BJT Transistor Modeling

Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor. It uses circuit elements that approximate the behavior of the transistor.

There are 2 models commonly used in small signal AC analysis of a transistor:

• hybrid equivalent model

Р	Phase Relationship	
The phase relationship between input and output depends on the amplifier configuration circuit.		
Common – Emitter :	180 degrees	
Common - Base :	0 degrees	
Common – Collector:	0 degrees	

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is **180 degrees**. This is independent of the DC bias.

Phase Relationship

A CC amplifier or Emitter Follower configuration has **no phase shift** between input and output.

Gain Calculations
Voltage Gain (A_v):
$$A_v = \frac{V_o}{V_i} = -\frac{h_{fe}R_C}{h_{ie}}$$

Current Gain (A_i): $A_i = \frac{I_o}{I_i} = \frac{h_{fe}R_F}{R_F + h_{fe}R_C}$
 $A_i = \frac{I_o}{I_i} \cong \frac{R_F}{R_C}$

