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Overview

* Fluid instabilities show up in everyday life, nature and engineering applications.
A seemingly stable system may give rise to the development of an instability,
which can cascade into turbulence.

* When the system is exposed to a perturbation, some wavelengths will grow,
while others will no, governed by the parameters of the flow. This selectivity of
specific structure sizes can be determined using linear stability analysis and then
accounting for viscosity.

* Once these unstable wavelengths have grown to a substantial degree, the system
becomes nonlinear before turbulence eventually sets in.

* Looking at buoyancy-driven instabilities, one can clearly see how certain
wavelengths are selected. This can be extended to shear-driven instabilities and
to other systems.

* For some flows, simplifications can be made to analyze the specific fluid
structures, while for others, only broad conclusions can be drawn about the
stability criteria.
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Flow instabilities: https://www.youtube.com/watch?v=8jKZITeUJUQ
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Flow Instabilities | Fluid Mechanics
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Rayleigh-
Taylor

* Instability of an interface between
two fluids of different densities, which
occurs when the lighter fluid p4is pushing
the heavier fluid p,.






Rayle lgh_ * Instability of a gradient of density of the
Bénard same fluid (e.g., due to the temperature)
under gravity.
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Rayleigh-
Plateau

Arc is inside
R;is positiv§

Arc is outside stream.
R; is negative.

-
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* Instability of a falling stream of fluid that
breaks up into smaller packets with the
same volume but less surface area.
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The Plateau—Rayleigh instability is named for Joseph Plateau and Lord Rayleigh. In 1873, Plateau found experimentally that a
vertically falling stream of water will break up into drops if its wavelength is greater than about 3.13 to 3.18 times its
diameter, which he noted is close to m.[3][4] Later, Rayleigh showed theoretically that a vertically falling column of non-
viscous liquid with a circular cross-section should break up into drops if its wavelength exceeded its circumference, which is
indeed 1t times its diameter. (https://en.wikipedia.org/wiki/Plateau %E2%80%9 3Rayleigh_instability)

Application: inkjet printing.
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https://en.wikipedia.org/wiki/Plateau%E2%80%93Rayleigh_instability
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viscous fluid u,, is pushed through a less
Taylor viscous one [ .
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Injected

Water

Application: oil extraction
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https://www.sciencedirect.com/science/article/pii/S00
01868618300174
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0.992 0.996 1.000

, * Instability that occurs when there
Kelvin- is velocity shear in a single continuous
Helmholtz fluid, or when there is a velocity difference

across the interface between two fluids.
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https://www.youtube.com/watch?v=ggamfo86FQo
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How does the wind generate waves?

TODAY MNovember 2021

Physics Today

How does the wind
generate waves?

Although the question is a classical problem, the details of

PHYSICS

how wind transfers energy to waves at the ocean surface
remain elusive.

wave growth

Sheltering i
De::;e]:sing Wind _,/\\\ How do ocean currents work? - Jennifer Verduin
/_\ https://www.youtube.com/watch?v=p4pWafuvdrY
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https://magazine.physicstoday.org/2021/10/28/how-does-the-

wind-generate-waves/pugpig_index.html 16



Taylor-
Couette

Taylor showed that when the angular velocity of the inner cylinder is increased
above a certain threshold, Couette flow becomes unstable and a secondary steady
state characterized by axisymmetric toroidal vortices, known as Taylor vortex flow,
emerges. Subsequently, upon increasing the angular speed of the cylinder the
system undergoes a progression of instabilities which lead to states with greater
spatio-temporal complexity, with the next state being called wavy vortex flow.
Beyond a certain Reynolds number there is the onset of turbulence.
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https://en.wikipedia.org/wiki/Marangoni_effect

Since a liquid with
a high surface
tension pulls more
strongly on the
surrounding liquid
than one with a
low surface
tension, the
presence of a
gradient in surface
tension will cause
the liquid to flow
away from regions
of low surface
tension.




https://www.youtube.com/watch?v=rq55eXGVvis
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Lowest alcohol
concentration

.Y is high gravity
= Alcohol )
evaporation

v is low

v

Time

Tears of wine form due to the surface tension (y) gradient between the meniscus and the flat surface
of the wine.

https://br.comsol.com/blogs/tears-of-wine-and-the-marangoni-effect/
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Surface tension

Surface tension is the tendency of liquid surfaces
at rest to shrink into the minimum surface

area possible. Surface tension is what allows
objects with a higher density than water such

as razor blades and insects (e.g. water striders) to
float on a water surface without becoming even
partly submerged.

22
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Surface tension

Young-Laplace equation

1 1 .
Ap = pgh —~ (R_l + R_z) ‘ =
Ezgzéioun.sdemmc L L T e T e e 8

Optical tensiometers use the Young-Laplace equation to determine liquid surface tension
automatically based on pendant droplet shape.

https://en.wikipedia.org/wiki/Young%E2%80%93 Laplace_equation
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Figure 8.1 Positions of stable (P) and unstable (Q) equilibrium for a par
whose potential energy @ varics with x in the manner shown.

