Análise Matricial – Exame 1

PRIMEIRA ÉPOCA (11/JAN/2019)

Duração: 3h

1 (4 valores). Considere a matriz
$$\mathbf{A} = \begin{bmatrix} 3 & -3 & 3 \\ 4 & -4 & 3 \\ 4 & -4 & 3 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- (a) Verifique que $\mathbf{v} = \frac{\sqrt{3}}{3} \big[1 \ 1 \ 1 \big]^{\mathsf{T}}$ é um vector próprio de \mathbf{A} e, caso exista, construa uma matriz unitária que tenha v como primeira coluna.
- (b) Determine uma matriz unitária $\mathbf{U} \in \mathcal{M}_3(\mathbb{C})$ tal que a matriz $\mathbf{U}^*\mathbf{A}\mathbf{U}$ é triangular superior.
- (c) Diga se existe alguma matriz unitária $\mathbf{V} \in \mathcal{M}_3(\mathbb{C})$ tal que a matriz $\mathbf{V}^*\mathbf{AV}$ é diagonal.
- 2 (3.5 valores). Seja $\mathbf{A} \in \mathcal{M}_3(\mathbb{R})$ uma matriz tal que $\mathbf{A}^2(\mathbf{A} \mathbf{I}_3) = -(\mathbf{A} \mathbf{I}_3)$.
 - (a) Indique todas as possibilidades para o polinómio mínimo da A.
 - (b) Justifique que A é diagonalizável.
- (c) \mathbf{A} é simétrica se e so se $\mathbf{A} = \mathbf{1}_3$.

 3 (2 valores). Considere a matriz $\mathbf{A} = \begin{bmatrix} -1 & 0 & 2i \\ 0 & 1 & 1-i \\ -2i & 1+i & 1 \end{bmatrix} \in \mathcal{M}_3(\mathbb{C})$. Seja $\| \star \| : \mathcal{M}_3(\mathbb{C}) \to \mathbb{R}$ a norma matricial induzida pela norma euclideana $\|\star\|_2\colon\mathbb{C}^3\to\mathbb{R}$. Determine $\|\mathbf{A}\|$ e (caso seja possível).
- 4 (3.5 valores). (a) Seja $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ uma matriz diagonalizável com $\sigma(\mathbf{A}) = \{\lambda_1, \dots, \lambda_t\}$ em que $\lambda_i \neq \lambda_j$ sempre que $1 \leq i \neq j \leq t$. Sejam $\mathbf{G}_1, \ldots, \mathbf{G}_t \in \mathcal{M}_n(\mathbb{C})$ os projectores espectrais de \mathbf{A} associados a $\lambda_1, \dots, \lambda_t$, respectivamente. Prove que $\mathbf{AG}_i = \mathbf{G}_i \mathbf{A} =$ $\lambda_i \mathbf{G}_i$ para todo $1 \leq i \leq t$.
 - (b) Considere a matriz $\mathbf{A} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 2 & 1 & 1 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$. Determine os projectores espectrais de **A** e calcule $e^{\alpha \mathbf{A}}$ para qualquer $\alpha \in \mathbb{R}$

5 (4 valores). Considere a matriz
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 6 & 1 & 1 \\ -1/2 & 1 & -5 & 0 \\ 0 & 1/2 & 1/2 & -2 \end{bmatrix} \in \mathcal{M}_4(\mathbb{C}).$$

- (a) Esboce os discos de Geršgorin de ${\bf A}$ e justifique que ${\bf A}$ tem pelo menos três valores próprios distintos.
- (b) Usando uma matriz $\mathbf{D} = \begin{bmatrix} \mathbf{I}_3 & \mathbf{0} \\ \mathbf{0} & \varepsilon \end{bmatrix}$ com $\varepsilon \in \mathbb{R}^+$ conveniente, prove que \mathbf{A} tem um e um só valor próprio $\lambda \in \sigma(\mathbf{A})$ tal que $|\lambda + 2| < \frac{1}{2}$.
- (c) Usando as alíneas anteriores, justifique que ${\bf A}$ tem 4 valores próprios distintos e conclua que ${\bf A}$ é diagonalizável.

6 (3 valores). Considere a matriz
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix} \in \mathcal{M}_5(\mathbb{R}).$$

- (a) Verifique se **A** é irredutível.
- (b) Usando o teorema de Geršgorin, prove que $\rho(\mathbf{A}) = 3$.
- (c) Justifique que existe um e um só vector $\mathbf{p} \in \mathbb{R}^5$ tal que $\mathbf{p} > \mathbf{0}$, $\mathbf{A}\mathbf{p} = 3\mathbf{p}$ e $\|\mathbf{p}\|_1 = 1$. Determine este vector.
- (d) Prove que a sucessão $\left(\frac{1}{3^k}\mathbf{A}^k\right)_{k\in\mathbb{N}}$ é convergente e determine o seu limite.

