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APPLICATIONS

ESA selects four new
Earth Explorer
mission ideas

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

The four selected mission ideas

CryoRad would fill an important gap in observations of the cryosphere through the direct measurement of
low-frequency passive-microwave brightness temperatures using a novel broadband radiometer. From
these novel measurements key parameters such as the temperature profile of ice shelves, sea-ice
thickness and sea-surface salinity in cold waters can be determined to improve our understanding of key

processes in the polar regions. The mission would complement the upcoming Copernicus CIMRE,

CRISTAL and ROSE-L missions.

ECO would measure the difference between incoming solar radiation and outgoing radiation, which
defines Earth's energy ‘imbalance’, and which fundamentally controls Earth’s climate system. It would be
the first time that this imbalance has been measured directly and would help reveal the future trajectory of
the climate decades earlier than relying on monitoring global temperature and sea-level rise, as is
currently the case. The unigue concept envisages a satellite constellation, each carrying four wide field-of-

view radiometers to ensure unprecedented coverage, accuracy and stability.

Hydroterra+ would be placed in geostationary orbit, which is unusual for an Earth-science radar mission.
From this fixed position above the equator, the satellite’s C-band synthetic aperture radar would deliver
data twice a day over Europe, the Mediterranean and northern Africa to understand rapid processes tied

to the water cycle and tectonic events in these regions.

Keystone would provide the first direct observations of atomic axygen in the altitude range of 50-150 km
using a unigue combination of limb-sounding technigues. These measurements together with
observations of composition, temperature and winds would allow scientists to study the processes that
drive the variability and energy balance of the mesosphere-lower-thermosphere region of the atmosphere,

also looking at the impact of solar cycles and space weather.
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Topicos

5. Machine Learning
» What is machine learning?
» Tasks for machine learning
» Machine learning models
» Generalization, Overfitting
» k-NN algorithm
» Linear Models
» Decision Trees
» Neural Network
» Convolutional Neural Network
» Generative Deep Learning
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Remote sensing multispectral image data, behavioural geography data (person
location and trip), transportation network data... BIG DATA of geography.

Machine learning is believed to be the powerful tool to explore and analyze the
geography big data.

What is machine learning?

Machine learning evolved from the study of pattern recognition and
computational learning theory in artificial intelligence (Al).

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 6
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Machine Learning (Aprendizagem Automatica)

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E” — Tom Michell (1997)
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Machine Learning

A brief history of machine learning
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It is all about machine learning...

What can | help you with?

Intelligent voice assistant
http://www.apple.com/ios/siri/

Predictive policing
http://www.predpol.com/

Facial recognition Self-driving car
Jodo Cataldo Fernandes (jcfernandes@fc.ul.  hitp://www.face-rec.org/ https://www.google.com/selfdrivingcar/ 8 9
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How to connect the machine learning

with geospatial data? Geospatial Big Data
Remote sensing multispectral image data,

behavioral geography data (person trip),
transportation network data,
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Machine Learning
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Software

@ python

ANACONDA .

“The Most Popular Python Data Science Platform”

orange3
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“"Component based

° » “Interactive data mining framework.
A computational Data visualization and

environment, in which data analysis for novice
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\ / execution, rich text, machine learning in Python  workflows with a large

mathematics, plots and toolbox.
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t ‘ O rfeo TO O I B O X Forum Download Documentation Blog Community

Orfeo ToolBox is not a black box

Orfeod0olBox is an open-source project for state-of-the-art remote sensing,
including a fast image viewer, apps callable from Bash, Python or QGIS, and a
powerful C++ APL

Open Source processing of remote sensing images

2 & =

Start using OTB OTB features Documentation OTB community

AL i @ 5)

Developers corner Media External projects Blog
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. . The 10 Algorithms Machine Learning Engineers Need
Top 10 Machine Learning 5 G

