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Large responses cannot be described by linear relations between the force and the response.
For example, rubbers can be elongated by several hundred percent of their initial length and
their mechanical responses cannot be described by a linear relation between the stress and
strain. The nonlinear response is quite important in soft matter.

Slow and non-equilibrium response. The collectivity of soft matter slows down their
dynamics. The response time of simple liquids is of the order of 107° [s], while it can be
billions or more times longer (1 [s] to 10%[s]) in solutions of polymers and colloids.

Consequently, the properties of the non-equilibrium state, or the dynamics in the non-
equilibrium state, are quite important in soft matter.



Thermo
review

1. Zeroth law. Thereisa T

T is the same in thermal equilibrium.

2. First law. dU =dW + dQ

U is conserved in isolated systems.

3. Second law. It is impossible to transform
completely Q in W.

S cannot diminish in na isolated system.

4. Third law. T=0 cannot be achievied in a finite
number of processes.
AS - 0asT -0




Thermodynamic
potentials

Closed system: F(T, V) minimal at eqln
F=U-TS
dF =-5dT — pdV

Open system: F(T, V, N)
dF =-SdT - pdV + udN

More than one species: F(T, V, N;, N,)
dF= 'SdT—pdV+ ‘Lllle + I,lszz

_oF

Hi= 5 keeping 7, V and all the other N; constant




Solutions

Solutions are made by dissolving a material in a liquid. The dissolved material is
called the solute and the liquid is called the solvent. The main player in solutions
is the solute, but the solvent also plays an important role.

The effective interaction between solute molecules can be controlled by the
solvent: solute molecules attract or repel each other depending on the solvent.

By properly changing the solvent conditions (e.g., by changing the temperature
or composition of the solvent), one can induce various orderings (crystallization,
phase separation) of solute molecules.




Thermodynamics

The essential characteristic of these solutions is that the size of solute molecule is much larger

than that of the solvent molecule. The main theme here is how the size affects the solution
properties.

The thermodynamic state of a two-component solution can be specified by four parameters:
temperature T, pressure P, and two other parameters which specify the amount of solute and
solvent in the solution.

A natural choice for these parameters is Np and Ns, the number of solute and solvent molecules,
respectively.

Then the Gibbs free energy of the solution is written as
G=G(Np,Ns, T, P)




N In the literature of soft matter, the solute concentration is often
Incompressibility ceprscnted by the. sl fction § defived by

__ wNy
¢= N, ol (2.5)

where v, and v, are specific volumes defined by

ov ov
v = (o—m)T,p,N,’ v = (oN,)T,P,N, (26)

The specific volume satisfies the following equation.?
V = vpN, + vsN, (2.8)

Equation (2.8) indicates that v, and v, correspond to the volume of
solute molecule and the volume of solvent molecule, respectively.

In general, v, and v, are functions of T', P, and solute concentration.
However, in many soft matter solutions (especially in organic solvents),
vp and v, change little with these parameters. Therefore, in this book,
we shall assume that v, and v, are constants.® Such a solution is called
incompressible. In an incompressible solution, ¢ and ¢ are related by

c= ?4’ = ppd (2.9)
p

where p, = m, /v, is the density of pure solute.




The Helmholtz free energy F(N,, N,,T) is an extensive quantity and
therefore must satisfy the scaling relation F(aN,,aN,,T) = aF(N,,
N,,T) for any number a. Hence F(N,, N,,T) is written as?

F(Np,NuT) =Vf(e,T) (2.14)

where f(¢,T) represents the Helmholtz free energy per unit volume
of the solution, and is called the Helmholtz free energy density. By
eq. (2.11), the Gibbs free energy is written as

G(Np,N., T, P) = V[P + f(4,T)] (2.15)

In egs. (2.14) and (2.15), V and ¢ are expressed in terms of N, and N,
using egs. (2.8) and (2.5).

The Helmholtz
free energy



Mixing and demixing

(a) Mixing:

two solutions having
concentration ¢1

and @2 are mixed and
produce a homogeneous
solution of concentration

®.

