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HIGHLIGHTS

GRAPHICAL ABSTRACT

Responses of C. riparius to spinosad and
indoxacarb exposure were investigated.
Exposure to both insecticides compro-
mised C. riparius life-history traits.
Both insecticides induced defense
mechanisms and cellular oxygen con-
sumption.

Non-target aquatic insect species may
be impacted by spinosad and
indoxacarb use.
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Spinosad and indoxacarb are two relatively new insecticides mainly used in agriculture to control insect pests.
However, at their current application rates, non-target aquatic insect species may also be impacted. In this
study, larvae of the non-biting midge Chironomus riparius were exposed in the laboratory to both insecticides
and their effects evaluated at the organismal level, using standard ecotoxicological tests, and at the biochemical
level, by monitoring specific oxidative stress, neuronal, and energy metabolism biomarkers. Chronic exposure to
both insecticides compromised growth and emergence of C. riparius. Short-term exposures revealed alterations
at biochemical level that might be related to the toxicological targets of both insecticides. Growth and develop-
ment time were the most sensitive endpoints at individual level for both pesticides, while at the biochemical
level, the electron transport system activity was the most sensitive biomarker for spinosad exposure, suggesting
an increase in energy demands associated with the activation of defense mechanisms. Glutathione-S-transferase
was the most sensitive biomarker for indoxacarb exposure, underlining the role of this enzyme in the detoxifica-
tion of indoxacarb. Additionally, changes in lactate dehydrogenase and glutathione peroxidase activities were ob-
served for both insecticides, and evidences of oxidative damage were found for spinosad. This study contributes
to the growing knowledge on sublethal effects of novel insecticides on non-target aquatic invertebrates and
strengthens the usefulness of biochemical biomarkers to support the interpretation of their potentially deleteri-
ous effects on aquatic insects near agricultural fields.
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1. Introduction

One of the goals in integrated pest management is to find tailor-
made and effective pesticides for specific pests while keeping adverse
consequences on non-target species to a minimum (Chitgar and
Ghadamyari, 2012; Stara et al., 2010; Wilkinson et al., 1979). Some
non-target aquatic insects play vital roles in freshwater ecosystems,
and are regularly subjected to pesticide exposure through runoff, drift,
or leaching from adjacent agricultural fields (Cerejeira et al., 2003;
Schulz, 2004). Ecotoxicological effects of pesticides seen on higher
levels of organization are often preceded by quantifiable alterations at
biochemical levels, and assessing earlier sub-organismal endpoints on
key species may provide insights on the long-term consequences for
natural populations (Lemos et al., 2010), hopefully providing regulators
with early-warning tools for risk assessment.

Spinosad and indoxacarb are neurotoxic insecticides with distinct
modes of action registered for agricultural use in Europe (European
Commission, 2006, 2008a). However, the toxicity data for these rela-
tively novel insecticides on aquatic invertebrates is still very limited,
considering that according to regulation (EC) No 1272/2008
(European Commission, 2008b) they are both classified as very toxic
to aquatic life with long lasting effects.

Spinosad targets a unique site in nicotinic acetylcholine receptors
(Copping and Menn, 2000; Orr et al., 2009), causing hyperexcitation of
the nervous system (Salgado, 1998; Salgado et al., 1998; Salgado and
Sparks, 2005). It is very effective against several insect species
(Hertlein et al., 2010), including chironomids (Bond et al., 2004;
Lawler and Dritz, 2013; Pérez et al., 2007; Stevens et al., 2005). Recently,
the European Food Safety Authority predicted an environmental con-
centration of 26.28 pg L™! on surface waters resulting from the applica-
tions on leafy and fruity vegetables (worst case scenario) (EFSA et al.,
2018a). Moreover, spinosad sorbs to the sediment where it seems to
be more persistent (Cleveland et al., 2002), and where many
sediment-dwelling organisms, including chironomid larvae, may be
affected.

