BJT Transistor Modeling

Transistor Modeling

A model is an equivalent circuit that represents the AC characteristics of the transistor. It uses circuit elements that approximate the behavior of the transistor.

There are 2 models commonly used in small signal AC analysis of a transistor:

- hybrid equivalent model

Important Parameters

$\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}, \mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}$ are important parameters for the analysis of the AC characteristics of a transistor circuit.

Input Impedance, $\mathbf{Z}_{\mathbf{i}}$

To determine I_{i} : insert a "sensing resistor"
$Z_{i}=\frac{V_{i}}{I_{i}}$

then calculate $\mathrm{I}_{\mathrm{i}}: \quad \quad \mathrm{I}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{\text {sense }}}$

Output Impedance, \mathbf{Z}_{o}

To determine I_{0} : insert a "sensing resistor"

$$
\mathrm{Z}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{I}_{\mathrm{o}}}
$$

$$
\text { then calculate } \mathrm{I}_{\mathrm{o}}: \quad \mathrm{I}_{\mathrm{o}}=\frac{\mathrm{V}-\mathrm{V}_{\mathrm{o}}}{\mathrm{R}_{\text {sense }}}
$$

Voltage Gain, $\mathbf{A}_{\mathbf{v}}$

$$
A_{v}=\frac{V_{o}}{V_{i}}
$$

For an amplifier with no load: $\quad A_{V N L}=\left.\frac{V_{0}}{V_{i}}\right|_{\mathrm{R}_{\mathrm{L}}=\infty \Omega \text { (opencircuit) }}$

Note: the no-load voltage gain $\left(\mathrm{A}_{\mathrm{VNL}}\right)$ is always greater than the loaded voltage gain $\left(\mathrm{A}_{\mathrm{V}}\right)$.

Current Gain, $\mathbf{A}_{\mathbf{i}}$

The current gain $\left(\mathrm{A}_{\mathrm{i}}\right)$ also be calculated using the voltage gain $\left(\mathrm{A}_{\mathrm{v}}\right)$:

$$
A_{i}=-A_{v} \frac{Z_{i}}{R_{L}}
$$

Phase Relationship

The phase relationship between input and output depends on the amplifier configuration circuit.

Common - Emitter :	180 degrees
Common - Base :	0 degrees
Common - Collector:	0 degrees

Hybrid Equivalent Model

The hybrid parameters: $\mathrm{h}_{\mathrm{i} e}, \mathrm{~h}_{\mathrm{re}}, \mathrm{h}_{\mathrm{fe}}, \mathrm{h}_{\mathrm{oe}}$ are developed and used to model the transistor. These parameters can be found in a specification sheet for a transistor.

- $\mathrm{h}_{\mathrm{i}}=$ input resistance
- $\mathrm{h}_{\mathrm{r}}=$ reverse transfer voltage ratio $\left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{o}}\right)$
- $\mathrm{h}_{\mathrm{f}}=$ forward transfer current ratio $\left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathrm{i}}\right)$
- $\mathrm{h}_{\mathrm{o}}=$ output conductance

General h-Parameters for any Transistor Configuration

$h_{i}=$ input resistance
$\mathrm{h}_{\mathrm{r}}=$ reverse transfer voltage ratio $\left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{o}}\right)$
$\mathrm{h}_{\mathrm{f}}=$ forward transfer current ratio $\left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathrm{i}}\right)$
$h_{o}=$ output conductance

Simplified General h-Parameter Model

The above model can be simplified based on these approximations:
$\mathrm{h}_{\mathrm{r}} \cong 0$ therefore $\mathrm{h}_{\mathrm{r}} \mathrm{V}_{\mathrm{o}}=0$ and $\mathrm{h}_{\mathrm{o}} \cong \infty$

Common-Emitter h-Parameters

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ie}}=\frac{25 \mathrm{mV}}{\mathrm{I}_{\mathrm{BQ}}} \cong \frac{\mathrm{~h}_{\mathrm{fe}} 25 \mathrm{mV}}{\mathrm{I}_{\mathrm{EQ}}} \\
& \mathrm{~h}_{\mathrm{fe}}=\beta_{\mathrm{ac}}
\end{aligned}
$$

Common-Base h-Parameters

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ib}}=\frac{25 \mathrm{mV}}{\mathrm{I}_{\mathrm{EQ}}} \\
& \mathrm{~h}_{\mathrm{fb}}=-\alpha_{\mathrm{ac}} \cong-1
\end{aligned}
$$

BJT Small-Signal Analysis

Common-Emitter (CE) Fixed-Bias Configuration

The input $\left(\mathrm{V}_{\mathrm{i}}\right)$ is applied to the base and the output $\left(\mathrm{V}_{\mathrm{o}}\right)$ is from the collector.
The Common-Emitter is characterized as having high input impedance and low output impedance with a high voltage and current gain.