(b) Demixing:
a homogeneous
solution of concentration

o1V1 + @2V ® separates into two
= Vi+ Vs = z¢1t (1 N m)¢2 solutions of concentration

da and ¢b.




Mixing
(Vi + Vo) f(¢) < Vif(é1) + Vaf(d2)

f(zd1 + (1 —z)2) < zf(h1) + (1 — z)f(d2)

If the two solutions mix homogeneously at any volume ratio
V1/V2, eq. has to be satisfied for any x in the region of 0 = x <
1. This is equivalent to the condition that f(¢) is upper concave
in the region o1 < ¢ < 2.

2
%>0, for ¢1 <o < o
On the other hand, if f(¢) has an upper convex part in some
region between ¢1 and ¢2 the solution ceases to stay
homogeneous.
The system can lower its free energy by separating into two
solutions with concentration ¢a and ¢b. Such phenomena are
called demixing or phase separation.



Demixing

(a) The case that the solute and solvent
can mix at any composition.

(b) The case that phase separation takes
place. If a solution of concentration ¢1
is mixed with the other solution of
concentration ¢2 with the ratio x : (1 -
X) and forms a homogeneous solution,
the free energy of the system changes
from xf(p1) + (1-x)f(p2) to
f(xp1+(1-x)P2).

The change of the free energy is indicated
by the arrows in the figure. The free
energy decreases in the case of (a), but
increases in the case of (b).




Osmotic pressure

When a solution is brought
into contact with pure
o ® : solvent across a
semipermeable membrane,
H the solvent tends to move
® P — into the solution and to
increase the volume of the
e o 0 solution. In order to keep
e® ® ® g © the volume of the solution
oooo at a fixed value V, a force
- — - has to be applied to the
membrane. The force per
V V -V unit area of the membrane
is the osmotic pressure M(V)
of the solution.




Osmotic pressure

Let Fiot(V ) be the free energy of the whole system consisting of solution
(of volume V) and pure solvent (of volume V-V ). If we move the
semi-permeable membrane and change the solution volume by dV, we
do work -I1dV to the system. This work is equal to the change of the
free energy dF,(V ) of the whole system. Therefore 1 is expressed as

OF,(V)

==

II(¢) = —f(¢) + &f'(¢) + £(0)



Chemical potential

The thermodynamic force for mixing can also be expressed in terms of
the chemical potential. The chemical potential of solute p,, and that of
solvent p, are defined by

oG oG
Hp = (8NP)N8,T’p ) Hs = (ONS ) N,.T.P (224)

Using G = (Npvp, + Novs)[P + f(¢,T)] and ¢ = Npv,/(Npvp + Nsvs),

Ky is written (after some calculation) as

pp(@, T, P) =vp [P+ f(6,T) + (1 - ) f'(0,T)] (2.25)

Similarly
1s(6,T,P) = v, [P+ f(6,T) — 6f (6, T)] (2.26)

ps(d, T, P) = v, [P —TI(,T) + f(0,T)] = v [P — (¢, T)] + p{”(T)
(2.27)



Dilute solution: virial expansion

When the solute concentration is sufficiently low, the effect of interaction
between solute molecules can be ignored, and the osmotic pressure is
given by van’t Hoff’s law: the osmotic pressure is proportional to the
number density n = N,/V = ¢/v, of solute molecules:

_ NykgT  ¢kgT
N Vv W

p

IT

(2.29)

The interaction between solute molecules gives correction terms to
van’t Hoff’s law. At low concentration, the correction terms are written
as a power series in ¢:

_ ¢kpT

Up

11 + Aog? + A3p® + - - (2.30)

The coefficients As and Ag are called the second and third virial coeffi-
cients, respectively. The virial coefficients are expressed in terms of the
effective interaction potential between solute molecules. If the interac-
tion is repulsive, As is positive, while if the interaction is attractive, Ao
can be negative.



Free energy and chemical potentials of dilute
solutions

kgT 1
B~ pIng + Axg® + S As3¢® + - --
Up 2

(@) = fo+ koo +

,Us((,b) = l-l'g + PUS — Z—sk’BT(b — lIS(A2¢2 + A3¢3 + - )

P
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Phase separation:
coexistence of two phases

Free energy and phase diagram of a solution.