Stability, instability and marginal stability

Faber Chap. 8 24



Asevery physicist knows, a dynamical system which is in equilbrium may be srable
or unstahle. The simplest casc of the distinction is that of a particle of mass m
which can move only in one dimcnsion, in circumstances where the particle’s
potential energy @ varies with its position x in the manner suggcsted by fig. 8.1.
The particle expericnces no force when it is situated at the minimum, P, or at the
maximum, Q. and in principle it can remain at rest indefinitely in either of thesc
positions. However, if it is slightly displaced from P it accclerates towards P,
whereas if it 1s slightly displaced from Q it accelerates away from Q; in the first
position the particlc is stable and in the second it is unstablc. Near any minimum
such as P the restoring force dd/ax can normally be expanded as a Taylor series in
powers of displacement 5, = xr — x,. Since it is zero at P itsclf, an adequate
approximation tor small values of &, is
2
Fotmacemdipp 279,
b 4t ax .

in which case the equation of motion of the particle is linear in &p,
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The oscillations which it describes are then simple harmonic, with angular
frequency wp such that

An equation of motion similar to (8.1) applies in the neighbourhood of Q, but
since (#*@/dx?) g is negative the roots for w are necessarily imaginary, wg, = *isg
with s, real. Hence the displacement &, = x — x of a particle which starts at rest

at r = 0 from a position such that £, = &, is given at later times by

: L/ Pl IS
‘SD = 5 lén (ehut + E_SUI):

as long as it remains small. If £ is infinitesimal, then by the time the displacement
becomes apparent cxp(sof) must be very much greater than unity, in which case
exp{—sof) must be negligible. When a particle leaves a position of unstable
equilibrium, therefore, its displacement normally grows in an exponential
fashion.




Suppose now that (0@/dx) 1s necessarily always zcro— perhaps becausc of some
symmetry requircment — while (9°®/0x")p can be reduced in magnitude and
ultimately reversed in sign by altering the external constraints which determine &.
In that case P is always an equilibrium position, but the equilibrium is stable in one
range of the constraints and unstable in an adjacent range. Where the changeover

uts one has
occurs one has Dﬂtwm‘*é Vv e hess

[ —

9 1 (82(}_‘)) 0 M-\(va!/w\) P‘u;) 5y

wp = —

mblax’ |, nstabilody S, |

and this is the condition for what is called marginel stability. When it 1s satisfied.
the force experienced by a particle near P is normally determined by (o ®/0x™)p
or, if (0 *@/ox’)p is zero for symmetry reasons, by (a7 @/ax*)p: it is then pro-
portional to & or &) rather than to &p. .

iy ] ! P
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i 2




(b) (¢)

Fig. 9.3. (a) A stable state. (b) An unstable state. (c¢) A state which is
stable to infinitesimal disturbances but unstable to disturbances which
exceed some small threshold amplitude.
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Dissipative systems

In so far as the above remarks apply to conservative systems they may seem to
have little relevance to viscous fluids, which are inhcrently dissipative. If,
however, a particle moving in the potential of fig. 8.1 is subject to a dissipative
retarding force proportional to its velocity, the principal effect of this is merely to
damp — and perhaps overdamp — oscillations in &, and to slow down the
exponential rate of growth of £,. That does not invalidate the conclusion that P
and Q represent states of stable and unstable equilibrium respectively. Indeed,
the fluctuations which always accompany dissipation in thermal equilibrium now
make it impossible in principle, as well as in practice, for a particle to remain
indefinitely at Q. Nor does the existence of dissipation invalidate the conclusion
that when, as a result of a continuous change in the form of @{x}, the equilibrium
at Pchanges from being stable to being unstable, this equilibrium passes througha

state of marginal stability.
\/o\

Figure 8.1 Positions of stable (P) and unstable (Q) equilibrium for a par 29
whose potential energy @ varies with x in the manner shown.



The general procedure for investigating the stability or otherwise of patterns of
fluid flow involves perturbing the pattern in various ways and calculating whether
the amplitude —say &, {t} — of cach perturbation mode decrcases or increases with
time; the amplitude may well deseribe a velocity rather than a displacement, but
that is a rather trivial distinction in this context. The modes must be consistent
with the boundary conditions to which the fluid 1s subject, and they should form,
like the periodic normal modes of the Euler strut, a complete set in terms of which
any possible perturbation may be expanded. The exact equations of motion of the
fluid are always non-linear in §,,, and one¢ cannot achieve a detailed understanding
of what happens once an instability has developed without taking non-linear terms
into account. As afirst step, however, it may suffice to establish the condition fora
state of marginal stability to exist; having done that, one may confidently assert
that true stability lies on one side of this condition and instability on the other.

Since marginal stability requires

hodo e ig,
ey Cwney\artwt dt

of
pmadis wiprake . : :
to first order only in £,,. the condition for its existence may be established using

approximate equations of motion from which all terms which are non-linearin g,
have been deleted. If, as is often the case, there arc several competing modes of
instability, the first to develop once the condition for marginal stability has been
1L, Jot\is largest. Linearised

5-: l_ >SM

=0 (8.2)

exceeded i1s normally the one for which|s
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L\

Rayleigh-Plateau

/]

A free jet of water, cmerging from a circular orifice, is liable to break up into a
regular succession of drops, and according to Plateau’s analysis of some obser-
vations by Savart the drops are separated by a distance 4 which is about 8-8 times

the radius a of the jet before it disintegrates. If a stationary cylinder of water could

be obtained it would break up in the same way, and indeed the droplets of water
which are to be seen on spiders’ webs after a damp cold night are probably formed
by accretion from layers of dew which are cylindrical when first deposited. The
explanation lies in the fact that, volume for volume, spheres have smaller surface
areas than cylinders,