Indoxacarb acts by blocking voltage-dependent sodium channels,
causing nervous system shutdown (Lapied et al., 2001; Wing et al.,
1998, 2000). It is effective against several insect species (Anikwe et al.,,
2014; Dryden et al., 2013; Oxborough et al., 2015; Pridgeon et al.,
2009), but particularly to lepidopterans (Dias, 2006; Wing et al., 1998,
2000).In 2003, indoxacarb estimated environmental long-term average
concentrations in surface waters were of 3.7 ug L™, with peak values of
13.7 ug L' (EPA, 2003). More recently, levels up to 7.763 pg L™,
resulting from indoxacarb's application in lettuce crops, were predicted
for surface waters (EFSA et al., 2018b). Additionally, indoxacarb also has
a relatively high log Kow of 4.65 (Dias, 2006) suggesting it has a high
tendency to sorb to sediments.

The freshwater midge Chironomus riparius Meigen (Diptera: Chiron-
omidae) is a widely used model organism in ecotoxicology testing
(Weltje et al,, 2010) mainly due to its ecological relevance and easiness
to handle in the laboratory. Additionally, C. riparius larvae have been
previously used as a model to evaluate biochemical responses of insec-
ticide exposure (Monteiro et al., 2019; Rodrigues et al., 2015a, 2015b).

The main aim of this study was to investigate organismal and bio-
chemical effects of two neurotoxic insecticides on the aquatic inverte-
brate C. riparius. For that, environmentally relevant concentrations of
spinosad and indoxacarb were used to investigate sub-lethal effects in
terms of larval growth, development, and emergence using standard
ecotoxicological tests. Moreover, the effects of these insecticides at the
biochemical level were determined to evaluate their possible relation
to the effects observed at the organismal level and their potential use
in biomonitoring studies.

Biochemical biomarkers associated with key physiological functions
were selected: activity of the antioxidant enzymes superoxide dismut-
ase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathi-
one reductase (GR), essential in the protection against reactive oxygen

species (ROS) induced by the exposure to xenobiotics; DNA damage
and lipid peroxidation (LPO), as indicators of oxidative damage,
resulting from excessive ROS; activity of glutathione-S-transferase
(GST), a phase II biotransformation enzyme, involved in the detoxifica-
tion of xenobiotics; acetylcholinesterase (AChE) activity, related to the
cholinergic neurotransmission, as a biomarker of neuromuscular toxic-
ity; the activities of lactate dehydrogenase (LDH) and electron transport
system (ETS) were assessed as measures of energy metabolism.

2. Material and methods
2.1. Test organism

Chironomus riparius larvae were collected from a laboratory culture
long established at the University of Aveiro, Portugal. Larvae are kept
in plastic aquaria filled with a fine layer of washed and burnt river
sand (<1 mm) and American Society for Testing Materials (ASTM)
hard water. Cultures were maintained at 20 °C with a photoperiod of
16:8 h light-dark, with a constant inflow of air. Larvae are fed ad libitum
with macerated fish food, Tetramin® (Melle, Germany).

2.2. Test chemicals

Spinosad (CAS number 168316-95-8), a mixture of spinosyns A and
D (Crouse et al., 2001), two byproducts of the fermentation of
Saccharopolyspora spinosa (Actinomycetales: Pseudonocardiaceae)
(Mertz and Yao, 1990; Thompson et al., 2000), and indoxacarb (CAS
number 144171-61-9), an oxadiazine insecticide, were acquired from
Sigma-Aldrich, UK. Stock solutions of the pesticides were prepared in
ethanol (spinosad) and acetone (indoxacarb). Experimental solutions
were prepared by diluting the stock solutions in ASTM hard water,
and the final solvent concentration was kept at 0.01%.

2.3. Acute toxicity tests

Acute lethal toxicity was assessed following OECD guideline 235
(OECD, 2011) with water only exposures in crystalizing dishes, using
1st instar larvae. Larvae were exposed to concentrations of spinosad of
0 (solvent control), 1, 2, 4, 8, 16, 32, 64, 128, and 256 pg L™ !, and to 0,
0.5,1,2,4,8,16,32,64,and 128 pg L™ of indoxacarb. After 48 h of ex-
posure, mortality was checked by mechanical stimulation. To halt possi-
ble photodegradation of the chemicals, crystalizing dishes were
protected from the light during the test. The test was executed at 20
=+ 1 °C, and larvae were not fed during the exposure.