Análise Matricial – Exame 2

PRIMEIRA ÉPOCA (30/JAN/2019)

Duração: 3h

- 1 (4 valores). Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & i \\ 0 & 1 & 1 & -i \end{bmatrix} \in \mathcal{M}_{2\times 4}(\mathbb{C}).$
 - (a) Justifique que existe uma matriz unitária $\mathcal{M}_2(\mathbb{C})$ tal que $\mathbf{U}^*(\mathbf{A}\mathbf{A}^*)\mathbf{U} = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$.
 - (b) Sem efectuar cálculos, diga quais são os valores próprios da matriz $\mathbf{A}^*\mathbf{A} \in \mathcal{M}_4(\mathbb{C})$ e indique as respectivas multiplicidades (algébricas e geométricas).
 - (c) Pondo $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \end{bmatrix}$ em que $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{M}_{2 \times 1}(\mathbb{C})$, justifique que existem vectores $\mathbf{u}_3, \mathbf{u}_4 \in \mathcal{M}_{4 \times 1}(\mathbb{R})$ tal que a matriz $\mathbf{V} = \begin{bmatrix} \frac{\sqrt{3}}{3} \mathbf{A}^T \mathbf{u}_1 & \frac{\sqrt{2}}{2} \mathbf{A}^T \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix}$ é unitária e tal que $\mathbf{V}^*(\mathbf{A}^*\mathbf{A})\mathbf{V}$ é uma matriz diagonal com coeficientes reais.
- 2 (3.5 valores). (a) Prove que a matriz $\mathbf{A} = \begin{bmatrix} 0 & -1 & 0 & 1 \\ -2 & 1 & 4 & -3 \\ -1 & 0 & 2 & -1 \\ -2 & 1 & 4 & -3 \end{bmatrix} \in \mathcal{M}_4(\mathbb{R})$ é nilpotente e determine a sua forma canónica de Jordan.
 - (b) Indique uma forma canónica de Jordan de uma matriz $\mathbf{A} \in \mathcal{M}_5(\mathbb{C})$ tal que $r(\mathbf{A}) = 4$, $n(\mathbf{A} \mathbf{I}_5) = 2$ e $n((\mathbf{A} \mathbf{I}_5)^2) = 4$.
 - (c) Sabendo que $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ tem polinómio mínimo $m_{\mathbf{A}}(z) = z^2 z 1$, prove que $\mathbf{A} + \mathbf{I}_n$ é uma matriz invertível e determine $(\mathbf{A} + \mathbf{I}_n)^{-1}$.
- 3 (2 valores). Seja $\|\star\|$: $\mathcal{M}_n(\mathbb{C}) \to \text{uma norma matricial.}$ Prove que:
 - (a) Para qualquer matriz $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ e qualquer $k \in \mathbb{N}$, tem-se

$$\rho(\mathbf{A})^k \leqslant \rho(\mathbf{A}^k) \leqslant \|\mathbf{A}^k\| \leqslant \|\mathbf{A}\|^k.$$

(b) Se $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ for uma matriz normal e $\|\star\|_s$ for a norma espectral em $\mathcal{M}_n(\mathbb{C})$, então $\rho(\mathbf{A})^k = \|\mathbf{A}^k\| = \|\mathbf{A}\|^k$ para todo $k \in \mathbb{N}$.

4 (3.5 valores). Para qualquer
$$n \in \mathbb{N}$$
, considere a matriz $\mathbf{A}_n = \begin{bmatrix} -2 & \frac{n-1}{2n} & \frac{n-1}{2n} \\ \frac{n-1}{2n} & 0 & \frac{n-1}{2n} \\ \frac{n-1}{2n} & \frac{n-1}{2n} & 2 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- (a) Usando o teorema de Geršgorin, prove que \mathbf{A}_n tem três valores próprios reais distintos.
- (b) Usando o teorema da continuidade dos valores próprios, justifique que a matriz

$$\mathbf{A} = \begin{bmatrix} -2 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & -2 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

tem três valores próprios reais α,β,γ em que $-3<\alpha<-1,\,-1<\beta<1$ e $1<\gamma<3.$

5 (4 valores). Considere a matriz
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 2 \end{bmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

- (a) Usando uma norma matricial (...)
- (b) Verifique se A é irredutível.
- (c) Usando o teorema de Geršgorin, prove que $\rho(\mathbf{A}) = 3$.
- (d) Prove que $\mathbf{e} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ é o único vector $\mathbf{p} \in \mathbb{R}^{5 \times 1}$ tal que $\mathbf{p} > \mathbf{0}$, $\mathbf{A}\mathbf{p} = 3\mathbf{p}$ e $\|\mathbf{p}\|_1 = 1$.
- (e) Justifique que \mathbf{A} é primitiva e conclua que a sucessão $\left(\frac{1}{3^k}\mathbf{A}^k\right)_{k\in\mathbb{N}}$ é convergente. Qual é o seu limite?