Suppose an initially uniform cylinder of liquid to be subject to a small varicose
deformation, which preserves rotational symmetry about the x axis (the axis of the
cylinder) but alters its radius in a periodic fashion from a to

b/ﬂ_ b=(b) + e coskx (G <a). @) K=

=T R - A

4%
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The volume of the cylinder per unit length, averaged over an integral number of

wavelengths, s
* g, (1) L
) A () e
A'Q o See (s V_<\;}2 — b) +l o2 ("'>: 5’
A = b} = 7b) 2 1ok @) -
= Nt

and since this must equal the initial volume per unit length, 7a”, we have

N =~ 1l¢

x
2

o By = Vi -2 ~a— “’E-(s)

Thu'-,. the surface ..i.l’Ld. of the L}Illldi:l[ per unit length, similarly averaged, is
c“no r— sdlo

H\ﬂ\/ - flm’;‘/li—l— (:—iﬂ N
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In this problem there is no gravitational term to consider, and it is the surface free
energy per unit length, oA, which plays the role of the potential energy @ of §8.1.
The condition for marginal stability 1s a*AlIC: = 0, equivalent to

f 5€/\>>¢.,

{R=R=l )c-.:?,‘ﬂa—

~¢\l o

¢~ hy” lv\s'/al,,/,.[JJ'

The cylinder is inherently unstable, as Plateau was the first to note, to any periodic
deformation for which k is less than k.., i.e. for which the wavelength 4 is greater
than 2ma.

To find the rate of growth of a mode for which & < & _one may follow the routine
procedure outlined n §8.2. Provided that the viscosity of the liquid may be
neglected, i.e. provided that potential theory may be employed, it is not difficult
to calculate the fluid velocity u{x, r} associated with rate of change of {;. It is
described by a flow potential ¢ which is a solution of Laplace’s equation
proportional to cos(kx)f{r}(ag./at); the function f{r} involves Bessel functions.
Hence the constant of proportionality relating the fluid’s mean Kinetic energy per
unit length to (a&,/f)” may be found, and the equation of motion relating 8°&,/ar
to ¢, follows immediately. According to Rayleigh, s,, which is zero where k = k_,
reaches a maximum where & = 06974, or wherc|A = 9-02a] in reasonable
agreement with Savart’s observations. The 2% discrépancy;imhe wrong direc-
tion to be due to viscosity, is attributable to experimental error.
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A dispersion relation relates the wavenumber of a wave to its frequency

SAUVAVAVEVAVAVAVAS VAVAVAVARAAVAVAVAVS

Frequency dispersion of surface gravity waves on deep water. The m red square moves with the phase velocity, and
the e green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group
velocity. The m red square traverses the figure in the time it takes the e green dot to traverse half.

Deep water waves |=adit]

Further information. Dispersion (water waves) and Airy wave theory

The dispersion relation for deep water waves is often written as

w=\/g_k?

where g is the acceleration due to gravity. Deep water, in this respect,

is commonly denoted as the case where the water depth is larger
than half the wavelength.!! In this case the phase velocity is

"U:E: E
Pk k'

and the group velocity is

_dw 1
*us,—dk—g'up,

(Source: https://en.wikipedia.org/wiki/Dispersion_relation)

Waves on a string [ edit]
Further information: Vibrating string

For an ideal string, the dispersion relation can be written as

where T is the tension force in the string, and y is the string's mass
per unit length. As for the case of electromagnetic waves in vacuum

Electromagnetic waves in a vacuum [ edit]
For electromagnetic waves in vacuum, the angular frequency is proportional to the wavenumber:
w = ck.
This is a linear dispersion relation. In this case, the phase velocity and the group velocity are the same:
w dw

»U:E:E:c;

they are given by ¢, the speed of light in vacuum, a frequency-independent constant.

/\/':>\5-:2,'1{ W
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Rayleigh-Taylor instability

The Rayleigh—Taylor instability arises when a vessel which contains two fluids
separated by a hornizontal interface — one at least of the Huids must of course be a
liquid — is suddenly inverted so that the heavier fluid lies above the lighter one.
The gravitational potential energy of the system, which was at its minimum value
before inversion, 18 now at its maximum, and although the system is still in
equilibrium while the interface remains horizontal the equilibrium is clearly liable
to be unstable. Whether or not it is actually unstable with respect to any particular
perturbation depends upon whether the gravitational energy which this releasesis
greater or less than the increase in surface free energy. The system is marginally
stable with respect to the perturbation when the two are cqual.

Further reading: Chandrasekhar, S.
SR ST (2013). Hydrodynamic and hydromagnetic
ceo =L stability. Courier Corporation.