Algorlthms

v

List of Common Machine Learning Algorithms

1. Naive Bayes Classifier Algorithm I Llne.or' Regresspn

2. K Means Clustering Algorithm 2 LOQI.STOIC RegreSSIOn

3. Support Vector Machine Algorithm 3. Decision Trees

4. Apriori Algorithm 4. SVM (Support Vector Machine)

5. Linear Regression 5. Naive Boyes

6. Logistic Regression 6. KNN (K- Nearest Neighbors)

7. Artificial Neural Networks 7. K-Means

8. Random Forests 8. Random Forests

8. Becsion Treas 9. Dimensionality Reduction Algorithms
10. ‘Negres! Nelghbours 10.Gradient Boosting & AdaBoost

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 15
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MACHINE LEARNING

The most common machine learning tasks are predictive, in the sense that they
concern predicting a target variable from features. .

&= |Binary and multi-class classification: categorical target

&= Regression: numerical target

g= Clustering: hidden target
Descriptive tasks are concerned with exploiting underlying structure in the data.

Predictive model Descriptive model
Supervised learning classification, regression  subgroup discovery
Unsupervised learning  predictive clustering descriptive clustering,

association rule discovery

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 16
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MACHINE LEARNING

Machine learning models can be distinguished according to their main intuition:

&= Geomelric models use intuitions from geometry such as separating
(hyper-)planes, linear transformations and distance metrics.

¢= Probabillistic models view learning as a process of reducing uncertainty,
modelled by means of probability distributions.
&= Logical models are defined in terms of easily interpretable logical
expressions.
Alternatively, they can be characterised by their modus operandi:

&= Grouping models divide the instance space into segments; in each segment
a very simple (e.g., constant) model is learned.

&= Grading models learning a single, global model over the instance space.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 17
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Machine Learning Taxonomy

T
/ JLinear Classifier

Jdinear Regression
NN
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Grading/ Classification
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Grouping

Models that share characteristics are plotted closer
together: logical models to the right, geometric models on
the top left and probabilistic models on the bottom left.
The horizontal dimension roughly ranges from grading
models on the left to grouping models on the right.
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(Gaussian
Mixture Model)

The colours indicate the type of
model, from left to right: logical
(red), probabilistic (orange) and
geometric (purple).
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Predictive machine learning scenarios

MACHINE LEARNING

Task Label space Output space Learning problem

Classification Z£ =€ XY =€ learn an approximation ¢ :
X — € to the true labelling
function ¢

Scoringand Z£ =% @y =Rl learn a model that outputs a

ranking score vector over classes

Probability L =€ @ =10,11""" learn a model that out-

estimation puts a probability vector over
classes

Regression =R U =R learn an approximation f :

Z — R to the true labelling
function f

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 20
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A classifieris a mapping ¢ : & — €, where € = {Cy, C»,...,C} is a finite and
usually small set of class labels. We will sometimes also use C; to indicate the
set of examples of that class.

We use the ‘hat’ to indicate that ¢(x) is an estimate of the true but unknown
function c(x). Examples for a classifier take the form (x, c(x)), where x € & is

an instance and c¢(x) is the true class of the instance (sometimes contaminated
by noise).

= ~Each pixel has a particular
- = . N
" brightness value in each band

Water Wheat

Learning a classifier involves constructing the functic L PF
as closely as possible (and not just on the training se
Instance space &).

w|w

Wow
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~ ~ . Satellite image data Map of labels
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Generalization, Overfitting, and Underfitting

Trade-off of model complexity against training and test accuracy
If a model is able to make accurate predictions _

on unseen data, we say it is able o Training
to generalize from the training set to the test e

set. We want to build a model that is able to R

generalize as accurately as possible. R T

Sweet spot

Generalization

. _ . ‘
Overfitting occurs when you fit a model too ey

closely to the particularities of the training P
set and obtain a model that works well on R
the training set but is not able to generalize
to new data.