2.4. Chronic toxicity tests

A 28-day chronic test was performed according to the OECD guide-
line 219 (OECD, 2004). First instar larvae of C. riparius (2 days old)
were exposed to 0 (negative and solvent control), 0.5, 1.28, 3.2, 8, and
20 pg L~ of spinosad in 150 mL of medium and layer of 1.5 cm of sed-
iment (commercial river sand washed, sieved, and burnt) in 200 mL
glass vessels. A similar setup was made for indoxacarb, using 0, 1, 2, 4,
and 8 ug L™ ! treatments. Five larvae were used in each replicate, and
five replicates were used for larval growth determination, while eight
replicates were used for emergence endpoints. After ten days of expo-
sure larvae growth was determined by measuring body length of the
larvae with the aid of a stereomicroscope fitted with a calibrated mi-
crometer and growth was calculated by subtracting the mean body
length at the beginning (pool of 25 larvae of initial size). In the eight re-
maining replicates, adult C. riparius were collected daily, their gender
determined and stored in 70% ethanol. Afterwards, adult midges were
dried at 50 °C for 24 h and weighed with a microbalance (Mettler
UMT2).

The tests were performed under the same conditions described for
culturing: 20 £ 1 °C with 16:8 h light:dark cycle with gentle aeration.
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Organisms were fed every two days at a ration of 0.5 mg Tetramin®
larvae™! day~!, and physicochemical parameters were checked
throughout the experiment.

2.5. Biomarkers

For the determination of the biochemical biomarkers, tests were ini-
tiated with 8 days old larvae (3rd instar). The concentrations used in
these bioassays were 0, 0.5, 2, and 8 ug L™ for spinosad, and 0, 2, 4,
and 8 pg L™ for indoxacarb. Each crystalizing dish contained ten larvae,
80 mL of experimental solution, and a fine layer of sediment. After 48 h,
organisms from two replicates of the same treatment were pooled to
give a total of twenty organisms per replicate. Six pooled replicates
were used per treatment for spinosad, and seven pooled replicates for
indoxacarb. After exposure, larvae were collected, excess water was
gently removed with a filter paper, and organisms weighed, frozen
with liquid nitrogen, and stored at —80 °C until further processing.

Samples were subsequently homogenized in 800 pL of 0.1 M of K-
phosphate buffer (pH = 7.4) using an Ystral d-79282 homogenizer.
This homogenate was divided into aliquots for ETS, LPO, and DNA dam-
age determination. To LPO aliquot, 4% 2,6-Di-tert-butyl-4-
methylphenol (BHT) in methanol was added to prevent subsequent
lipid oxidation of the samples (Aloisio Torres et al., 2002). These three
aliquots were immediately stored at —80 °C until used. The remaining
homogenate was centrifuged at 10,000g for 20 min at 4 °C and the su-
pernatant (post-mitochondrial supernatant) was collected and divided
into aliquots for SOD, CAT, GST, GR, GPX, AChE, and LDH activities deter-
mination and for protein quantification. In every essay, reaction blanks
were performed using K-phosphate buffer instead of the sample and
all spectrophotometric measurements were made at 25 °C using a Syn-
ergy H1 Hybrid Multi-Mode microplate reader (BioTek® Instruments,
Vermont, USA).

2.5.1. Protein quantification

Protein concentration was assessed following the Bradford protocol
adapted to microplate, using <y-globuline as standard. Prior to AChE,
CAT, GR, GPx, GST, and LDH activities determination, protein concentra-
tion was adjusted to approximately 0.8 mg L™". For these biomarkers,
the exact protein concentration of the dilution was measured again at
the end of the experiment.