Figure 8.3 A laycer of one fluid with a denser fluid above it, in a container of
width L, is stabilised by surface tension against the perturbation suggested

here provided that (8.6) is satisfied.
37



All possible small perturbations of the surface may be expressed in terms of
their Fourier components, a typical Fourier component involving a vertical 5
displacement of the interface > B

S« ~
L= Epltye™, W‘

where ris a vector which lics in the z = 0 planc, i1.e. the plane of the undisturbed
interface. Per unit area of the interface, the reduction in gravitational potential
energy associated with a single wave of this form, averaged over any integral
number of wavelengths, is [(5.29)] 1

P = j Cim)- (7).
: ¥

E (p" — p)ecs.

where p’ and p are the densities of the heavier and lighter fluids respectively. The
increase of the surface free energy, similarly averaged, is

-

]

By

. Ff*ee Copg )
dE [\ 2 1 revg
L B e L B L

X
% [}

to second order in {, where o is the interfacial surface tension. Marginal stability
is therefore only possible for one wavevector k., such that

(0 — p)g = ok (8.4)
q*ﬂ l/l ‘/‘f## - - L"_V \(_wﬁltcs( K

(Ahw oV Kh&dﬁfs)
c
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In order to find the rate at which modes for which k << k. grow in amplitude, one
needs to know how the velocities of each fluid depend upon af,/ar. With that
information at one’s disposal, one may follow the routine procedure of evaluating
the mean kinetic energy per unit area and hence the total energy, a sum of
gravitational and surface terms proportional to &; and kinetic terms proportional
to (05, /01); by equating the time derivative of the total energy to zero one may
then obtain, after cancellation of a factor af,/ar, a linear equation of motion
relating &, to 97,/ which provides the required answer. We, however, can
make usc of a result already available as (5.40), which tells us, in the notation of

§8.1, that the dispersion relation for waves on the interface 1s (
é«?/[p Neauen
3 7 7
' - ok . —
f;};%:—p' pgk—i— : . with s, = 0, w’?j
ptp ptp f-'

as long as k is greater than the critical wavevector which (8.4) describes, which
implies that when k£ < k. we have

L CX]'){—i(f””+ i.'l.”)z}

PP g -

, ; ., with ay = 0.
ptp prp

Sp =

The value of &, say k.. which maximises s; and hence the rate of growth is clearly
such that
(,\0’ - p)g = SUkEnnx-r
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k.
Kpan = —= 8.5
LI HEN \’ﬁ ( )

We may infer from the above results that if it were possible to invert almost
instantaneously a large vessel containing two fluids, so large that the boundary
conditions imposed virtually no limitations on the allowed values of k, the
contents would be inhcrently unstable. The interface would inevitably develop
corrugations whose periodicity would be the wavelength associated with &, 1.€.
27V 30/(p' ~ p)g, which amounts to about 3 cm when the heavier fluid is water
and the lighter one is air. In practice, however, rapid inversion 1s possible only
with small vessels, and the fact that liquid inside an inverted bottle is stabilised by
surface tension if the opening of the bottle 1s small enough must be familiar to
every reader. For simplicity, suppose the vessel to be a rectangular one, with
vertical sides and a cross-section in the z = 0 plane of which the larger dimension is
L. The smallest non-zero value of k consistent with the boundary conditions [fig.
8.3 and some remarks about the boundary conditions applicable to water waves at
the start of §5.8] is then /L. In that case the inverted contents are stable provided
that 7/L. = k_, i.c. provided that

L < .?IJ{

— (8.6)
P — p)g
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Rayleigh-Taylor
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Saffman-Taylor instability

The Saffman—Taylor instability arises, or may arise, when two fluids of different
viscosity are pushed by a pressure gradient through a Hele Shaw cell [§6.8] or
allowed to drain through such a cell under their own weight. It would be of little
practical importance were it not for the fact that creeping flow in a Hele Shaw cell
is the two-dimensional analogue of creeping flow through a porous medium
[§6.13]. Something very like the Safftman—Taylor instability frustrates attempts to
extract, by pushing it out with pressurised water, the last traces of oil from oil
wells. Theoretically, the instability has features in common with the Rayleigh—
Taylor instability discussed in §8.2; it differs in that the equibrium state is a
dynamic one, in which the interface between the two fluids is moving rather than
stationary, but the analysis required is nevertheless distinctly similar.

Suppose the cell to be horizontal, in which case the effects of gravity may be
ignored. Suppose it to be bounded by straight edges at y = +3L. and suppose
there to be pressure gradients which are driving the fluid contents in the +x
direction with some umform velocity U. In the equilibrium state whose stability
we are to investigate, the interface between the two flmds is the straight line
x = Ur. Where x < Ut, the viscosity 1s ' where x = Ur, the viscosity is 7.
According to (6.47), the pressure gradients needed to maintain this motion are
given in the two regions by

op' _ 12»'U  ap _ 12xU

B

dx > T x d-




where d is the thickness of the cell. The pressures p’ and p are not necessarily
equal at the interface, because the interface is liable to be curved in the vertical (z)
direction. Provided that this curvature 1s constant, however, it does not affect the
results of the analysis, so we may as well ignore it and write

, . 125'U 125U

= ¥ _Uf + L = - 3
p 7 (x ) + P P 7

(x = Ut) + po,

for the equilibrium state, where p,, does not depend upon x.
Now suppose that the interface is perturbed, in such a way that at time 1 it lies at
r = X, where

X = Ur + & e,

There must be some corresponding perturbation in p’ and p, and it must have the
same periodicity in the y direction. However, p" and p obey Laplace’s equation in
two dimensions [$6.8], so any perturbing term which varies like exp(iky) must
vary like exp(+kx) [(5.12)]. Since the perturbation cannot affect the pressure at
large distances from the interface, the perturbed pressures presumably have the
form

125U _
pr=- ;2 (x = Ut + p, + A1 b

12nU _ .
p=— ;:, (x = Uty + p, + Ae Fx—Un qiky

when k 1s positive, where the coefficients A’ and A are to be determined by
reference to the boundary conditions at the interface.