Underfitting Overfitting

Model complexity

More complex the model => better we will be able to predict on the training data.
However : Too complex => focusing too much in our training set => not generalize well to new data.
There is a sweet spot in between that will yield the best generalization performance.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 22
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MACHINE LEARNING

Scatter plot of training dataset

2 bands and 2 classes Predictions made by the one-nearest-
6 , 1 . . . neighbour model on the dataset
A
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MACHINE LEARNING

Predictions made by the three-nearest-

Instead of considering only the closest neighbour, we neighbours model on the dataset
can also consider an arbitrary number, k, of | | |
neighbours. A ® training class 0
°T A AL A A training class 1 |[]
This is where the name of the k-nearest neighbours Al * testpredO .
algorithm comes from. % testpredl
3 -
When considering more than one neighbour, we ®
use voting to assign a label. This means that for each r ° o )
test point, we count how many neighbours belong to L@ |
class 0 and how many neighbours belong to class 1.
o} °® .
We then assign the class that is more frequent: in o
other words, the majority class among the k-nearest i 8 9 10 11 17

neighbours.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 24
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e e K-NN (K-Nearest Neighbours)
1 neighbor(s) 3 neighbor(s) 9 neighbor(s)
7)) A 7)) A
A.‘A AA A A.‘A AA 2

feature 1
feature 1
feature 1

feature 0 feature 0 feature O

Decision boundaries created by the nearest neighbours model for different values
of k_neighbours

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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MACHINE LEARNING

Linear models are a class of models that are widely used _
in practice and have been studied extensively in the last .. — S
few decades, with roots going back over a hundred 5 | 5

years.

Linear models make a prediction using a linear
function of the input features, which we will explain

shortly. For regression:

y=w[0] * x[0] + w[1] * x[1] + ... + wW[p] * x[p] + b

Here, x[0] to x[p] denotes the features (in our case, the spectral - . 77777777777 A 77777777777777 -
bands, p+1) of a single pixel (or set of pixels), w and b are
parameters of the model that are learned, and y is the prediction For a dataset with a single feature, this is:

the model makes.

§ = wl[0] * x[0] + b
26
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Assess the usefulness of the temporal coherence matrix on the
estimation of the soil moisture changes

 Machine Learning Regression Techniques
* Linear Regression (LR)
 Random Forest Regressor (RFR)
* ExtraTree + Bagging Regressor (ETBR)

e Data inputs: INSAR coherence, phase and soil type

* Data output: soil moisture change between two dates

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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SM estimation vs SM observation
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s e T Linear Models for Classification

Linear models are also extensively used for classification. LinearsVC

A ‘ h ® O
In this case, a prediction is made using the following formula: o A A = !
y=wl[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b> O E ® . A

£l o O o
o

The formula looks very similar to the one for linear regression, o ®
but instead of just returning the weighted sum of the hd

Feature 0

features, we threshold the predicted value at zero.

LogisticRegression

A

If the function is smaller than zero, we predict the class —1; if Al B R A A Class 1
it is larger than zero, we predict the class +1. o A A

This prediction rule is common to all linear models for
classification. Again, there are many different ways to find the o o ¢ Class 0
coefficients (w) and the intercept (b).

Feature 1

Feature O
Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 29
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o e Linear Models for multiclass Classification

A common technique to extend a binary classification 15 | .

algorithm to a multiclass classification algorithm is the one-vs.- . Cle;ss 0
rest approach. Class 1
107 \4 ss 2 |]
In the one-vs.-rest approach, a binary model is learned for each \
class that tries to separate that class from all of the other o 2T Ap |
classes, resulting in as many binary models as there are classes. 2 A 7N D
g ol A /
Having one binary classifier per class results in having one A
vector of coefficients (w) and one intercept (b) for each class. -5t -
The class for which the result of the classification confidence ~10 .
formula given here is highest is the assigned class label: 10 ° 0
ormula given here is highest is the assigned class label: Foature 0
w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b The classifier that has the highest score on its single class

“wins,” and this class label is returned as the prediction.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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o e Linear Models for multiclass Classification

Multiclass decision boundaries derived from the three one-vs.-rest classifiers

Feature 1
Feature 1

-10 ] | ] ] ] | ] |
-10 -8 -6 -4 -2 0 2 4 6 8 Feature 0 o a0
Feature O A Class 1
¥V Class 2
@® Lineclass0
Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) $ t!ne C:aSS ;
Ine class
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culatra_soma_ndwi.rd vs culatra_std_ndwi.rd
I 1 1 1 I 1 1 1 I 1 1 1 l 1 1 1 I 1 Il 1 I 1 1 L

Blue: water
Red:Land
Green: intertidal

Band 1
0]2 013

| T R el e D et I T |

0[1

rrrrrrpr vt T e Tt
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Decision trees

MACHINE LEARNING

Decision trees are widely used models for classification and
regression tasks. Essentially, they learn a hierarchy of if/else
guestions, leading to a decision.

