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Chapter 10

10 Inflation: the origin of perturbations

* The Basic Picture;
* Cosmological perturbation theory

* Quantum fluctuations in the de Sitter space;

* Primordial power spectra from inflation;
* CMB power spectrum
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Inflation: the basic picture

The Inflationary phase of the Universe would need to happen at very early times.
Present data is consistent with an inflationary period that lasted for about around At ~
10736 at cosmic time of about t ~ 10732 — 10733seconds

In these conditions the inflaton field has a quantum nature and its energy density is
guantified. The Heisenberg uncertainty principle allows the origin of energy density
fluctuations given the short timescales involved.

The inflation field, ¢ (x, t),
therefore acquires a
spatial dependence due to
quantum fluctuations,
6¢p(x,t), about its
“background” Value, ¢ (t):

d(x,t) = p(1) + 5¢(x, 1)

AE, > h/(4mAt)

inflation ' reheating

end

Figure 6.1: Quantum fluctuations 6¢(t,x) around the classical background evolution ¢(t). Regions acquir-
ing a negative fluctuations 6¢ remain potential-dominated longer than regions with positive ¢. Different
parts of the universe therefore undergo slightly different evolutions. After inflation, this induces density
fluctuations 6p(t, ).



Inflation: the basic picture
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Figure 6.2: Curvature perturbations during and after inflation: The comoving horizon (aH)~! shrinks
during inflation and grows in the subsequent FRW evolution. This implies that comoving scales k= exit
the horizon at early times and re-enter the horizon at late times. While the curvature perturbations R are
outside of the horizon they don’t evolve, so our computation for the correlation function (|Ry|?) at horizon
exit during inflation can be related directly to observables at late times.

Relativistic (GR) perturbation theory

Metric perturbations:
Metric perturbations can be described as:

Guv = Guv + 09w
And let’s assume FLRW metrics, written in a conformal way,
ds? = a2(7) [(17'2 — §;;datdad ]
The perturbed metric can be written as,
ds? = a®(7) |(1 4+ 24)dr? — 2B;dz’dr — (65 + llij)(ld7i(llfj]

Which is symmetric and A, B; and h;; are functions of time and space. In total these
encapsulate 10 independent functions (degrees of freedom, d.o.f.):

1424  —2B, 2B, 2B,
) —2B1  —(1+ hi1) —hi2 —hi3
Gy = @7(7) —2B, —hia —(1 4+ hag) —has

—2B5 —hi3 —hos —(1+ hs3)



Relativistic (GR) perturbation theory

Scalar, vector Tensor (SVT) decomposition
The perturbation variables can be decomposed into their scalar, vector and tensor
dependences. This is useful because these dependences do not mix at linear order:
B, = 0;B + B;
~ =~

scalar vector

h,ij = 2C5ij + 20(i0j)E + 20([Ej) + QE,'J'
S— N—— S~~~

SC'dlill' vector tensor

with,

oo Ny 1 2

B = (9:0; - 50,V°)E,

P e PR

d(,-Ej) = §(diEj+d_,'E,') .

where:
4 e scalars: A, B, C, FE

SVTd.of.4 4 | e vectors: B;, E; O'B; =0 ,

2 e tensors: Ejj f)iEi = 0 and aiEij =0

Relativistic (GR) perturbation theory

Gauge freedom

GR is a gauge theory where the gauge
transformations are generic coordinate
transformations.

ds® = g, (X)dX XY = Gop(X)dX*dX”

aX*9xX?
gl“’(X) = X W !}u;i(X)

Reference Spacelike

7 = const Hypersurfaces

Spatial
Sections
Flat

A gauge choice is a way of choosing the (time)
slicing and (spatial) threading of spacetime. n

GAUGE CHOICE <= SLICING AND THREADING

Actual Spacelike
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How to treat Perturbations?
* Either find gauge invariant variables to

describe perturbations. These variables
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are called real spacetime perturbations. ,',',"'"l.':'},'.:,:,,,

{
* Or fix a gauge choice and keep track of all 2 Spatial
perturbations and check how quantities coctions

transform.