These boundary conditions, applicable in each case at x = X, and linearised by
omission of terms which are of higher than first order in A or {, are as follows.

: X
(i) ('), = (u), = —,
ol
where {u) is the mean velocity described by (6.47), or
2 ' 2
da- op' d p — U+ a&y oiky
12n" ax 12}; ax at

To first order this corresponds to

d’k Ik i
_dk Lk G (8.7)
127" 12 ot
(i) w—p=—02f:kﬁeﬂ

where o 18 the interfacial surface tension. To first order this corresponds to

A — A= [L.} (n' — n) + ok l &y exp(iky). (8.8)

[t is a trivial exercise to eliminate A’ and A from (8.7) and (8.8). and so to obtain
the result

a1
G ot ' +1n

Udrlk.'{
T ] (8.9)

- v =k -
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Thus if n << »' the interface is stable for all k. When i > ', however, i.e. when a
viscous fluid 1s being displaced by a less viscous one, it is marginally stable with
respect to a perturbation for which k& = k., where

kl _ IEU(}I o ?;-"}
¢ od-

%

and it 1s unstable with respect to perturbations for which 0 < & < k.. The
perturbations which grow fastest (i.e. for which s, is a maximum) have k = kJ/\V/3,
1.e. a wavelength

d—2 .
VUG = )

The smallest value of k& which is consistent with the boundary conditions at the
sides of the cell, where y = 3L, is /L, and if the cell is so narrow, or if U is so
small, that this exceeds k. then no instabilities can be observed. In the experi-
ments conducted by Saffman and Taylor, however, in which air was used to
displace glycerine through a cell whose thickness was about 1 mm, L was 12 cm
and the wavelength 1 predicted by (8.10) was normally a bit less than 2 cm. Thus
they expected to see, when the pressure gradient was first applied, six or seven
corrugations develop in the interface over the full width of the cell, and so they
did; one of their photographs is reproduced as fig. 8.4(a).

(8.10)
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When the corrugations are no longer very small they do not all grow at the same
rate, as is shown by fig. 8.4(b). One of the advancing fingers of the less viscous
fluid tends to get ahead, whereupon it expands sideways and, by doing so, slows

down the advance of its competitors. In due course only a single finger survives. It
continues to advance at its tip. but it appears to stop expanding sideways when its
width reaches half the width of the cell. The tip has a characteristically rounded
shape, which Saffman and Taylor were able to explain.

Are the fingers stable and, if not, how do they split up? This question has proved
in recent years to be of much greater complexity and interest than Saffman and
Taylor could have guessed when their paper on this subject was published in 1958,
A partial answer is provided by the two remarkable photographs of fingers
spreading radially from a central source which are reproduced in figs. 8.5 and 8.6.
The first one shows a number of fingers which are splitting in an irregular and
unsurprising way, and one finger which has developed side branches of astonish-
ing regularity; it differs from the others by having a defect at its tip. in the shape of
a small gas bubble which has accidentally entered the apparatus and become
entrained in the flow. The second photograph shows an even more regular pattern
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Active nematics

Bacteria show physics of liquid crystals
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Experiment

CFTC seminar: Taming Active Matter: from ordered topological defects to autonomous shells
14 views * Dec 9, 2021

5 1 GP DISLIKE 2> SHARE

=+ SAVE

https://www.youtube.com/watch?v=ZpnDwgF3R18
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Skyrmions in liguid crystals

Passive liquid crystal with “activated” solitons

~»Local conversion of energy
—»Rotational dynamics alone can lead to skyrmion translation;
vrmion motion does not relv on flows

CFTC seminar: Topological carnival

https://www.youtube.com/watch?v=rSL7NvFCAR8&t=2084s
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Non-newtonian fluids

= > Youlube

890 Bh
Dites-nous ce que vous vouler faire.

iLM

e

X

Wetting of Yield-Stress Fluids

| 2 |
y Pr. Catherine Barentin, Univ Lyon 1
) ILM, « Surface & Interface » group
‘=a @
EEs
5w

P Pl ) 1:30/5458

CFTC seminar: Wetting of yield-stress fluids

https://www.youtube.com/watch?v=NkeTh1Vdaew&t=87s

CFTC seminars: https://cftc.ciencias.ulisboa.pt/

51



course review



1-Kinematics

Material derivative

A material derivative is the

_J?l\: C} () 4 ‘/T/Z. 7 (.. ) time derivative of a property
Dav ~ following a fluid.
o1
pYRTS
Acceleration <l =y

Steady state does not mean
necessarily a=0. Ex.:




Streamline: is a curve that is everywhere tangent to the instantaneous local
velocity vector.

Point(x:dx’y‘*'dy) i é‘ _ ?&E - d@ = J}

PR

N ~N

Streamline

])’ Point (x, y)

X NASCAR surface pressure
contours and streamlines

Other ways to visualize the flow:

A Pathline is the actual path traveled by an individual fluid particle over some
time period.