Has feathers? | penas

Imagine you want to distinguish between the
following four animals: (barbatanas)

False

bears, hawks, penguins, and dolphins. True True

False

Your goal is to get to the right answer by asking
as few if/else questions as possible. Hawk ‘ Penguin | ‘ Dolphin I ‘ Bear |

In this illustration, each node in the tree either represents a question or a terminal node (also called a /eaf) that contains
the answer. The edges connect the answers to a question with the next question you would ask.

33
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Decision trees

MACHINE LEARNING

Learning a decision tree means learning the 15+
sequence of if/else questions that gets us to [ .. ® Class0
) ° ° A Class1
the true answer most quickly. o
1.0 A [ [ ]
: : : e ‘. @ : A

In the machine learning setting, these 0@ (C
questions are called tests (not to be confused 0 05| @® e® A A L)) AA A

. rest s ®e *%N ¢ 2 o A
with the test set, which is the data we use to = o A % [ ] r

: ) ) [ ]
test to see how generalizable our model is). = A AQ M, A
0.0 A A A i
¢ A A‘A A AA
Usually data does not come in the form of binary yes/no A A A A
features as in the animal example, but is instead —05 - ® AAAA A
represented as continuous features such as in the 2D A A
dataset shown in figure. r r . ' - - '
-1.0 -05 0.0 0.5 1.0 1.5 2.0
Feature O

The tests that are used on continuous data are of the
form “Is feature i larger than value a?” Two-moons dataset on which the decision tree will be

built

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 34
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MACHINE LEARNING

depth =1

(Root)

X[1] <= 0.0596
counts = [50, 50]

True False
0.0596

To build a tree, the
algorithm searches over all
possible tests and finds the
one that is most

|nformat|\{e about the "R ‘A N counts = [2, 32] counts = [48, 18]
target variable. o ‘Ag
A A

Splitting the dataset horizontally at x[1]=0.0596 yields the most information; it best separates the points in
class O from the points in class 1. The top node, also called the root, represents the whole dataset,
consisting of 50 points belonging to class 0 and 50 points belonging to class 1. The split is done by testing
whether x[1] <= 0.0596, indicated by a black line. If the test is true, a point is assigned to the left node,
which contains 2 points belonging to class 0 and 32 points belonging to class 1.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 35
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Decision trees

Even though the first split did a good job of separating the two classes, the bottom region still contains points belonging
to class 0, and the top region still contains points belonging to class 1. We can build a more accurate model by repeating

the process of looking for the best test in both regions.

depth = 2

X[1] <= 0.0596
counts = [50, 50]

THV wlsc

X[0] <= -0.4177
counts = [2, 32]

X[0] <= 1.1957
counts = [48, 18]

counts = [2, {ouuls = [0, 32]

counts = [47, hums =[1, 10]

This recursive process yields a binary tree of decisions, with each node containing a test.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Decision trees

depth =9

X[1] <= 0.0596
counts = [50, 50]

Tmy w]se

X[0] <= -0.4177 X[0] <= 1.1957
counts = [2, 32] counts = [48, 18]

A
B B X[1]1<= 04951 | [X[01<= 1.6725
counts = [2, ﬁums = [0, 32] counts = [47, hw“s =1, 10]

‘_/ A J
X[0] <= 0.5692 X[0] <= -0.0472 X[0] <= 1.659 _
counts = [15, 6] counts = [32, 2] counts = [, h‘”“s =10.7]
a /N I
()

(..) (...) (..) ..) (..)