(a) da and ¢b are the concentrations at which
the line connecting the points Pa and Pb on the
curve is tangent to the free energy curve f(¢). p*a
and ¢*b are the concentrations at which
0%f($p)/0d2 becomes equal to zero. A solution of
concentrations ¢ (pa < ¢ < db) can minimize its
free energy by phase separating into two
solutions of concentrations ¢a and ¢b. The
solution is unstable if p*a < d < p*b, and is locally
stable if pa<d < p*aor p*b < P < db.

(b) Phase diagram obtained by plotting ¢a, ¢b,
d*a, d*b as a function of temperature. Solutions
in the dark grey region are unstable and solutions
in the light grey region are metastable.



Phase separation

The phenomenon of phase separation in solution is analogous to the
phenomenon of the gas—liquid transition in a one-component system.

For example, if a vapour of water is cooled, a certain part of the water
condenses and forms a liquid phase (high-density phase), while the rest remains
as a gas phase (low-density phase). Likewise, the phase separation of a solution
results in the coexistence of a concentrated phase and a dilute phase: the
density and the pressure in the gas—liquid transition correspond to the
concentration and the osmotic pressure, respectively, in the phase separation of
solutions.




Phase
separation




Phase separation

Thermodynamic criteria for the phase separation can be obtained in

the same way as the criterion of mixing. Suppose that a homogeneous
solution of volume V and concentration ¢ separates into two solutions,
one having volume V1 and concentration $1 and the other having volume
V2 and concentration 2. The volumes V1 and V2 are determined by the
conservation of the solution volume, V = V1 + V2, and the conservation
of the solute volume, ¢V = ¢p1V1 + p2V2. This gives

P2 — @1 ‘92_@1
| , P2 — @ o — @ .
F=Vif(é1) +Vaf(¢2) =V | == f(91) + — f(¢2)

P9 — b — O



Binodal: Common tangent construction

As shown in Fig. 2.2(a), the expression in the brackets [ | corresponds
to the line connecting the two points P1(¢1, f(¢1)) and Pa(¢a, f(¢2)) in
the free energy curve. Therefore to minimize (2.36), one needs to seek
the two points Piand P5 on the curve f(¢) so that the height of the line
P1P5 at ¢ is minimized. Such a line is given by the common tangent for
the curve f(¢) (see Fig. 2.4(a)). Let ¢, and ¢, be the concentrations
at the tangent points. A homogeneous solution which has concentration

¢ in the region ¢, < ¢ < ¢, becomes most stable (i.e., its free energy
becomes a minimum) if it separates into two solutions of concentrations
®o and op.

The condition that the line PP} is the common tangent for the curve
f(¢) can be written as

(@) = f'(®6),  f(Ba) = f(Pa)ba = f(d6) — f'(dn)dp  (2.37)

It is easy to confirm that the condition (2.37) is equivalent to the
condition that the chemical potential of the concentrated phase and
the dilute phase are both equal to each other for solute and solvent

(tp(Pa) = pp(Ps) and ps(da) = ps(dp)). Under this condition, the os-
motic pressures of both phases are also equal to each other (II(¢,) =

II(s))-



Common
tangent

or

Maxwell
equal areas




Stability & metastability

The concentration region ¢, < ¢ < ¢, can be further divided into two
regions (see Fig. 2.4). If 82f/8¢> < 0, the solution is unstable. The
graphical construction explained in Fig. 2.2 indicates that any small
deviation from the homogeneous state lowers the free energy. Therefore
the system is unstable. On the other hand, if 82f/8¢? > 0, any small
deviation from the homogeneous state increases the free energy. In other
words, the system can remain homogeneous as long as the deviation
from the original state is small. Such a state is called locally stable, or
metastable. Let ¢%, ¢; be the concentrations at which 82 f/9¢? is equal
to zero. They correspond to the points of zero curvature in the graph of
f(@). In the region of ¢ < ¢ < ¢;, the solution is unstable, and in the
regions of ¢, < ¢ < ¢}, and ¢; < ¢ < ¢, the solution is metastable.