Relativistic (GR) perturbation theory

Gauge-invariant perturbation variables

One avoids gauge problems by defining special combinations of the SVT perturbations
that do not change under coordinate transformations. These are known as the
Bardeen potentials (or Bardeen Variables)

UV=A+HB-FE)+(B-E), &, =F —B; . E;;

@E—C—H(B—E’)+%V2E.

where “ is derivative with respect to conformal time, 7, and H = a’/a. is the Hubble
parameter in conformal time.

Useful Gauge fixing choices
The gauge freedom can be used to conveniently set some of the above variables to
zero:
* Newtonian Gauge: E =B =0
The metric simply becomes:
ds® = a*(7) [(1 + 2¥)dr? — (1 — 2®)5;;dz’da’]

9

where the remaining non-zero variables were renamedto A=WV, ' = —®

Relativistic (GR) perturbation theory

Useful Gauge fixing choices
(continuation)

*  Spatially flatgauge :C=E =0
This is a convenient gauge choice for the calculation of the inflationary
perturbations.

* Uniform density gauge: consists in choosing the time-slicing in a way that the
total density perturbation (see perturbed stress-energy tensor subsection) is set
to zero: 6p =0

* Comoving gauge: consists in choosing coordinates in a way that the total
momentum density vanishes (see perturbed stress-energy tensor subsection):
qi = (p + P)v; = 0. One has that ¢; = B; = 0.
This choice is naturally connected to the inflationary initial conditions

10



Relativistic (GR) perturbation theory

Perturbed Stress-Energy Tensor

For small perturbations the perturbed stress-energy tensor can be written as:
Tlll/ — T'“u + (5T'“u

where the unperturbed stress-energy tensor is
T, — (5 + P)UT, — Po

and one has that, UN = (1,52, U+ = a—l(s(‘)‘ , for a comoving observer.

The perturbation to the stress-energy tensor can be written as:
oTH, = (6p + 6P)U#Uu + (p+ P)(éU“U,, + U“éU,,) — 0P —11#,

where l'lff is the anisotropic stress tensor and the perturbed density, pressure and
four-velocity vectors generally depend on space and time.
To 15t order one has (see eg Baumann):

UM =a™t [-A0"]; §U, = a[A,—(v' + B;)]

and
11

Ut =qg! [1—A,vi} ; U,,:a[l—i—A,—(vi—l—Bi)}

Relativistic (GR) perturbation theory

Perturbed Stress-Energy Tensor
(continuation)
Using these expressions of U* and U, in 6U1’f one gets

§T% = dp ,
6Ty = (p+ P)v' ,
6T = —(p+ P)(v; + B;)
§T'; = 6P —1I'; .
The quantity q; = (p + P)v; is called the momentum density three-vector. Note that

the perturbed (peculiar) velocity §{/7 = 'Ui/a is not additive quantity, but g; is
additive. If there are several fluid components all the quantities bellow are additive:

o= dpr . oP=Y 0P, (=Y ¢, W=3
1 1 I 1
i . e B 7
And the stress-energy tensor is also additive: Ty = Zl T;w
The SVT decomposition can also be applied to the perturbed stress-energy tensor: 6p
and 6P only have scalar parts; q; = 0;q + g; has a scalar and a vector part; II;; has

scalar, vector and tensor parts: I1;; = 0,011 + a(l,f[j) + f[ij v



Relativistic (GR) perturbation theory

Gauge-invariant perturbation quantities
Comoving-gauge density perturbation: The quantity :

pA =dp+p'(v+ B)

Where v is a scalar velocity function such that v; = 9;v, is gauge-invariant. It is very
useful to study density perturbations .