Typically, building a tree as described here and continuing until all leaves are pure leads to models that are very

complex and highly overfit to the training data. The presence of pure leaves mean that a tree is 100% accurate on the
training set; each data point in the training set is in a leaf that has the correct majority class.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Feature Importance

B8 0729
. B?_O?zg |
Instead of looking at the whole tree, there are B4 (508 e—
1 1 |
some useful properties that we can derive to B12 0808
summarize the workings of the tree B 2 e R
g : E B 0619 e —
The most commonly used summary is feature B4_0803  m———
. . . B8 0813 s
importance, which rates how important each 7 074
feature is for the decision a tree makes. BS 0803 s —
B7 0803 s

(=]

0.01 0.02 0.03 0.04 0.05 0.06
Importancia relativa

It is @ number between 0 and 1 for each
feature, where 0 means “not used at all”
1 means “perfectly predicts the target.”

and
m2018 ND m2019 ND

Importancia relativa das variaveis na classificacdo com RF para dados de
2018 (a azul) e de 2019 (a laranja). As denominacdes das variaveis
dizem respeito a banda, més e dia de aquisicao da imagem,

respetivamente.
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The Random
Forest
overfits less
than any of
the trees
individually

In any real
application, we
would use many
more trees (often
hundreds or
thousands), leading
to even smoother
boundaries.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Tree 0

Tree 1

Tree 2

Tree 3

Tree 4

Decision boundaries found by five randomized decision trees and the decision

boundary obtained by averaging their predicted probabilities
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Multilayer perceptrons (MLPs) are also known as feed-
forward neural networks, or sometimes just
neural networks.

MLPs can be viewed as generalizations of linear models that
perform multiple stages of processing to come to a decision.

Remember that the prediction by a linear regressor is given as:

v =w[0] * x[0] + w[1] * x[1] +... + w[p] * x[p] + b

in plain English, ¥ is a weighted sum of the input features x[0]
to x[p] (our spectral bands), weighted by the learned
coefficients w[0] to w[p].

(“deep learning” are a revival of the neural networks tailored very carefully to a specific use case)

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 42
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Here, each node on the left represents an input
feature, the connecting lines represent the learned
coefficients, and the node on the right represents
the output, which is a weighted sum of the inputs.

In an MLP this process of computing weighted sums
is repeated multiple times,

first computing hidden units that represent an
intermediate processing step, which are again
combined using weighted sums to yield the final
result.

Neural Network

Multilayer perceptron with a single hidden layer

Inputs

This model has a lot more coefficients (also called weights) to learn: there is one between every input and every hidden
unit (which make up the hidden layer), and one between every unit in the hidden layer and the output.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Computing a series of weighted sums is

mathematically the same as computing just one >0 —— ta'nh | | | 7
weighted sum, so to make this model truly more 252 - rely R
powerful than a linear model, we need one extra
trick.

After computing a weighted sum for each hidden
unit, a nonlinear function is applied to the result—
usually the rectifying nonlinearity (also known as
rectified linear unit or relu) or the tangens
hyperbolicus (tanh).

relu(x), tanh(x)

The result of this function is then used in the «
weighted sum that computes the output, y.
h[0] = tanh(w[O, O] * x[0] + w[1, O] * x[1] + w[2, O] * x[2] + w[3, O] * x[3] + b[0])

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 44
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For the small neural network the full formula for computing y in the case of regression would be
(when using a tanh nonlinearity):

Inputs
Hidden

X layer
h[0] = tanh(w][0, 0] * x[0] + w[1, O] * x[1] + w[2, O] * x[2] + w3, O] * x[3] + b[0]) - h:O]
h[1] = tanh(w[O0, 1] * x[0] + w[1, 1] * x[1] + w([2, 1] * x[2] + w[3, 1] * x[3] + b[1]) x(1] Output
h[2] = tanh(w][0, 2] * x[0] + w[1, 2] * x[1] + w[2, 2] * x[2] + w3, 2] * x[3] + b[2]) . h{1) f——>{ §
g =v[0] * h[0] + v[1] * A[1] + v[2] * h[2] + b ye =

Here, w are the weights between the input x and the hidden layer h, and v are the weights between the
hidden layer h and the output y. The weights v and w are learned from data, x are the input features, y is
the computed output, and h are intermediate computations.