Since ¢,, ¢y, @}, ¢ are functions of temperature, they can be drawn in
the ¢ — T plane. An example is shown in Fig. 2.4(b). The curves AC and
BC denote the lines ¢,(T") and ¢3(T"), and the curves DC and EC denote
the lines ¢ (T') and ¢;(T"). The curve connecting A, C, and B is called the
coexistence curve or the binodal line. The solution in the state below this
curve can phase separate into two phases having concentrations ¢, (1)
and ¢3(7"). On the other hand, the curve connecting D, C, and E stands
for the boundary between the metastable state and unstable state, and
is called the stability boundary or the spinodal line.



Unstable
equilibrium

Nonequilibrium

Metastable

equilibrium

Stable
equilibrium

State A State B
Phase space coordinate

Metastable state



Critical point

The top of the spinodal line is called the critical point. Since the
two concentrations ¢7(T") and ¢;(T") which satisfy 62 f/0¢? = 0 merge
at the critical point, 8°f/0¢® must be equal to zero at the critical
point. Therefore the critical point C is determined by the following two
equations

6 f o f

— =0, — =0 at the critical point 2.38
The coexistence curve and the spinodal curve merge (having the same
tangent) at the critical point.
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Lattice models

Lattice models originally occurred in the context of condensed matter physics,
where the atoms of a crystal automatically form a lattice. Currently, lattice
models are quite popular in theoretical physics, for many reasons. Some models
are exactly solvable, and thus offer insight into physics beyond what can be
learned from perturbation theory. Lattice models are also ideal for study by the
methods of computational physics, as the discretization of any continuum model
automaticaII&/ turns it into a lattice model. Examples of lattice models

in condensed matter physicsinclude the Ising model, the Potts model, the XY
model, the Toda lattice.




Lattice model

Lattice model for
symmetric solutions.

Solute and solvent
molecules are
represented by black
and white circles,
respectively.
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Free energy

f(d) can be calculated if the Hamiltonian of the system is known.

For simplicity, we assume that the solute molecule and the solvent
molecule have the same volume v, and that each cell in a lattice is
occupied by either a solute molecule or a solvent molecule
(incompressibility). The solution volume V and the solute volume

fraction ¢ are given by V = v/Nyo;, = No/Nyo

The energy E; for a certain configuration i is calculated by

_ A7 (PP) A7 (85) A7 (PS)



Z = exp(—E;/kgT)

f(6,T) = —kﬁT In Z

Partition function & free energy density




Mean-field approximation

As an approximation, we replace E; in the summation by the mean
value

Z ~ W exp(—E/kgT)

where W is the number of terms in the summation. W is equal to the
number of ways of placing N, molecules on Ny,; = N, + N; cells, and is
given by

w = Nopt No)!
NN,




Average energy

Each cell in the lattice has z neighbouring cells (z is called the
coordination number). Among the z cells, z¢ cells are, on average,
occupied by solute molecules, and the remaining z(1-¢) cells are
occupied by solvent molecules. Then

N,p = (1/2)2¢N, = 2N;16° /2

N.. = 2Noi(1 — ¢)%/2

Nps = 2Nioid(1 — 9)

E — eppl\rpp + Eps*'\rps + ESS*NrSS

1 . . , "
— 51\’&)15 [Eppc_j)2 + 2€ps@(1 - O) + €ss(l _ 0)2]

1 A
- §‘N'tof:A€¢>2 + Co+ C19



The energy A€ represents the effective interaction between the solute
molecules in the solution. Notice that this energy depends on the interaction

energy between all pairs. When the pair is brought into contact with each
other

OO0000O 0OOO0O0O0
Ce0e0 0eeOO
OO0OO000O OOO00O

two pairs of solute—solvent molecules disappear, and two new pairs (a solute—
solute pair and a solvent—solvent pair) appear. The energy change associated
with this recombination is Ae.

The above argument indicates that whether solute molecules like each other
or not in solutions is not determined by €, alone. It depends on the
interaction energy of other pairs. For example the pair of solute molecules
which attract each other in vacuum (i.e., €, is negative) may repel each other
in solutions if the attractive interaction between solute and solvent molecules
is stronger than the attractive interaction between solute molecules.