2.5.2. Detoxification, oxidative stress and oxidative damage biomarkers
SOD activity was determined by following the method described by
McCord and Fridovich (1969) adapted to microplate. Cytochrome c re-
duction was followed for 5 min at 550 nm, and results are expressed
as SOD units (U) mg~! protein. The determination of CAT activity was
made according to Clairborne (1985). The consumption of H,0, was
assessed at 240 nm for 1 min, and results are expressed in pmol
min~' mg~"' of protein. For the assessment of GR activity, the method
described by Cribb et al. (1989) was used. The oxidation of NADPH
was monitored at 340 nm during 1 min, and results are expressed in
nmol min~! mg~! of protein. Regarding GPx activity, it was determined
by monitoring the oxidation of NADPH at 340 nm for 3 min, as a result of
GR conversion of GSSG to GSH (Mohandas et al., 1984). Results are
expressed in nmol min~! mg~! of protein. An adaption of Habig et al.
(1974) protocol to microplate was used to determine GST activity. The
formation of glutathione dinitrobenzene was measured at 340 nm dur-
ing 3 min, and results are expressed in nmol min~' mg~! of protein.
LPO levels were measured using thiobarbituric acid reactive substances
(TBARS) assay (Bird and Draper, 1984; Ohkawa et al., 1979). Absor-
bance was read at 535 nm and results are expressed in nmol TBARS
g~ ! of wet weight. DNA damage was assessed following the protocols
described by de Lafontaine et al. (2000) and Olive (1988). Fluorescence
was measured using an excitation/emission wavelength of 360/460 nm,
and results are expressed as ng of damaged DNA mg~' of wet weight.

2.5.3. Neurotransmission and energy related biomarkers

Effects of spinosad and indoxacarb on cholinergic neurotransmission
were evaluated monitoring AChE activity, following Ellman's method
(Ellman et al.,, 1961) adapted to microplate (Guilhermino et al., 1996).
The absorbance was read at 414 nm for 5 min, and results are expressed
in nmol min~! mg™"! of protein. To determine the activity of anaerobic
metabolism-related enzyme LDH, oxidation of NADH was monitored at
340 nm as proposed by Vassault (1983) and Diamantino et al. (2001).
Results are expressed in nmol min~! mg™' of protein. ETS activity
was determined following De Coen and Janssen (1997) with some ad-
aptations (Rodrigues et al., 2015b). Absorbance was read at 490 nm

for 5 min, and results are expressed mJ h™! mg of protein™—".

2.6. Statistical analysis

Effects of insecticide exposure on life history and biochemical end-
points were evaluated by one-way analysis of variance (ANOVA)
followed by a Dunnett's post hoc test to determine statistically signifi-
cant differences between solvent controls and treatments, and/or by a
test for linear trend to discriminate if there is a linear increase or de-
crease in response as the concentration increases. Data were checked
for residual normality using D'Agostino-Pearson and Shapiro-Wilk nor-
mality tests and for homoscedasticity with Brown-Forsythe test. Un-
paired t-tests did not find differences between negative and solvent
controls for any of the endpoints analysed, therefore solvent control
was used as the control for all analysis. Spinonad's DNA damage data
were log-transformed to correct for normality. For spinosad LPO data
and for indoxacarb percentage of emergence data, transformations did
not correct for normality, but since homogeneity of variances was veri-
fied, one-way ANOVA was executed. Since all larvae in the spinosad
chronic test exposed to 20 pg L™! died, this treatment was excluded
from analysis. Statistical analysis was made in GraphPad Prism® 7 for
Mac and significance level was set at 0.05.

3. Results
3.1. Spinosad

For spinosad, in the highest concentration tested, there was 40% mor-
tality after 48 h of exposure (Supplementary data, Table I). Because of the
gradient of concentrations used for spinosad, the 48 h LC50 could not be
estimated and thus is higher than 256 g L. Concerning the chronic bio-
assay, at day 10 no larvae were alive at the highest concentration tested
(20 pg L™ 1) while 92% of the larvae were recovered from the control. Ad-
ditionally, at day 10 of exposure, statically significant differences were
found for growth between control and the 8 ng L~ treatment (Fraz0) =
7.640, p < 0.001) (Table I). Regarding emergence parameters, there was
a significant increase in time to emergence at 8 ug L™ for both males (F
(427) = 3.831, p < 0.05) and females (F(426) = 3.606, p < 0.05) (Table I).
No adults have emerged in the 20 pg L™! treatment, and although overall
ANOVA was not significant for the remaining treatments (F 434y = 2.295,
p = 0.079), Dunnett's test discriminated differences between control and
8 ug L™ treatments in terms of percentage of emerged adults. No effects
were found on adult weight (NOEC = 8 ug L) (Table II).