1 pixel = 19 weights
we know (x,y) for a sample of pixels

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 45
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An important parameter that needs to be
set bY the user is the number of nodes in Hidden Hidden
the hidden layer. layer 2

This can be as small as 10 for very small or
simple datasets and as big as 10,000 for
very complex data.

Having large neural networks made up
of many of these layers of
computation is what inspired the term
“deep learning.”

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 46
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Neural Network
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Feature O

Feature O

Decision boundary learned by a neural network Decision boundary learned by a neural network
with 100 hidden units on the two_moons dataset with 10 hidden units on the two_moons dataset

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Neural Network
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Feature O Feature O

Decision boundary learned using 2 hidden layers Decision boundary learned using 2 hidden
with 10 hidden units each, with rect activation layers with 10 hidden units each, with tanh
function activation function

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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A quick summary of when to use each model:

Algorithm Characteristics

Nearest neighbors For small datasets, good as a baseline, easy to explain.

Decision trees Very fast, don’t need scaling of the data, can be visualized and easily explained.

Random forests Nearly always perform better than a single decision tree, very robust and powerful.
Don’t need scaling of data. Not good for very high-dimensional sparse data.

Support vector machines Powerful for medium-sized datasets of features with similar meaning. Require
scaling of data, sensitive to parameters.

Neural networks Can build very complex models, particularly for large datasets. Sensitive to scaling
of the data and to the choice of parameters. Large models need a long time to
train.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 49
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Classification using Random Forest algorithm
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Transfer Learning
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Transfer Learning in time
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David H. Hubel and Torsten Wiesel performed
a series of experiments on cats in

1958and 1959 (and a few years later on
monkeys), giving crucial insights on the
structure of the visual cortex.

The authors showed that some neurons
react only to images of horizontal

lines, while others react only to lines with
different orientations.

These observations led to the idea that the
higher-level neurons are based on the
outputs of neighbouring lower-level
neurons.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Convolutional Neural Network

Figure 14-1. Local receptive fields in the visual cortex

These studies of the visual cortex inspired the neocognitron,
introduced in 1980, which gradually evolved into what we now call
convolutional neural networks.

An important milestone was a 1998 paperby Yann LeCun, Leon
Bottou, Yoshua Bengio, and Patrick Haffner, which introduced the
famous LeNet-5 architecture, widely used to recognize handwritten

check numbers.
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CNN layers with rectangular local receptive fields

Convolutional
layer 2

Convolutional
layer 1

Input layer

A neuron located in position (i,j) in the upper layer is
connected to the outputs of the neurons in the previous
layer located in

Rows: [i x shtoix sh + fh—1]

Column: [jxswtojxsw+ fw-1],

where sh and sw are the vertical and horizontal strides.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Convolutional Neural Network
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Max pooling layer (2 x 2 pooling
kernel, stride 2, no padding)

Typical CNN
architecture

Input

AW EQ

T

Convolution

EEELEEESEE
EELTLE ST

Pooling Convolution Pooling Fully connected

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)
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Imagem 4x4 e filtro 3x3 Sobrepoiscao do filtro na imagem Calculo do filtro

Image Value Filter Value Result

Sobel vertical filter Sobel horizontal filter

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 57
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Using padding to keep the output image with the same size as
the input image. To do this, we add zeros around the image so
we can overlay the filter in more places. A 3x3 filter requires 1
pixel of padding. This is called “same” padding.

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Padding (preencher)

000000600 p0O0CP 000
VNN 2 020N L N7 MNIST
Ad L AR 2Fr2P2122D2A2A dataset
3333333%3>3333333
g tda9 4y g98aq 4844
55 585SS555<585¢45
666 bbbbbbdétdébl
TT7T72971I1TAINT2RT T
Y3 588 3P S EPTTI LT B
9499999999949 94999

With valid padding (without padding) and 8 filters

28x28 26x26x8

conv

Each of the 8 filters in the conv layer produces a 26x26
output, so stacked together they make up a 26x26x8
volume. All of this happens because of 3 xx 3 (filter

size) xx 8 (number of filters) = only 72 weights!
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Neighboring pixels in images tend to have similar values, so
conv layers will typically also produce similar values for
neighboring pixels in outputs. As a result, much of the
information contained in a conv layer’s output is redundant.