Comoving Curvature perturbation: In a arbitrary gauge, the intrinsic curvature of
hypersurfaces of constant time can be computed using the special part of the
perturbed metric. Since this is a scalar it only receives contributions from the scalar
variables of the spatial part of metric ( £;; = 6)<16)1>E ) :

vij = a*[(1 4 2C)d; + 2E;j]

After some long calculations (see Baumann) the intrinsic curvature is given by:
: : 1_.
a® Rz = —4V? (C - §V2E>
The comoving curvature perturbation
1_.
R=C— §VEE +H(B +v)

Is gauge-invariant and it is defined as the comoving curvature computed in the
comoving gauge (q; = B; = 0). In the Newtonian gauge thisis R = —® + Huv.

13

Relativistic (GR) perturbation theory

Adiabatic versus Isocurvature perturbations
Density perturbations are said to be adiabatic if

opi(r,®) = pi(r + 07(x)) — pi1(7) = pr67(x)

for all fluid components, /. This implies:

) )
0T = 4,1 = f),‘] for all species I and J
Pr PJ
If fluid components obey to independent continuity equations, p_I' = —3H(1 +wy)pr
one gets:
dr dg

= for all species I and .J
1+ wy 1+wy

This also implies that the total density density of the fluid is perturbed and is given
simply by

14

dptot = ProtOtot = Z pIor
I



Relativistic (GR) perturbation theory

Adiabatic versus Isocurvature perturbations
(continuation)

Isocurvature perturbations are perturbation in the different fluid components in a
way that conserves the total energy density. This implies that different fluid
components have fluctuations such as the quantity:

_ 0 dg
1+ wy 1+wy

is different from zero.

Linear perturbation GR equations & conservation laws

Once the perturbed stress-energy tensor and perturbed metric are defined one
proceeds with the calculation of the:

* Perturbed metric connections;

* The conservation laws of the perturbed stress-energy tensor;

* The Einstein equations involving the perturbed quantities up to linear order of
the perturbed quantities (higher order calculations are more complex or
impossible to do). (e.g. Ch.4 Baumann)

* Solve the resulting equations to derive the evolution of perturbations (e.g.
Ch.5 Baumann) "

Relativistic (GR) perturbation theory
Linear perturbation GR equations & conservation laws (Newton. gauge)
ds® = a®(7) [(1 + 2¥)d7? — (1 — 2®)4;;da"dz’ | . (4.4.168)

In these lectures, we won’t encounter situations where anisotropic stress plays a significant role,
so we will always be able to set ¥ = ®.

e The Einstein equations then are

V20 — 3H(P' + HP) = 4nGa’dp . (4.4.169)
Y +HO = —4rGa®(p+ P)v, (4.4.170)
"+ 3HD + 2H +HH)P® = 47Ga’6P . (4.4.171)

The source terms on the right-hand side should be interpreted as the sum over all relevant
matter components (e.g. photons, dark matter, baryons, etc.). The Poisson equation takes

a particularly simple form if we introduce the comoving gauge density contrast
V20 = 4nGa*p A . (4.4.172)

e From the conservation of the stress-tensor, we derived the relativistic generalisations of
the continuity equation and the Euler equation

8+ 3H (op - P) b = - <1 + P) (V-v-39) , (4.4.173)
op p p

1 P! VP

"+3H (- - — = - ~ Vo . 4.4.174

v H(Iﬁ /)’)v p+ P ’ ( )




Inflation: the basic picture

Key steps to understand how perturbations are generated by inflation:

* At early time all perturbation modes of interest are casually connected, i.e.
correspond to k larger then the horizon: k > aH.

* On these (small) scales) perturbations in the inflaton field are described by a
collection of harmonic oscillators

* These perturbations have quantum nature and can be followed using quantum
mechanics canonical quantification. Their amplitudes have a non-zero variance:

(160k|%) = (0[|6¢k|?|0) [ I
N classical stochastic field ’

* Inflaton perturbations induce N | .
comoving curvature fluctua- R const.