The effective interaction between solute molecules is determined by Ae. If Ae
is positive, solute molecules tend to stay away, and the solution is
homogeneous. On the other hand, if A€ is negative, solute molecules attract
each other, and if their attraction is strong enough, phase separation takes
place.



Mean-field free energy

F =—kpl'InZ =—kgT'InW + FE

The first term on the right hand side represents the entropic contribu-
tion. The mixing entropy is given by

Smiz =kpInW = kg[In(N, + N;)! —In N,! — In N,!] (2.51)
By using Stirling’s formula (In N! = NIn N — N), this is written as
Smiz = kB[(Np + Ns)In(N, + Ns) — N, In N, — N In N,]
N, N,
=kg|-N,In[ —2 — | —N,In[ —=—
| () - ()
= kpNiot[—¢Ing — (1 — @) In(1 — ¢)] (2.52)

Hence the free energy of the solution is given by.

F = N, {IcBT [6Ing + (1 — ¢)In(1 — )] + %Aeqb?} (2.53)



£(8) = {kBT[¢1n¢+(1 #)In(1— @) + er¢‘~’}

This is often rewritten in the following form

kgT
fl¢) ==
where y is defined by

F fee ene rgy Linear terms have been added/removed, for
convenience, as they do not contribute to the phase

denSity diagram.



The osmotic pressure of the solution is calculated by eq. (2.23)

Osmotic pressure 1= —1(6) + 6'(¢) + 1(0) = 2 [~ In(1 - 6) ~x#7]

Ve

Force resists
Nonpermeant 0SMosis

solute dissolved l

in water In dilute solutions (¢ < 1), this can be written as

. _ ksgT 1 9
- Piston == [¢ + (5 - x) ¢ ] (2.58)
S—_ AN The first term corresponds to van’t Hoff’s law. The second term
* corresponds to the second virial coefficient A in eq. (2.30).

The second virial coefficient As represents the effective interaction
between solute molecules. If As is positive, the net interaction is re-
pulsive, and if A5 is negative, the net interaction is attractive. Notice
that in the lattice model, there are two interactions considered. One is
the excluded volume interaction which arises from the constraint that
solute molecules cannot occupy the same lattice sites. This gives a re-
pulsive contribution and is represented by the positive constants 1/2
in eq. (2.58). The other is the energetic interaction acting between the
neighbouring molecules. This can be attractive or repulsive depending
(a) on the sign of Ae or x. It is attractive when de < 0 or x > 0. The second
virial coefficients Ao represents whether solute molecules repel or attract

Semipermeable each other as a sum of these two effects.
membrane

Figure 2-11
Lehnir incipl istry, Fifth Edition
© 2008 W.H.Freeman and Company




Phase separation

(a) The free energy f(¢) for a
symmetric solution is plotted
against solute volume fraction ¢ for
various values of x.

(b) Osmotic pressure is plotted
against ¢.

(c) Phase diagram of the solution.
The dark shaded region is the
unstable region, and the light
shaded region is the metastable
region.

(b)

()




Critical point and spinodal

f(p) has a mirror symmetry with respect to the line ¢ = 1/2. If x is less
than a certain critical value ., f(¢) has only one minimum at ¢ =1/2,
while if x is larger than x. f($) has two local minima.

The value of ¥, is determined by the condition that the curvature at ¢ =
1/2 changes sign; i.e., 02f/dd? = 0 at ¢ = 1/2. This condition gives the
critical point

1

Yo =2, b, = =
X - PeT

The spinodal line is determined by 02f/d¢$? = 0, and is given by

S0
I

b | =

zS)

(1 - ¢)



Phase diagram

The coexistence curve is obtained by the common tangent
construction. Since the free energy f($) curve has a mirror symmetry

with respect to the line at ¢ = 1/2, the common tangente line is given
by the line connecting the two local minima of ().