, 28x28 26x26x8 13x13x8
? — —>
conv maxpool
Pooling layers solve this problem. All they do is reduce the
size of the input it’s given by (you guessed it)
pooling values together in the input. The pooling is usually
done by a simple operation like MAX, MIN, AVERAGE
59
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To complete our CNN, we need to give it the ability to actually
make predictions. We’'ll do that by using the standard final
layer for a multiclass classification problem: the Softmax layer,
a fully-connected (dense) layer that uses the Softmax
function as its activation.

13x13x8

-
[w=)

28x28 26x26x8

— — —

conv maxpaool softmax

0000000000

We’'ll use a softmax layer with 10 nodes, one representing
each digit (0 a 9), as the final layer in our CNN.

The digit represented by the node with the highest
probability will be the output of the CNN!

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

Softmax

Training a neural network typically consists of two phases:

1. A forward phase, where the input is passed completely
through the network.

2. A backward phase, where gradients are backpropagated
(backprop) and weights are updated.

*During the forward phase, each layer will cache any data
(like inputs, intermediate values, etc) it’ll need for the
backward phase. This means that any backward phase must
be preceded by a corresponding forward phase.

*During the backward phase, each layer will receive a
gradient and also return a gradient. It will receive the
gradient of loss with respect to its outputs and return the
gradient of loss with respect to its inputs .
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INPUTS

OUTPUTS

TYPICAL
NEURAL
NETWORK
Typical
s v+ b Neural
et Network
NEURAL
NETWORK

Convolutional Neural Network

INPUTS HIDDEN LAYER OUTPUTS

OO

In a typical neural network, each neuron in the input layer is
connected to a neuron in the hidden layer. However, in a
CNN, only a small region of input layer neurons connects to
neurons in the hidden layer. These regions are referred to as
local receptive fields.

OO0
OO0

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) £ 62
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LeNet-5 AlexNet

The LeNet-5 architecture is the most widely The AlexNet CNN architecture was developed by Alex Krizhevsky, llya
known CNN architecture. It was created by Sutskever, and Geoffrey Hinton.

Yann LeCun in 1998 and widely used for

handwritten digit recognition It is quite similar to LeNet-5, only much larger and deeper, and it was

the first to stack convolutional layers directly on top of each other,
instead of stacking a pooling layer on top of each convolutional layer.

Layer Type Maps Size Kemnel size Stride Activation Layer Type Maps  Size Kemnelsize Stride Padding Activation
Out  Fully Connected - 10 - - REF Out  Fully Connected - 1,000 - - - Softmax
F6  Fully Connected - 84 - - tanh F9  Fully Connected - 4,096 - - - RelU

(5  Convolution 120 1x1  5x5 tanh F8 Fully Connected — 4,006 - - - RelU

54 Avg Pooling 16 5x5  2x12 tanh a Convolution 256 Bx13  3Ix3 SAME RelU

a Convolution 16 10x10 5x5
52 Avg Poaling 6 MMx14 2x1
a Convolution 6 28x28 5x5
In Input 1 32x31 -

tanh 6 Convolution 184 13x13 3x3
tanh &) Convolution 184 1Bx13 Ix3 SAME RelU
tanh 54 Max Pooling 256 1Px13 3Ix3 VALID -

1
1 SAME ReLU
1
2

- a Convolution 256 x21 5x5 1 SAME RelU
2
4

— Pl e Ped e

52 Max Pooling 96 =21 Ix3 VALID -
(1 Convolution 96 55 % 55 =N VALID ReLU
In Input J(RGB) 227 x 227 - - - -

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt) 67
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Outras Arquiteturas:

GoogleNet

VGGNet

ResNet

Xception (variante da GooglLeNet)

SENet

Desenvolvidas nos ultimos 5 anos

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

input
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tile
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U-Net (Olaf Ronneberger, 2015)
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def modelo_unet(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s =inputs

#Descida

¢l =Conv2D(16, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding="'same')(s)
¢1 = Dropout(0.1)(c1)

¢l = Conv2D(16, (3, 3), activation="relu’, kernel_initializer="he_normal', padding='same')(c1)
pl = MaxPooling2D((2, 2))(c1)

c2 = Conv2D(32, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(p1)
c2 = Dropout(0.1)(c2)

c2 = Conv2D(32, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(c2)
p2 = MaxPooling2D((2, 2))(c2)

c3 = Conv2D(64, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(p2)
c3 = Dropout(0.2)(c3)

c3 = Conv2D(64, (3, 3), activation="relu’, kernel_initializer="he_normal', padding='same')(c3)
p3 = MaxPooling2D((2, 2))(c3)

c4 = Conv2D(128, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(p3)
c4 = Dropout(0.2)(c4)

c4 = Conv2D(128, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(c4)
p4 = MaxPooling2D((2, 2))(c4)

#Fundo

¢5 = Conv2D(256, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(p4)
¢5 = Dropout(0.3)(c5)

¢5 = Conv2D(256, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding="'same')(c5)

Jodo Cataldo Fernandes (jcfernandes@fc.ul.pt)

#Subida

u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding="'same')(c5)

u6 = concatenate([u6, c4])

c6 = Conv2D(128, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding="'same')(u6)
c6 = Dropout(0.2)(c6)

c6 = Conv2D(128, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding="'same')(c6)

u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)

u7 = concatenate([u7, c3])

c7 = Conv2D(64, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(u7)
c7 = Dropout(0.2)(c7)

c7 = Conv2D(64, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(c7)

u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)

u8 = concatenate([u8, c2])

c8 = Conv2D(32, (3, 3), activation="relu’, kernel_initializer="he_normal', padding='same')(u8)
c8 = Dropout(0.1)(c8)

c8 = Conv2D(32, (3, 3), activation='"relu’, kernel_initializer="he_normal', padding='same')(c8)

u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding="'same')(c8)

u9 = concatenate([u9, c1], axis=3)

c9 = Conv2D(16, (3, 3), activation="relu’, kernel_initializer="he_normal’, padding='same')(u9)
c9 = Dropout(0.1)(c9)

c9 = Conv2D(16, (3, 3), activation="relu’, kernel_initializer="he_normal', padding='same')(c9)

outputs = Conv2D(1, (1, 1), activation="sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs])

model.compile(optimizer='adam’, loss='binary_crossentropy', metrics=['accuracy'])

return model
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Previsao U-Net
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Jodo Sacadura, 2021
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Méscara Previsao U-Net probabilidades
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e PN Y
E - . 256 256 128
- Baseline2: Unet-S
Fig. 3.  Architecture of two baseline networks. In FCN-S, feature maps
summation and 2x upsampled prediction are utilized. In Unet-S, concat layer
is employed to concatenate two groups of feature maps. The dotted line
-.‘ represents convolution operation with 1 x 1 kernel.

‘ N Automatic road detection and centerline extraction via cascaded end-to-end

convolutional neural network,” IEEE Transactions on Geoscience and Remote
Jo3o Cataldo Fernandes (jcfernandes@fc.ul.pt) Sensing, vol. 55, no. 6, pp. 3322-3337, 2017.

Compared with the conventional
multilayer perceptron (MLP),
which only consists of fully
connected layers, the
convolutional network has less
parameters due to its local
connectivity characteristic.

For example, for a 300 x 300
image, we assume that there are
ten hidden neurons. There are
300x300x10 =900 000 weight
parameters for MLP.

In convolutional network, if we
use 10x10 local connectivity
pattern, the number of weight
parameters is 10x10x10 = 1000.
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Inria Aerial Image Labeling, Maggiori et al. em 2017
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