A Streakline is the locus of fluid particles that have passed sequentially through a
prescribed point in the flow.

For steady flow, streamlines, pathlines, and streaklines are identical.
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Continuity equation

X L (ed) _ o i pog. o Nedz0

Jf

RS @/ N e
N ZER e
Ve vt £LO T/‘.,;> Q U= O

Vorticity

Boundary layer:

—7 v —7
w ..: )</ _/(/{ Fluid particles not rotating

Yy

Irrotational outer flow region

Velocity profile

Yy

Rotational boundary layer region

T
-4@---..@---*/{{%---»@---,@

Wall Fluid particles rotating
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2 - Euler equation: for incompressible and inviscid fluids.

= ZVp+g,
D=5 tE
0¥
d
—u+(?Au)nu=—V(£+%u2+{)
o P
= Vv K_’\,/\J

TR T
WL
A A A

St

: 3

_P-: & 2} nonmassenls S




3 - Potential flow. For irrotational flows in Euler fluids.

;/7 v)(;,o =) /7:7@5
Vo; = O =) Vﬁqf — Vzgﬂ = O

In this case, the pressure is given by the Bernoulli equation.

Kelvin circulation theorem: An ideal fluid that is vorticity free at a given instant is
vorticity free at all times.

Flow around a sphere: the drag and lift forces are zero for an ideal fluid.

My =0 \E’;

JUS

i




4 - Navier-Stokes: incompressible viscous fluids.

Newtonian fluids, defined as fluids for which the shear stress is linearly proportional to
the shear strain rate.

DML D Ta - 9P 4T eV VL

Dt F

Boundary conditions. 1) no-slip: at the surface, the velocity of the liquid and solid are
the same. 2) Interface BC: at the interface, the velocity and the shear-stress of the two
fluid are the same. 3) Fre(e surface BC: at the free surface, the shear stress is zero.

V = g = el Y - 0 ;U\\ _ E‘;C; .
2) \ 2) L e

02

¥ ]
i ™ wan ]
=

B "—— i
=
1]
<
=|

Free surface -

I
I _0-6 1T 1T I TT | 1T T
0 0.2 04 06 08 1




Nondimensionalized Navier—Stokes:

—=

av"
at’

— L]

1 —
St + |[— V™V
- e [

s —a. s % 1
+ (V-VOIW =—[Eu]V P + [Frz

Since there are four dimensionless parameters, dynamic
similarity between a model and a prototype requires all four
of these to be the same for the model and the prototype

(Stmodel = Stprototyper Eumodel = Euprototypei I:rmodel = Frprototyper and

Remodel = Reprototype)-

Approximate Navier—Stokes equation for creeping flow:

Prototype

Stpeototype Elprototype: Frprototype: Reprototype

Muodel

Snoder Ellpaaer Fronaa: Bemuae

VP = uVV

Drag force on a sphere in creeping flow: Fp = 3muVD

Reversibility of the Stokes equation and the swimming at the microscale.

| Y7
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5 - Boundary layer. Separates viscous and inviscid flows close to a solid surface.

Assumptions to obtain the BL equations

B J(H‘

-

du av
o + P =0
X ¥
Boundary layer equations: . 5
T dut du dU d°u
u—t+v—=U—+rv—
dx dy dx dy-

Boundary conditions in
the flat plate problem.

[

How to calculate the vorticity equation and its interpretation in simple cases

To find what difference viscosity makes, we need to repeat the above analysis
using the Navier-Stokes equation as our starting point, rather than the Euler
equation. The viscous term on the left-hand side of (6.25) is —»V /\ 42, and the
curl of this, since V- £2 = 0, is 7V°42. Hence we now have

DN
Dt

= =0V + v
5}

(7.3) 60



6 - Instabilities

a) simulation b) experiment

troo

2.4 e

How to find the critical conditions for the
instability (marginal instability) and which
mode grows faster.

Why does the instabilities happen in each
case? Ex.: physical mechanism in the

Rayleigh-Taylor instability.
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Questao 1

Euler equation: for incompressible and inviscid fluids.

= “Vp+g
YRR
)y
d
—u+(?Au)nu=—V(£+%u2+/)
o P
., ) :CTC’ \/)C (/L/
= M-V -0 ¢y
i
37

-0 ( Bernovlli)

—_

<

z

o
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Questao 2

Uniform (free) stream I

, ééaémt"\/

\.\V‘ \’\ d( : le

NEC N

4e cot
v
/)O)L a{ - éo‘/w{w | [ ¥4 [ [ W/u(((c
7 fune o s .
ad ah o ol | | |
Uniform stream: H=-—= =V v=—"=-—""-=10 Lo { __i
ax  ay ay ix P ——— . >
| .
= ™
I I 1 1
ap =10 —— ! .
$=Vr+fO) — v=-=f0)=0 - fO)= constant | | : l P
ey — 1 1 !
T T T T T
I I 1 1 1
Lo | | _
R
Velocity potential function for a uniform stream: ¢=Vx = <Td‘ =) U - (4’, @ i ¢=0 ¢ qb?
—_— /
ream function for a uniform stream: =Wy — (l =7
Y= ¢ .
Fansd 1 N _ ) . . —_— L-I . l.I
Unifarm stream: ¢ = Vrcosf o = Vrsinf \/ | ) '. S
1 '|I _'_I":r_‘__,_,—'—'_"lr_—'_‘- |II
*ﬁzfﬁ e
] 1 d_ﬂ_ﬂ_l-ﬁ_ﬂ_ﬂ_‘- ]
! I ¥ L] 1
n—""y " ' |

| 3
#0770 L )
Uniform stream inclined at angle o $ = Vixcosa + ysina) —tlrp — | i ",“’”ﬂ_'r}'?_f—
¢ = V(ycose — x sin @) 1 d_-,____ﬂa-T’ﬂ_fa &
iy " ' $ 2
1 &, ¢=0
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Line source or sink at an arbitrary point