. . subhorizon s superhorizon ‘,' AT ——
tions. In the spatially flat gauge ~ P =k
<|(5l_‘l“!\1 AN o’ ! !
H y AN .
R = -~ 00 | S g
(b, quantum ! N ’
* Thus the curvature (gauge-inva- g Y
riant) fluctuations have a non- ! ‘

(aH)™!

(IRx[?)
\.

i 120! eheating horizon ¢ oy
zero variance: horizon reheating horizon CMB today

(Ril?) = (ﬂ)z (166xP) ‘ T

QJ)/ switch from d¢ to R h(-rv| |mmplm' evolution from now on

Mukahnov-Sasaki equation

Classical inflaton field fluctuations:

Let us first see how the inflaton field action can be used to derive the inflaton
perturbations. The action is:

S = /de?’r V=g Eg“"@mbaucb - V(Cb)]

(the integrand function is the Lagrangian density). Evaluating for a unperturbed FLRW
metric one gets (prove this):

S = /de3IL‘ BaQ ((¢")* = (V9)?) — a4V(¢)]

To introduce perturbations it is convenient to write them in the following way:

o Jrw)
(,7)(7', IL') - (b( )+ a(T)

To derive derive an equation of motion for the perturbation f (7, x) one usually does:
* Use ¢(1,x) in the action S.

* Expand the action up to 2" order in the fluctuations f

Collect all 15t order and 2" order action terms in 2 separate actions: S and S,
* Apply the Euler-Lagrange equations to both actions. 18




Mukahnov-Sasaki equation

Classical inflaton field fluctuations:

The result for using the action, S(1, gives the Kein-Gordan equation for the
background field:

From the S, which can be approximated by (see Baumann Sect. 6.2),
. 1 (l//
S(Q) ~ /deﬂT 5 |:(fl)2 _ (Vf)Q + _f2
a

the Euler-Lagrange equation gives the so called Mukahnov-Sassaki equation

a//
=V - ;f =0 (real space-time)
"
Ir+ (k2 — %) fr=0 (fourier space-time)

This has an exact solution of the form:

()71'1\'7' i ()ikr i
i = — (1 — — 5} 1 —
fi(T) =« T ( A‘T) + ok ( + A'T) y

Mukahnov-Sasaki equation

Classical inflaton field fluctuations:

where @, and 8 are set by imposing as initial conditions a plane-wave solution at early

times, T = 0. The solution, assuming a pure de Sitter space where a = et
t
1 "
T:/ e Mtdt = g et = —— a_zz
aH a T2

is then

Ji(T) = % (1 - ﬁ)

On sub-horizon scales, 1% > o” /a ~ 2H? , the M-S equation becomes

JA R =0

which is a classical harmonic oscillator with spatial frequency w(k) = k .

However we expect these fluctuations to be of quantum mechanics (QM) nature. To
treat this one applies the canonical formalism of QM to the classical harmonic
oscillator. 20



Quantum fluctuations in de Sitter space

Canonical quantization of the inflaton fluctuations:

One proceeds as for the harmonic oscillator theory in QM. The relevant classical
quantities in the action S@ are the:

* Inflaton fluctuation: f = ad¢
aL ,
YT f
df
One then promotes the fields f (7, x) and (7, x) to quantum operators that satisfy
the following commutation rules:

* Momentum conjugate of f: 7 =

[f(r,2), &(r,2')] = id(x — a)

. © A A3 N —ikew ikl
[fr(T), 7R (T)] = /( / [f(r, @), #(r,x')] e kTe ik

2/.‘,):;/2 ' (Qﬁ):a/z < - >
id(x — ')
_; / d3x pilktk)
' (2,“.)3

=ib(k+ k'),

i.e. they commute in real and fourier spaces for x # x" and k # —k’, respectively*

Quantum fluctuations in de Sitter space

Canonical quantization of the inflaton fluctuations:

The inflaton perturbation operator can then be written in terms of the creation and
annihilation operators:

fe(7) = fi()dy, + fi(7)a}

where f; (7) and f;/ (7) are the solution of the M-S equation,

. ) ) (I//
V4 Wi (1) f =0, where wi(7) = k* — —
a

The creation and annihilation operators verify

al ] =6k +K)

[(} k’]

K

The quantum states (in the Hilbert space) are constructed by defining a vacuum state
|0 > via the condition @;|0 >=10 .