To what concerns biochemical biomarkers, exposure to spinosad sig-
nificantly increased GPx activity in C. riparius larvae in the highest concen-
tration (F3.20) = 7.601, p < 0.01; Fig. 2b), and LDH activity in the 2 ug L'
treatment (F(319) = 8.357, p = 0.001; Fig. 1d). There was also a significant
increase in LPO at the two highest concentrations tested (F5 20y = 4.87,p
< 0.05; Fig. 1a) and, although not significant, DNA damage also increased
in the same treatments (F(320) = 2.651, p = 0.077, Fig. 1b). ETS activity
was the most sensitive biomarker, with a significant increase observed
for all tested concentration (F(320y = 31.76, p < 0.001; LOEC = 0.5
ug L™, Fig. 1e). Moreover, this increase was concentration-dependent
(r> = 0.83, p < 0.001). No significant alterations were detected for
AChE, CAT, GR, GST, and SOD activities (Figs. 1-2).
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Table I
Growth (n = 5) and emergence endpoints (n = 8) of Chironomus riparius larvae exposed to spinosad. All values are presented as mean + SEM. An asterisk denotes statistically significant

differences to the control treatment (0 pg L™'; p < 0.05, ANOVA, Dunnett's test). A number sign denotes statistically significant differences to the control treatment (0 pg L™'; Dunnett's
test) when overall ANOVA is not significant (p = 0.079).

Spinosad concentrations (ug L") Growth (mm) Total emergents (%) Development time (days)

Males Females
0 123 4+ 0.2 80.0 £ 7.6 153 + 04 16.8 + 0.4
0.5 11.6 £ 03 65.0 £ 9.1 152 4+ 03 171+ 04
1.28 11.7 £ 03 650+ 73 153+ 0.3 172+ 03
32 109 + 0.5 725 + 8.4 15.0+0.3 1794+ 06
8 8.8 +0.9* 45.0 + 9.8* 17.1 £ 0.7* 199 £+ 1.1*
20 N.C. N.C. N.C. N.C.

N.C. - not calculated due to 100% mortality.

Table II
Adult weight of Chironomus riparius exposed as larvae to spinosad. All values are
presented as mean + SEM, n = 8.

Spinosad concentrations Males dry weight Females dry weight
(bgl™) (mg) (mg)
0 0.542 + 0.012 1.084 + 0.037
0.5 0.540 £ 0.013 1.084 + 0.019
1.28 0.568 + 0.017 1.063 + 0.036
3.2 0.524 £ 0.014 1.035 £ 0.033
8 0.521 £ 0.027 1.118 £ 0.091
20 N.C. N.C.

N.C. - not calculated due to 100% mortality.

3.2. Indoxacarb

In acute tests and for the highest concentration of indoxacarb tested,
there was 47% mortality after 48 h of exposure (Supplementary data,
Table I). The 48 h LC50 of indoxacarb was estimated to be higher than
128 ug L™, Chronic exposure to indoxacarb led to a decrease in larval
growth in the highest concentration tested (8 pg L™ '; F(4,19) = 4.746,

p <0.01) (Table III). Moreover, indoxacarb exposure led to a delay in
emergence of males (F43,) = 11.96, p < 0.001) and females (F4 33
= 6.031, p < 0.001). No effects were observed for the percentage of
emerged adults (Table III) nor for adult weight (NOEC = 8 ug L™1)
(Table 1V).

Regarding biochemical biomarkers, GPx activity increased in the
highest concentration tested (F3,4) = 5.055, p < 0.01; Fig. 4b). Expo-
sure to indoxacarb significantly increased LDH activity in the highest
concentration tested (F(3,3) = 3.331, p<0.05; Fig. 3d), and this increase
was dose-dependent (r? = 0.30, p<0.01; Fig. 3d). GST activity increased
from concentration 4 ug L~ ! onwards (F(324) = 4.81, p < 0.01; Fig. 3c).
For SOD activity, although ANOVA was significant, the post hoc test
did not find any significant differences between the control and the ex-
perimental treatments (F(324) = 4.21, p < 0.05; Fig. 4d). No significant
alterations were detected for the remaining biomarkers studied.