Ay
F
_ r
VIL, d
8
\
S P . - =¥*__| ___
T Ny
!I z |
|
|
< i — X
VIL WIL : -
$p=—Irnp=—IhVix —ar-+ (y — by
29T 2ar
Line source at point (a, b): . .
_viL - VIL y— b

Y = — 48, = —arctan
' 29 : 291 xX—a
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Superposition of a source and sink of equal
strength

s L v
. VIL ¥ ¥ P
Line source at { —a, 0): ¢ = 8, where #; = arctan
Farr X +4a

Similarly for the sink,

—VIL y
2, where 0, = arclan —
2 - x—a

Line sink at {a, 0): s

VIL
Compasite stream function: v =o +iy = j—l;ﬂ, — 8,
£Tr

, ) . —V/L 2ay
Final result, Cartesian coordinates: W = arctan ——————
2 x4+ y-—at
—VIL 2ar sin @
Final result, cylindrical coordinates: i = . arctan ———-
&7 r-—=—da
Using
W
arctan(u) + arctan(v) = arctan 1T (mod m), wuv#l. 66
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Doublet: line source and sink close to origin

We have seen before that ¥4 ,
Compaosife stream function: — WL {? @ sin H O ;‘, S OLJ’,-'L o
- ﬁ‘ p
By Taylor expanding the arctan around zero: 5' VL= I
y1ay P g |  U.mnl o
e g —ee g )—

J((MB _]((Qﬁ—kjr/a- 0 <) &

+ @(W =) L+ T a) (- <)
¢ /m/

i —a(\V/L)r sin
o— (L 4 A Stream function as a — b—> al d r s:n
w(r- — a’)
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Doublet: line source and sink close to origin

Let a tend to zero at constant doublet strength K, to find "

Doublet along the x-axis:

Doublet along the x-axis:

—a(V/L) sin @ sin
_ sinf _ _sin

™

F r

cos f

Streamlines (solid) and equipotential
lines (dashed) for a doublet of strength K
located at the origin in the xy-plane
and aligned with the x-axis.
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Superposition of a uniform stream and a doublet:
Flow over a circular cylinder

in
Superposition: =V _rsind — K 51:
For convenience we set ¢ = 0 when r = a
Doublet strength: K=Vada
a2
Alternate form of stream function: Y = V_sin H(r — —)
r
, 1
ql.'-r*=5|nﬂr*—; e
-2 T T 1 T
- 1 0 1
o , g = V(g*)P + 4sin’ :
Nondimensional streamlines: r¥ =

2sin @

1o : w ) = B/®\E |

= V¥_cos ﬂ'(l — T) Uy = —
F= ar

H_
" oraf

Il
I
g
m]
5
f
-
_|_
|5
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Questao 3

Flow in a round pipe: Poiseuille

1 The pipe is infinitely long in the x-direction. ' '
2 The flow is steady (all partial time derivatives are zero). &} S.ooch ®
3 This is a parallel flow (the r-component of velocity, u, is zero). =

4 The fluid is incompressible and Newtonian with constant properties, and the
flowis laminar. ¢/ 7502

5 A constant pressure gradient is applied in the x-direction such that pressure
changes linearly with respect to x.

6 The velocity field is axisymmetric with no swirl, implying that uy = 0 and all
partial derivatives with respect to 6 are zero.

7 We ignore the effects of gravity.

8 The first boundary condition comes from imposing the no slip condition at
the pipe wall: (1) atr =R,V = 0.

9 The second boundary condition comes fromathe fact that the centerline of
the pipe is an axis of symmetry: (2) atr = 0, Pl 0. Alternatively: the

velocity is finite at the center.
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Uy My =O

Continuity: 1o | 1304 gu _
Y V.;;?:O _.P/ﬂr_ /ﬂﬂ ax L lh:_u
Result of continuity: u = u(r) only
Mwn 20 Mo =0 o
1 af ou 1 8’
RN 3&) 2 o) 5 2
J
1d ( E) _ 1k 26" =0
r dr rdr W oax
apP
F-momenium: —=10
NS p: | —_
Result of r-momentum: P = P{x) only =7 P: )__[_) 2 4- /Dg
D%
. M = R) =0
Integration of NS for u: =~ ,du_ r* dP rt dp
dr 4p dx

Axial velocity:
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Poiseuille’s law for the flow rate

: , : R* dP
Maximum axial velocity: U = _E E

T R B
: dar dP R dP
U=L J urdrdEJ:—“—[ 2 — Ryrdr = ————
-0 Jr=0 4 dx Jr—g B dx

vV —mRY/8) (dP/dx R dp
Average axial velocity: V = i ( ﬂ't;{ ) = _EE
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Viscous shear force