Thus the concentrations ¢,(T) and ¢,(T) in the coexistence region are
given by the two solutions of the equation 0f/d¢ = 0. This is given by

1 (19
1—-26 '\ ¢

X =



Lattice model of a polymer

solution

Unmixed State
Pure Polymer Pure Solvent

Mixed State

(Homogencous Solution)




Polymer solutions

A polymer is represented by N
dark circles connected in series.
The building block of the polymer
(i.e., the dark circle) is called the
segment.

(a) Osmotic pressure of polymer
solutions is plotted against ¢.

(b) Phase diagram of polymer
solutions. The dark shaded
region is the unstable region, and
the light shaded region is the
metastable region.
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Free energy

In solutions of soft matter, e.g., polymer solutions and colloidal
solutions, solute molecules (or particles) are much larger than solvent
molecules. Let us now consider how this asymmetry in size affects the
solution properties.

A polymer is represented by N segments (represented by the black
circles) connected by bonds. The segment corresponds to a monomer
before the polymerization reaction. Here, for simplicity, it is assumed
that the segment and solvent molecules have the same size. For such a
model, the free energy density is now given by

kEgT | 1
f(¢) = —— | F¢mé+ (1 - ) In(1 - ¢) +xo(1 - )




Osmotic pressure

The difference is the factor 1/N in front of ¢ In ¢. This factor comes
from the fact that the mixing entropy per segment of a polymer
molecule is now given by ¢ In ¢/N since N segments are connected
and cannot be placed independently.

The osmotic pressure is given by

I1

v —nl—-9)—¢- xcﬂ

7
l-‘c

_kBT[qb

For ¢ << 1, this is written as

ksT [ (1 )
= Z4+(z-x)o
T[4 1 (2x) e




Spinodal

Due to the factor 1/N, the first term is usually negligibly small
compared with the second term. Therefore the osmotic pressure of a
polymer solution is usually written as

H — 1‘12(;52

The polymer size effect also appears in the phase diagram, in the form
of an asymmetric shape. The spinodal line is calculated by d2f/d¢$? = 0,
and is given by

N
X732 |1—¢ " N¢



Critical point

| 1 1(1+ 1 )2
Qe = —F—;, Xe — 3
1+ VN Xe ™3 vN

For large N, X is equal to 1/2. This is the value of x at which the second
virial coefficient A, changes from positive to negative.

In the case of polymer solutions, the effect of entropy is small, and therefore
phase separation takes place as soon as the second virial coefficient
becomes negative.



Polymer correlations

Polymer solutions at various
concentrations.

In a very dilute solution, polymers
are separated from each other and
there is a strong correlation in the
segment density.

As concentration increases,
polymers starts to overlap, but the
correlation effect is still there.

At high concentration, the
correlation effect becomes weak,
and the segment density is nearly
homogeneous.




Polymer
correlations

Figure 2.9 shows a schematic picture of polymer solutions. In a very
dilute solution (Fig. 2.9(a)), polymer chains are well separated from
each other: each chain occupies a spherical region of radius R,. In such
situations, the density of polymer segments is not homogeneous. The
density is high (of the order of N/ Rg) inside the region of the polymer
coil, but is zero outside the region. Such a dilute solution is realized
when the weight concentration c satisfies”

A _4 ¢

—R— <1 2.68
3 R < (2.68)

The polymer coils start to overlap each other when the left-hand side of

this equation exceeds one. The concentration
Mp

4

TRy

=

(2.69)
is called the overlap concentration.

Below the overlap concentration ¢, or near c¢*, the distribution of
segments is strongly correlated: the segment density around a given seg-
ment is higher than the average value. It has been shown that if the

polymer is very large (i.e., if N > 1) this correlation effect is important,
and gives a fundamental change in the theoretical results. For example,
in a dilute solution with x < x., the osmotic pressure is not propor-
tional to ¢? as in eq. (2.65), but to a higher power ¢*, with exponent o
between 2.2 and 2.3.% The correlation effect becomes less important as
the polymer concentration increases, and above a certain concentration
(say ¢ > 0.25), the polymer solution can be described by the mean field
theory discussed in Section 2.4.1.