Excited states of the inflaton perturbation are created using the usual creation rule:

1 f t
T e e {(ak )™ (al Y- J 0)
vmn!--. ! - 2



Quantum fluctuations in de Sitter space

Quantum fluctuations about the zero point (vacuum state):

Finally one can obtain inflaton perturbation operator spectrum by computing the
mean and variance expectation values about the vacuum state |0 >. One has:

A d3k S
f(r,x) = / W [fk(v')&k - jf(r)a;] il

The expection value for < f > = 0 naturally, but the variance does not. One has:

(/1) = 01f1(r,0)f(7,0)0)

31 31./ 1, I : 1
= [ G | Gy O+ £ (oD + (D)) 0

13k 1BE '
- / (2(,7)3/2 / (r;r)g/g f(7) £ (7) (0l [ay,» @,,10)

317
= [ Gl AP

k3 . 9
= [ dlnk FUA(T” .

23

Quantum fluctuations in de Sitter space

Quantum fluctuations about the zero point (vacuum state):

One defines the dimensionless power spectrum of the inflaton fluctuations as

2. :i : 2
A3(k,7) = 55 (7))

This means that the classical solution f; () determines the variance of the quantum
fluctuations. Given the relation between the fluctuation f and the inflaton field, §¢p =
f / aonehas:

2 —92A92 H 2 k 2 superhorizon H 2
A(;O(k.‘r) = a Af(l\.'f) = (%) 1 =+ E _ E

So at horizon crossing one can use the following approximation:

H 2
83, ~ (57

Going back to the relation between the inflaton fluctuation and the curvature
fluctuations,

k=aH

2\ _ ﬂ 2 2
(R4l >—(q;,) (166e?)



Quantum fluctuations in de Sitter space

Quantum fluctuations about the zero point (vacuum state):

The power spectra of these quantities is related via:

2 12
1 A(S(p ‘Z(;‘)

2
= —— where &= —F—
R 2e M2 M? H?

So the power spectrum of the comoving curvature fluctuations is:

. 1 1 H?
AR = oo
T p=aH

which is gauge invariant and remains constant when the wavenumber k leaves the
horizon scale (ky = aH) during inflation.

Since the right hand size of the power spectra is evaluated at horizon crossing, k =
aH, the power spectrum is a purely function of k. It is often useful to model this k

dependence as:
) k ns—1
A% = 4. (1)

25

Quantum fluctuations in de Sitter space

Comoving curvature power spectrum:

The measured amplitude of the scalar spectrum at k, = 0.05 Mpc™! is
Ay = (2.196 £0.060) x 1077 . (6.5.60)

To quantify the deviation from scale-invariance we have introduced the scalar spectral index

dln A?
ng—1= R (6.5.61)
dnk
where the right-hand side is evaluated at £ = k, and ny = 1 corresponds to perfect scale-

invariance. We can split (6.5.61) into two factors

d lnAf-\, _dln A}z 5 dN
dink dN dink

The derivative with respect to e-folds is

(6.5.62)

dIn A% _,dInH dlne (6.5.63
AN ~°TdN T 4N - .5.63)

The first term is just —2¢ and the second term is —n (see Chapter 2). The second factor

in (6.5.62) is evaluated by recalling the horizon crossing condition k = aH, or

Ink=N+InH . (6.5.64)
Hence, we have
dN dink]™! dinH]™"
= = ~ . ).0.65
dink ~ [ dN ] B {1 TN ] e (6.5.65)

To first order in the Hubble slow-roll parameters, we therefore find

26
(6.5.66)
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Temperature fluctuation field




Why a ellipse-like map?