4. Discussion
Spinosad and indoxacarb are neurotoxic insecticides highly effective

in controlling insect pests which were initially deemed as relatively safe
for non-target species (Bacci et al., 2016; Boucher and Ashley, 1999;
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Fig. 1. Oxidative damage, biotransformation, energetic metabolism and neuronal biomarkers in Chironomus riparius larvae after 48 h exposure to spinosad: a) Lipid Peroxidation; b) DNA
Damage; c) Glutathione-S-Transferase; d) Lactate Dehydrogenase; e) Electron Transport System; f) Acetylcholinesterase. All values are presented as mean + SEM, n = 7. An asterisk
denotes statistically significant differences to the control treatment (0 ug L™*; p < 0.05, ANOVA, Dunnett's test).
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Dismutase. All values are presented as mean + SEM, n = 7. An asterisk denotes statistically significant differences to the control treatment (0 pug L™"; p < 0.05, ANOVA, Dunnett's test).

Table III

Growth (n = 5) and emergence endpoints (n = 8) of Chironomus riparius larvae exposed to indoxacarb. All values are presented as mean + SEM. An asterisk denotes statistically signif-

icant differences to the control treatment (0 pg L™'; p < 0.05, ANOVA, Dunnett's test).

Indoxacarb concentrations (ug L") Growth (mm)

Total emergents (%) Development time (days)

Males Females
0 11.7+03 90.0 + 54 170+ 03 184 + 0.6
1 1134+ 0.1 90.0 £+ 3.8 16.0 £ 0.3 195+ 05
2 11.6 + 0.6 85.0 £ 6.3 162+ 0.3 185+ 04
4 109+ 03 825+ 7.0 174 + 04 1994+ 06
8 9.9 £+ 0.4* 95.0 +£ 3.2 19.0 + 04" 22.14+09*

Jones et al.,, 2005; Lahm et al., 2000; Liu and Zhang, 2012; Sarfraz et al.,
2005). Although there is no recent literature available on measured
levels of both chemicals in natural freshwater environments, the con-
centrations used in this study are within the estimated environmental
levels, and clearly impaired C. riparius life-history traits with alterations
at the biochemical level also observed.

Chronic exposures to indoxacarb and spinosad produced compara-
ble outcomes in terms of C. riparius life history traits: growth reduction
observed after 10 days of exposure at 8 ug L' of spinosad and at 8

Table IV
Adult weight of Chironomus riparius exposed as larvae to indoxacarb. All values are pre-
sented as mean + SEM, n = 8.

Indoxacarb concentrations Males dry weight Females dry weight

(ugL™) (mg) (mg)
0 0.478 + 0.012 0.943 + 0.049
1 0.502 + 0.014 0.998 = 0.030
2 0.461 + 0.018 0.981 + 0.051
4 0.503 + 0.022 0.999 -+ 0.039
8 0469 + 0.012 0.954 + 0.049

ug L' of indoxacarb translated into a delay in development of both
males and females, but interestingly, did not result in a reduction of
imagoes weight. This suggests that C. riparius larvae were capable of
recovering and reaching the desired weight, at the expense of longer de-
velopment time. This trade-off is not unusual as body weight is associ-
ated with the reproductive output of chironomids (Sibley et al., 2001)
- nonetheless, a delay in development time is still an important ecolog-
ical driver as it can have direct consequences on synchrony of emer-
gence and mating success, thus affecting population dynamics (Sibley
et al., 1997). This is particularly relevant on protandrous species such
as C. riparius. Still, a full life-cycle test contemplating reproductive end-
points such as fecundity and fertility could provide a better estimate of
population-level effects and should be considered in future studies. The
main dissimilarity observed between the effects of the two compounds
at the organismal level, was that spinosad exposure also affected
C. riparius survival: there was a reduction in the number of emerged
adults at 8 ug L1, and at 20 pg L~ ! no imagoes have emerged. Previous
data indicated a NOEC (no observed effect concentration) of 0.62 pg L™
for C. riparius (EFSA et al., 2018a), however, in the present study a
NOEC of 3.2 ug L~ " and a LOEC (lowest observed effect concentration)
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pipiens adult emergence. Tomé et al. (2014) determined that exposure
to spinosad compromises swimming behavior of Aedes aegypti. Behav-
ioral changes have been demonstrated for many neurotoxic compounds
and can lead to a reduction in food intake (Pestana et al., 2009, 2010;
Tomé et al., 2014; Werner and Moran, 2009), which, although not ad-
dressed, might have also occurred here with C. riparius and contributed
to the reduced growth and developmental rates. Considering other
aquatic invertebrates, impairment of population growth rate by
spinosad was described for Daphnia pulex and Daphnia magna at 8
pg L=! (Duchet et al., 2010) and for Ceriodaphnia dubia at 1 ug L™!
(Deardorff and Stark, 2011).