Análise Matricial – Exame 3

ÉPOCA ESPECIAL (16/Jul/2019)

Duração: 3h

1 (4 valores). (a) Determine a decomposição em valores singulares da matriz

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{C}).$$

- (b) Seja \mathbf{N}_n o conjunto constituído por todas matrizes normais em $\mathcal{M}_n(\mathbb{C})$ e, para quaisquer matrizes $\mathbf{A}, \mathbf{B} \in \mathbf{N}_n$, defina $\mathbf{A} \bowtie \mathbf{B}$ se \mathbf{A} for unitariamente semelhante a \mathbf{B} (isto é, se existir uma matriz unitária $\mathbf{U} \in \mathcal{M}_n(\mathbb{C})$ tal que $\mathbf{B} = \mathbf{U} * \mathbf{A} \mathbf{U}$).
 - (i) Prove que \bowtie é uma relação de equivalência em \mathbf{N}_n .
 - (ii) Mostre que duas matrizes normais $\mathbf{A}, \mathbf{B} \in \mathbf{N}_n$ serão unitariamente semelhantes se e só se tiverem os mesmos valores próprios cam as mesmas multiplicidades.
- 2 (3.5 valores). (a) Diga qual a forma canónica de Jordan da matriz

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \in \mathcal{M}_4(\mathbb{C}).$$

(b) Seja $\mathbf{A} \in \mathcal{M}_5(\mathbb{C})$ e seja $\{v_1, \dots, v_5\}$ uma base de \mathbb{C}^5 tal que

$$Av_1 = 0, \ Av_2 = v_1, \ Av_3 = v_2, \ Av_4 = 0, \ Av_5 = v_4.$$

Justifique que $A^3 = 0$ e diga qual é o polinómio mínimo de A?

3 (2 valores). (a) Sejam $\|\star\|': \mathcal{M}_n(\mathbb{C}) \to e \|\star\|'': \mathcal{M}_n(\mathbb{C}) \to \text{normas matriciais.}$ Prove que a aplicação $\|\star\|: \mathcal{M}_n(\mathbb{C}) \to \text{definida por}$

$$\|\mathbf{A}\| = \max\{\|\mathbf{A}\|', \|\mathbf{A}\|''\}, \qquad \mathbf{A} \in \mathcal{M}_n(\mathbb{C}),$$

também é uma norma matricial.

- (b) Seja $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$. Prove que:
 - (i) Se existir uma norma matricial $\|\star\|$: $\mathcal{M}_n(\mathbb{C}) \to \text{tal que } \|\mathbf{A}\| < 1$, então a sucessão $(\mathbf{A}^n)_{n \in \mathbb{N}}$ é convergente com $\lim_{n \to \infty} \mathbf{A}^n = \mathbf{0}$.
 - (ii) Se $\rho(\mathbf{A}) < 1$, então a sucessão $(\mathbf{A}^n)_{n \in \mathbb{N}}$ é convergente com $\lim_{n \to \infty} \mathbf{A}^n = \mathbf{0}$.

4 (3.5 valores). (a) Usando os discos de Geršgorin, prove que a matriz

$$\mathbf{A} = \begin{bmatrix} -2 & i/3 & 1/3 \\ -i/3 & 0 & 2i/3 \\ 1/3 & -2i/3 & 2 \end{bmatrix} \in \mathcal{M}_3(\mathbb{C})$$

tem tr^es valores pr?oprios reais distintos. [Sugestão. Compare A e A*.]

- (b) Prove que para qualquer matriz $\mathbf{A} \in \mathcal{M}_n(\mathbb{C})$ existe uma matriz diagonal $\mathbf{D} \in \mathcal{M}_n(\mathbb{C})$ tal que $\mathbf{A} + \mathbf{D}$ tem valores próprios todos distintos. [Sugestão. Defina \mathbf{D} usando os raios de Geršgorin de \mathbf{A} .]
- 5 (4 valores). (a) Prove que a matriz

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 \\ 0 & 0 & 5 & 0 & 1 \\ 0 & 0 & 1 & 5 & 0 \\ 1 & 0 & 0 & 0 & 5 \end{bmatrix} \in \mathcal{M}_5(\mathbb{R})$$

é irredutível com $\rho(\mathbf{A}) = 6$ e, caso exista, determine um vector $\mathbf{p} \in \mathbb{R}^{5 \times 1}$ tal que $\mathbf{p} > \mathbf{0}$, $\mathbf{A}\mathbf{p} = 6\mathbf{p}$ e $\|\mathbf{p}\|_1 = 1$.

- (b) Seja $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ uma matriz não-negativa e irredutível. Prove que:
 - (i) Se $\mathbf{v} \in \mathbb{R}^n$ for um vector próprio associado ao valor próprio $\rho(\mathbf{A})$, então $\mathbf{v} > \mathbf{0}$ ou $\mathbf{v} < \mathbf{0}$.
 - (ii) Existe um e um só vector próprio $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ associado a $\rho(\mathbf{A})$ tal que $\max_{1 \le i \le n} v_i = 1$.
 - (iii) Para \mathbf{v} como na alínea anterior, $\max_{1 \leq i \leq n} (\mathbf{A}\mathbf{v})_i = \rho(\mathbf{A})$.