation, it
would be necessary to take into account the full range of excitations, including
vortices, eddies, vortex rings, and the multiple families of achiral and chiral eddy
rings. It seems likely that computer simulation would be required for such a
complex calculation.

Nevertheless, an upper estimate for the superfluid transition temperature
in liquid 4Helium can be obtained by noting that the flow speed in the fluid
cannot much exceed the speed of sound, which is about 230 m s−1, since oth-
erwise the total pressure would become negative due to the Bernoulli effect. In
the unrealistic case that all the fluid were moving at the speed of sound, the
kinetic energy per helium atom would be 1

2Mc2 where M is the mass of the
atom. Equating this to the thermal energy, KT , gives an upper estimate of the
transition temperature of

Tc <
Mc2

2K
(11.10)

which gives an upper estimate of about 14K.

In practice the speed c will be approached only very near the cores of the
excitations and the average speed will be smaller than c. The observed transition
temperature of 2.17K gives 0.4c.
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11.16 Bose-Einstein gas

There is a second system which is believed to be a Bose-Einstein condensate
(BEC): a dilute gas of bosons, typically alkali ions, cooled very close to absolute
zero. Such a gas was first produced by Eric Cornell and Carl Wieman at the
University of Colorado in 1995. Since then, there has been very rapid develop-
ment. The system has a very low speed of sound, typically in millimetres per
second, and the atoms in it can be photographed using phase-contrast imaging,
providing us with a superfluid medium in which acoustic phenomena may be
photographed.

Figure 11.13: Vortex pairs generated in a Bose-Einstein condensate gas of 87Rb
(courtesy Eric Cornell).

In 2000, Wolfgang Ketterle and colleagues observed that a BEC gas sustained
superfluid flow and measured a critical velocity for the onset of dissipation, which
depends on density [74]. They measured a rate of heating that was less than half
of that expected from the conventional theory, but which was consistent with
the creation of vortices, according to a model of vortex creation in superfluids
by Thomas Frisch, Yves Pomeau and Sergio Rica [75]. In 2001, Eric Cornell
and colleagues injected energy into a BEC gas of 87Rb and photographed pairs
of vortices that resulted, as can be seen in figure 11.13 [76].

Like superfluid 4Helium, a BEC gas is usually modelled as two fluids, one
being a superfluid and the second a normal fluid made up of excitations; see
the book by Christopher Pethick and Henrik Smith for a detailed review of the
subject [77].

11.17 Summary

We wrote down low-energy excitations in superfluid helium which are solutions
to the wave equation in an ordinary classical fluid without viscosity. The lin-
ear solutions (eddies) are quantized in the same way as superfluid vortices.
When they are curved into eddy rings, they appear to be the rotons which
Richard Feynman predicted. These rings obey the Schrödinger-like equation
(6.14), which may account for unexplained spikes in resonance widths which
have recently been seen experimentally.

Achiral eddy rings can be created on a hot boundary and destroyed on a cold
boundary, contributing to the observed high thermal conductivity of superfluid
helium. At greater temperatures they form a virtual gas, through which second
sound is observed to travel. Second sound transmits heat, and reflects from
container walls.
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There are also higher-order eddy rings, which are chiral. They are subject
to a number of conservation rules, in particular conservation of chirality. They
have spin-half symmetry. Similar conservation rules have been observed exper-
imentally. They are also created and annihilated in pairs. Vortex pair creation
has been observed in liquid helium and photographed in a Bose-Einstein con-
densate.

11.18 Dialogue

On day 8 of their dialogue, Alice, Bob and Carol argue for the following propo-
sitions

(a) Alice says it has been established that particles were much closer and hotter
in the early universe. Extrapolating back in time, she concludes there was
a singularity, where the laws of physics might not apply and at which space
itself was created.

(b) Bob says it has been established that particle-like excitations in superfluid
helium were much closer and hotter just after the superfluid condensed
in a refrigerator. Extrapolating back in time, he concludes there was a
singularity, where the laws of physics might not apply and at which space
itself was created.

(c) Carol says Alice and Bob have made the same mistake. There only seems
to be a singularity when you extrapolate from a low temperature region
towards a phase transition.

Each of these approaches can be made consistent with all the relevant experi-
ments. Argue in favour of each one in turn.
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