Regarding the long-term effects of indoxacarb on chironomids, the
information available is very limited. Still, a 28-day EC10 of 1.68
pg L' (endpoint not specified) and a 28-day NOEC (development
rate) of 1.8 pg L~! (active substance) were previously determined for
C. riparius (EFSA et al., 2018b). In the present study, a NOEC of 4
g L~ was observed for development and emergence endpoints. Ding
et al. (2011) investigated the effects of pesticide-contaminated sedi-
ments on C. dilutus, and the authors concluded that indoxacarb was
amongst the most toxic sediment-associated pesticides to C. dilutus
(10-day LC50 of 11.3 pg goc '; growth NOEC of 3.2 ug g,c !). Available in-
formation shows that commercial formulations of indoxacarb affect life
history traits of some insect pest species (Gamil et al., 2011; Martin
et al., 2006; Saryazdi et al., 2012), however present results clearly
show that life history of non-target aquatic insects may also be altered.

Although the biomarkers exposure experiment does not reflect the
entire exposure duration of the chronic toxicity test, short exposures
to low concentrations of both insecticides induced several biochemical
changes in C. riparius larvae. As expected, due to their distinct modes
of action, different responses were observed at the biochemical level.

GPx, CAT, and SOD are first-line defense antioxidant enzymes
against reactive oxygen species. SOD catalyzes the conversion of super-
oxide anions to hydrogen peroxide (H,0,), which is subsequently de-
toxified by CAT and GPx (Ighodaro and Akinloye, 2018). The increase
in GPx activity induced by spinosad exposure may have occurred to pre-
vent the accumulation of H,0, due to increased oxygen metabolism.
GPx has a higher affinity for H,O, than CAT (Lushchak, 2012), which
may explain why GPx activity increased while catalase activity
remained unchanged. The increase in GPx activity was, however, insuf-
ficient to prevent oxidative damage, as indicated by the increase of LPO
levels and the perceptible increase of DNA damage. The concomitant in-
crease in LPO and GPx has been previously observed in the kidney of
Oreochromis niloticus (Piner and Uner, 2014) and in mammalian cell
lines (Pérez-Pertejo et al., 2008) exposed to the same insecticide. In-
creased LPO levels are indicative of cellular damage, which may have
contributed to the effects observed at the organism level.

Spinosad also led to the increase in ETS activity, an indicator of cellu-
lar oxygen metabolism, and LDH activity, involved in the anaerobic
pathway of energy production, indicating high levels of energy con-
sumption and high metabolic demand (Rodrigues et al., 2015a; Silva
et al.,, 2016). This increase in energy demand may be associated with
the activation of antioxidant mechanisms, as implicit by the increase
of GPx and/or other defense mechanisms that were not addressed
here. Moreover, an increase in metabolic costs due to the induction of
defense mechanisms may also, in part, explain observed reductions in
growth and development, since less energy will be available for other
physiological processes.