Temperature fluctuation field

* Decomposition of the temperature field on the sky:

—
O(n) = AT/T(6, ¢) = Z Z agmYim(0, d)

=0 m=—¥

* the am, the decomposition coeficients, are called multi-pole
moments:

' , AT
om / Y, [f)’.(,o’)Tw’,,;/](/sz’

£m

these can be computed directly from the sky map. Are generaly
complex quantities.

Spherical harmonics

me . PM(cos )

dQ) = sin 6 dy db
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Angular correlation function

* the temperature fluctuation field is assumed as Gaussian Random
variable. It’s angular correlation function

AT, AT, , e ar ,
C(n,n') = <T(NJT(N‘]> = Z Z (aj,, o) Yo () Yo (2)

el mm'

fully characterizes the temperature fluctuation field (brackets denote
averages over an ensemble of Universes). It is conventional to write
(the am are not correlted):

- v e ~ _ / 2
'1:\(][11/”"'1/1'> ( 00¢ ¢ Om m! y C | = <w\‘”‘m’ >
Ci is the angular power spectrum. Then we have

C(n,n") CyPy(cost) = C'(cos})

CMB angular power spectra

* temperature fluctuation spectrum:

;s I - ., / 9
iﬂhn”“'zu'> ( 007 ¢' O ! ) ( I = ﬁ\’”»‘m| >

* Polarization and cross correlation power spectra:

nE EE
(b[mbtm) = 85’&7’6mm’cf_ )

(B

tm

BB
Bﬁ’m’) = 856’5mm’cg_ )
( ;mEtm> = 655'6mm’cg)5-
these quantities are highly sensitive to the cosmological parameters.

They can be computed theoretically and measured from sky maps.
Powerful tool to constrain cosmological parameters




CMB angular power spectra

Planck
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Sachs-Wolfe effect

Av/v ~AT/T ~d/c?

Additional effect of time dilation while
potential evolves (White & Hu 1997):

AT 140 B
T 3 c2

The temperature fluctuations due to the so-called Sachs-Wolfe effect are due to two
competing effects: (1) the redshift experienced by the photon as it climbs out of the
potential well toward us and (2) the delay in the release of the radiation, leading to less
cosmological redshift compared to the average CMB radiation.

The first contribution leads to a redshift of the order of:
oT, _ 60

T &

Sachs-Wolfe effect

The second contribution is more tricky. Because of general relativity, the proper time goes
slower inside the potential well than outside. The cooling of the gas in this potential well
thus also goes slower, and it therefore reaches 3000 K at a later time relative to the
average Universe.
The time delay (in terms of global time ) is:
6t 60
t 2
This means that 3000 K is reached at a slightly larger (global) scale parameter a +éa >
a. Since in the Einstein-de-Sitter Universe we have a o /3 we can write
éa 26t 260

8.7

=== 8.8
a 3t 3 ¢? ®5)
Now, from that point @ = (acmp + da) until today a = 1 the redshift due to expansion
is less by:
é é
x.2 89)
b4 a
which leads to a positive contribution to the temperature fluctuation 67 that we observe
today:
o, _ 8 _da_ 260 -

T z a 3¢
The total is the sum of both contributions:
6T 6T, 6T, 150
T T'T 32 @11)




Sachs-Wolfe effect

For power-law index of primary density perturbations (ns=1, Harrison-
Zel’dovich spectrum), the Sachs-Wolfe effect produces a flat power
spectrum: CSW ~ 1/1(1+1)

1
25 k3
4T

- | EPawidar, (67

Ce = Pr(k)je(kz)?

the final result for an arbitrary primordial power spectrum Pg (k).
The integral can be done for a power-law power spectrum, P(k) = A%k""1. In
particular, for a scale-invariant (n = 1) primordial power spectrum,

Pr(k) = const. = A?, (68)

we have ik r

Y /“ e o
Co=A% | F2®) = S5y 1)’ (69)
since gk 1
-3 2_ -
Rk = iy (70)
We can write this as
2

2(82: I)C’[ - ;4—5 = const. (independent of £) (71)

Acoustic oscillations

e Baryons fall into dark matter potential wells: Photon baryon fluid heats up

e Radiation pressure from photons resists collapse, overcomes gravity,
expands: Photon-baryon fluid cools down

e Oscillating cycles on all scales. Sound waves stop oscillating at
recombination when photons and baryons decouple.