The stress tensor is

Centerline
du
0 0 —_—
T Ta To '“(’.l.r
Ti =|Ter T Taz|= 0 0 0
T T T a_u 0 0
ar N
/ fow/ég e A
du R dP
Viscous shear stress at the pipe wall: rT/=pg—=—
B Q B 2 dx
Won wy (

For flow from left to right, dP/dx is negative, so the viscous shear stress on the
bottom of the fluid element at the wall is in the direction opposite to that indicated
in the figure. (This agrees with our intuition since the pipe wall exerts a retarding
force on the fluid.) The shear force per unit area on the wall is equal and opposite to

this; hence,

=9

P
— i

X

F_ R
A 2

Viscous shear force per unit area acting on the wall:



Viscosity and Poiseuille's Law:
— https://www.youtube.com/watch?v=wTnl_kfPBhQ

Asthma Attack
—_—

s
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o

If airway radius reduced by 25%, by how much is airway resistance affected?

1
! 2/ar )4
Rattack — Mlattack ~ 32 Airway resistance >
R ’ 300% baseline!

Full screen (f)
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Force balance

Navier-Stokes equation

RV v N
)t £
N

= O

In most of the previous examples, the acceleration of the fluid elements is zero. It
means that the viscous force balance the external force (e.g., gravity) or pressure
gradients in such a way that the sum of forces acting on a fluid element is zero.



Alternative
derivation for flow in
a circular pipe

Obtain the momentum equation
by applying a momentum
balance to a differential volume
element, and we obtain the
velocity profile by solving it.

Free-body diagram of a ring-
shaped differential fluid
element of radius r, thickness dr,
and length dx oriented coaxially
with a horizontal pipe in fully
developed laminar flow.

Sec. 8.4, Cengel

Tr+dr
= ——

P 1=====1 Prg
all |
|

—
Tr
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In fully developed laminar flow the axial velocity is, u= u(r). There is no motion
in the radial direction. There is no acceleration (check: calculate the
acceleration and verify that it is zero).

* Consider a ring-shaped differential volume element of
radius r, thickness dr, and length dx oriented coaxially
with the pipe.

* The volume element involves only pressure and
viscous effects and thus the pressure and shear forces
must balance each other. The pressure force acting on
a submerged plane surface is the product of the
pressure at the centroid of the surface and the surface
area. A force balance on the volume element in the
flow direction (x) gives

2ardr P), — QuardrP), ;. + Qwrdx7), — Crordx7) 4 =0

a k
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Force balance implies

’ (Zﬁd(% d(v\ >

(2@rdr P), — 2mrdrP),, , + Qurdxt), — Qardxq),,, =0 —

e

i A
PI+.£!’1 o E‘l.' {rTj.rh:fr o l:‘F'ﬂlr
r + —
dx dr

dP d(r
r— + I|'}ﬂ=[|'
dx dr

and substituting the stress (component rz): T = ~m(duldr) We find
( .:iu) dP
r—|=—
dr dax

Same equation obtained with NS: li(’j—:) = ﬁ% 78




Recall

Deviatoric stress tensor

o 7o (70

Tar Top Tz
du a [y 1ﬂuf] (ﬂuf ﬂuz)
2u— r——]+—-—— —+
K ar ,u.[ ﬂr(r) r af K az ar
afug 1 du 1 ouy u uy 1 ﬂ'&)
= —( =)+ 200+ — + -
'”'[rar(r) r ﬂﬂ'] P'(r af r Maz " rap

du, ﬂui) (qill..lrﬂ 1 ﬂuz) du,
—+ — + —— 2u—
,u( 9z ar H az r af H 9z

Stress tensor

L » o
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Different fluid element (r from 0 to R)

2aRdx T,
g—
L
| : TRYP + dP)
| |
__
: ol
T il |
= _: :.-____..._-_
X 1 "
]
dx
Force balance:
aRP —wRYP + dP)-2wR dx Te=0
Simplifying:
dP _ 2oy

dx s
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Separation of variables implies that the pressure gradient is constant % =

The velocity profile is obtained by integration and use of the boundary conditions:

2 (dP (W')M(I/\: 74 \ = O
ufr]=4#(a)+ LInr’+9‘/
&

-9 (fu(»/‘z @) e f(vnl”Lo )

=50 -5)
The average velocity is

= o= 2 [ EOs- £y -£(O)
e~ g2 L U ar = pa L 4y \ dx )Y T T8u\dx
In terms of which the profile becomes

u(r) = zufm.g(1 - ;7)




Questao 4

Nondimensionalized Navier—Stokes:

—=

d —, ==, —=,

+ (VYW =—[Eu]V' P + 1 7+ i?‘ff?‘
at” = —[Eu] Fr? g Re

[St]

Since there are four dimensionless parameters, dynamic
similarity between a model and a prototype requires all four
of these to be the same for the model and the prototype

(Stmodel = Stprototyper Eumodel = Euprototypel I:rmodel - Frprototyper and
Remodel = Reprototype)-

Approximate Navier—Stokes equation for creeping flow:

Drag force on a sphere in creeping flow: Fp = 3muVD

Prototype
Stpeototype Elprototype: Frprototype: Reprototype

Muodel

Stmodels Ellmage: Frmgden, Remoaer
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