Spinosad's inhibitory effects on AChE activity have been reported for
other insect species (EI-Mageed and Elgohary, 2006; Maiza et al., 2013;
Rabea et al., 2010; Tine et al., 2015), and as a nicotinic acetylcholine re-
ceptor modulator, some alterations in AChE activity were anticipated.
However, the 48 h exposure to the tested concentrations did not induce
changes in AChE activity of C. riparius larvae. Azevedo-Pereira et al.
(2011) work with C. riparius larvae has also revealed that a 48 h expo-
sure to imidacloprid, an insecticide that also targets nicotinic acetylcho-
line receptors, did not induce alterations in AChE activity. The authors

indicated that inhibitory effects of imidacloprid on AChE were only de-
tected after 96 h of exposure and in the post-exposure period, and yet
behavioral changes were linked to AChE activity (Azevedo-Pereira
etal, 2011). Given the information available in the literature, it is possi-
ble that 48 h exposure to spinosad was not enough to impair AChE activ-
ity. Follow-up tests should be performed with prolonged exposure
periods, to evaluate the possible extent of spinosad toxic effect on
C. riparius AChE. Nonetheless, this short-exposure triggered alterations
on other biochemical biomarkers, indicating that secondary mecha-
nisms might also be accountable for spinosad's toxicity to C. riparius,
such as the interference with gamma-aminobutyric acid receptors or
others (Salgado and Sparks, 2005).

Regarding the effects of indoxacarb at the biochemical level, GST was
the most sensitive endpoint. GST, an enzyme involved in biotransforma-
tion and detoxification (Clark, 1989), has been categorized as an ineffec-
tive biomarker of pesticide exposure in C. riparius (Hirthe et al., 2001),
and some works endorse this assumption due to its disparate responses
to different pesticides (Planell6 et al., 2013). Regardless, in this study, an
increase in GST activity as a result of indoxacarb exposure was observed
in C. riparius larvae. An identical response to indoxacarb was observed in
Blattella germanica and Spodoptera littoralis larvae (Gamil et al., 2011;
Maiza et al,, 2013). Additionally, Nehare et al. (2010) and Pang et al.
(2012) postulated that the detoxification by GST might play a rele-
vant role in indoxacarb resistance. GPx activity also increased in lar-
vae exposed to indoxacarb. Since there were no changes in oxidative
damage indicators (LPO and DNA damage), it is suggested that GPx
activity and detoxification by GST contributed to preventing oxida-
tive damage in a short-term exposure. As opposed to spinosad,
only the anaerobic metabolism (LDH) was induced by indoxacarb
in C. riparius larvae, since no changes were detected in ETS activity.
This induction of LDH may occur due to higher and more readily
available energy demands for the activation of GPx and GST, and
again this might have contributed to the effects observed at the indi-
vidual level (reduction in larval growth and increase in time to
emergence).

This study elucidates some biochemical responses to spinosad and
indoxacarb exposure that may be associated with the effects observed
at the organismal level. The induction of defense mechanisms and
higher energy expenditures are most likely direct responses of C.
riparius larvae to cope with the exposure, while oxidative damage
may be a direct consequence of spinosad's mechanism of action and
may have contributed to the slightly more severe effects observed. Al-
though not specific for insecticide exposure, biochemical biomarkers
addressed in the present study may be valuable early-warning tools in
biomonitoring studies, since changes were observed in short exposures
and at lower concentrations than the ones causing effects at the organ-
ismal level. ETS was the most sensitive biochemical biomarker for
spinosad, as it was responsive to 0.5 pg L™, while for indoxacarb GST
was the most sensitive biomarker (LOEC of 4 pg L™!), underlining the
role of GST in the detoxification of indoxacarb.

Our findings revealed that under controlled laboratory conditions,
spinosad is slightly more toxic to C. riparius than indoxacarb since, be-
sides the reduction of larval growth and the increase in time to emer-
gence, a reduction in emergence rate was also observed. Chironomids
larvae play a vital role in freshwater ecosystems due to their abun-
dance and food chain position (Péry et al., 2002), and therefore the
application of spinosad and indoxacarb near freshwater systems at
current rates should be monitored and reviewed, since the concen-
trations used in this work and that elicited clear deleterious effects
are within the estimated environmental levels. Moreover, through
their emergence, chironomids represent an important food source
for riparian predators, and therefore changes in the emergence of
aquatic insects can also have implications for the terrestrial food
webs (Schulz et al., 2015).

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.02.303.
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