Credit: Wayne Hu
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Acoustic peaks

Oscillations took place on all scales. We see temperature features from
modes which had reached the extrema

e Maximally compressed regions were hotter than the average
Recombination happened later, corresponding photons experience
less red-shifting by Hubble expansion: HOT SPOT

e Maximally rarified regions were cooler than the average
Recombination happened earlier, corresponding photons experience
more red-shifting by Hubble expansion: COLD SPOT

1st peak

¥ harmanics

!

Harmonic sequence, like waves in pipes or strings:

:

2nd harmonic: mode compresses and rarifies by
recombination

3rd harmonicc mode compresses, rarifies,
compresses

(141) C /1 K

EEREEERE

= 2nd, 3rd, .. peaks

10' 10° 10
Spherical harmonic number ell ~ 1800

Harmonic sequence

SOUND WAVES W A PIPE

Credit: Wayne Hu
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Doppler shifts

Times in between maximum compression/rarefaction, modes
reached maximum velocity

This produced temperature enhancements via the Doppler effect
(non-zero velocity along the line of sight)

This contributes power in between the peaks

= Power spectrum does not go to zero
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Damping and diffusion

e Photon diffusion (Silk damping) suppresses fluctuations in the baryon-
photon plasma

e Recombination does not happen instantaneously and photons execute a
random walk during it. Perturbations with wavelengths which are shorter
than the photon mean free path are damped (the hot and cold parts mix
up)

Thickness
his | | luti of the LSS is
1_' is is same as a low-reso ut.|on comparable
instrument blurs all the details!
to the
oscillation

scales
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CMB Toolbox: http://lambda.gsfc.nasa.gov/toolbox/

CAMB website: http://camb.info/
CMBFast website: http://www.cmbfast.org/

Observational Cosmology

temperature power spectrum: parameter dependence
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Exercise:

Go online to http://lambda.gsfc.nasa.gov/toolbox/ and use the CAMB
online tool to assess the effect of the following parameters on the
temperature angular power spectrum of the CMB; [1b h"2; [lm h”2,

Reprinted from: Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, Wayne Hu, arXiv:0802.3688

o} (@) Baryons 1l (b) Matter |
= @ i
q I
E 40 "
Ry . i\
= 3

B Qs \“\

0 100 1000 - 10 100 1000
{ {

Fig. 15. Baryons and matter. Baryons change the relative heights of the even and odd peaks through their
inertia in the plasma. The matter-radiation ratio also changes the overall amplitude of the oscillations from
driving effects. Adapted from Hu and Dodelson (2002).

Exercise:

Go online to http://lambda.gsfc.nasa.gov/toolbox/ and use the CAMB
online tool to assess the effect of the following parameters on the
temperature angular power spectrum of the CMB; [1b h"2; [Ilm hA2, [11.

Reprinted from: Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, \Wayne Hu, arXiv:0802.3688
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Fig. 14. Curvature and dark energy. Given a fixed physical scale for the acoustic peaks (fixed 23h° and
Q,,h“) the observe gula : saks rides a measure g ; stance and
Q,.h*) the observed angular position of the peaks provides a measure of the angular diameter distance and the
parameters it depends on: curvature, dark energy density and dark energy equation of state. Changes at low

i S 2 2 2 3 > Bré ritati & mtia & i i > 1 g B
¢ multipoles are due to the decay of the gravitational potential after matter domination from the integrated
Sachs-Wolfe effect.




CMB parameter cheat sheet
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