Polymer
blends

The size effect is more dramatic in the case that both solute and solvent
are polymers. Consider a mixture of two kinds of polymers A and B. Let
N4 and N be the number of segments in the respective polymers. The
free energy density for such a mixture can be written as a function of
the volume fraction of A segments ¢

@=L [ Lnor L lma-g) +xoa-9)| @)

v,

The spinodal line for such a mixture is now given by

1 1 1
X=3 (¢NA - ¢)NB) (271)

For large polymers of N4 > 1 and Ng > 1, the right-hand side of
eq. (2.71) is very small. In this case eq. (2.71) is equivalent to the con-
dition that x < 0, or Ae > 0. In other words, for two polymers A and
B to mix together, segments A and B have to attract each other. This
condition is satisfied only for very special pairs of polymers. Usually dif-
ferent polymers do not mix because the entropy gain by mixing is very
small in polymers.




Colloids

Tyndall ‘ Solution
Effect Colloid

Scattering
of light by
colloidal
particles




Colloidal solutions

The size effect is also important in colloidal solutions. The entropic effect
of mixing is of the order of kg1’ per particle and is independent of the size
of the particle, while the interaction energy between particles increases
with the size of the particle. Therefore whether the particles are dis-

persed homogeneously or not is primarily determined by the interaction
energy between the colloidal particles.

Consider two colloidal particles placed in a sea of solvent. The effective
interaction energy U(r) between the particles is defined as the work
needed to bring the particles from infinity to the configuration in which
the centre-to-centre distance is r. Alternatively, U(r) can be defined as
the difference in the free energy between the two states; one is the state
where the distance is r, and the other is the state where the distance is
infinity.

The energy U(r) represents the effective interaction between solute
with the effect of solvent included. Such an energy can be defined for
any objects (molecules, molecular assemblies, particles) in solution, and
is called the potential of mean force. The effective interaction energy Ae
in Section 2.3 corresponds to U(r) for neighbouring solute molecules.



Colloidal solutions

Theoretically, if U(r) is given, colloidal solutions can be discussed in
the same theoretical framework as that for solutions of small molecules.
However, this approach is not usually taken in colloid science. This is
because there are important differences in the interaction potential U (r)
for colloidal particles and for small molecules. The differences are of a
quantitative nature, but they need to be noted.

(a) Interaction range: In solutions of small molecules, the range of inter-
action is comparable with the size of the molecules, while in colloidal
solutions, the interaction range (typically of the order of nm) is
much smaller than the size of the particles (typically of the order
of 0.1+ m). Since the interaction potential changes significantly in a
length-scale much smaller than the particle radius R, the interaction
potential U in colloidal particles is usually expressed as a function
of the gap distance h = r — 2R, not r itself (see Fig. 2.10).

(b) Magnitude of interaction: In solutions of small molecules, the mag-
nitude of the interaction energy is less than kgT’, while in colloidal
solutions, the interaction energy is usually much larger (typically
tens of times larger) than kg7 since it involves a large number of
atoms.



Colloidal
Interactions

(a)

(b)

Interaction between two
colloidal particles.

An exemple of the effective
interaction potential between
colloidal particles. Here
‘unstable’ indicates the
potential for the unstable
dispersion in which particles
aggregate quickly, while
‘stable’ indicates the potential
for the stable dispersions in
which aggregation takes place
so slowly that the dispersion
look stable.

unstable

(b)




Multicomponent solutions

Thermodynamic equations for many-component solutions can be de-
rived in the same way as for two-component solutions (see problems
(2.4) and (2.7)). Here we mention a different aspect that is specific to
soft matter.

In general, if a mixed solvent is used to dissolve large solute (poly-
mers or colloids), their composition will vary in space. For example,
in dilute polymer solutions, the solvent composition inside the polymer
coil region will generally be different from that of the outer region as
certain components prefer to stay in the polymer coil region while oth-
er components prefer to stay away from the polymer. This effect can
be seen on a macroscopic scale. If a network of polymer (i.e., polymer
gel) is placed in a mixed solvent, the gel absorbs solvent for preference,
and the solvent composition inside the gel is different from that outside.
Further discussion of this aspect is given in Chapter 10.