Removing DC effects of \mathbf{V}_{CC} and Capacitors

Hybrid Equivalent Circuit

Hybrid Equivalent Circuit

Determine $\mathbf{h}_{\mathrm{fe}}, \mathbf{h}_{\mathrm{ie}}$, and \mathbf{h}_{oe} :
$\boldsymbol{h}_{f e}$ and $\boldsymbol{h}_{\boldsymbol{o e}}$: look in the specification sheet for the transistor or test the transistor using a curve tracer.
$\boldsymbol{h}_{i e^{\prime}}$: calculate h_{ie} using DC analysis: $\mathrm{h}_{\mathrm{ie}}=\frac{25 \mathrm{mV}}{\mathrm{I}_{\mathrm{BQ}}} \cong \mathrm{h}_{\mathrm{fe}} \frac{25 \mathrm{mV}}{\mathrm{I}_{\mathrm{EQ}}}$

Impedance Calculations

Input Impedance: $\quad \mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{h}_{\mathrm{ie}}$

$$
\left.\mathrm{Z}_{\mathrm{i}} \cong \mathrm{~h}_{\mathrm{ie}}\right|_{\mathrm{R}_{\mathrm{B}} \geq 10 \mathrm{~h}_{\mathrm{ie}}}
$$

Output Impedance: $\quad \mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}} \| \frac{1}{\mathrm{~h}_{\mathrm{oe}}}$

$$
\left.\mathrm{Z}_{\mathrm{o}} \cong \mathrm{R}_{\mathrm{C}}\right|_{1 / \mathrm{h}_{\mathrm{oc}} \geq 10 \mathrm{R}_{\mathrm{C}}}
$$

$\operatorname{Current} \operatorname{Gain}\left(A_{i}\right): \quad A_{i}=\frac{i_{o}}{i_{i}}=\frac{h_{f e} R_{B}\left(1 / h_{o e}\right)}{\left(1 / h_{o e}+R_{C}\right)\left(R_{B}+h_{i e}\right)}$

$$
\left.\mathrm{A}_{\mathrm{i}} \cong \mathrm{~h}_{\mathrm{fe}}\right|_{1 / \mathrm{hoc}_{\mathrm{oc}} \geq 10 \mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{B}} \geq 10_{\mathrm{ie}}}
$$

Current Gain from Voltage Gain: $\quad A_{i}=-A_{v} \frac{Z_{i}}{R_{C}}$

Phase Relationship

The phase relationship between input and output is 180 degrees. The negative sign used in the voltage gain formulas indicates the inversion.

You still need to determine $\mathrm{h}_{\mathrm{fe}}, \mathrm{h}_{\mathrm{ie}}$, and h_{oe}.

Impedance Calculations

Input Impedance: $\quad \mathrm{Z}_{\mathrm{i}}=\mathrm{R}^{\prime}\left\|\mathrm{h}_{\mathrm{ie}} \quad \mathrm{R}^{\prime}=\mathrm{R}_{1}\right\| \mathrm{R}_{2}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

Output Impedance: $\mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}} \| \frac{1}{\mathrm{~h}_{\mathrm{oe}}}$

$$
\left.\mathrm{Z}_{\mathrm{o}} \cong \mathrm{R}_{\mathrm{C}}\right|_{1 / h_{\mathrm{oe}} \geq 10 \mathrm{R}_{\mathrm{C}}}
$$

Gain Calculations

$\operatorname{Voltage} \operatorname{Gain}\left(\mathbf{A}_{v}\right): \quad A_{v}=\frac{v_{o}}{v_{i}}=-h_{f e} \frac{R_{C} \| 1 / h_{o e}}{h_{i e}}$

$$
\mathrm{A}_{\mathrm{v}} \cong-\left.\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{C}}}{\mathrm{~h}_{\mathrm{ie}}}\right|_{1 / \mathrm{hoc}_{\mathrm{oc}} \geq 10 \mathrm{R}_{\mathrm{C}}}
$$

$\operatorname{Current} \operatorname{Gain}\left(\mathbf{A}_{\mathrm{i}}\right): \quad A_{i}=\frac{i_{o}}{i_{i}}=\frac{h_{\mathrm{fe}_{\mathrm{e}}} \mathrm{R}^{\prime}\left(1 / h_{o c}\right)}{\left(1 / h_{o c}+R_{c}\right)\left(R^{\prime}+h_{i c}\right)}$

$$
\begin{aligned}
& \left.\mathrm{A}_{\mathrm{i}} \cong \frac{\mathrm{~h}_{\mathrm{fe}} \mathrm{R}^{\prime}}{\mathrm{R}^{\prime}+\mathrm{h}_{\mathrm{ie}}}\right|_{1 / \mathrm{h}_{\mathrm{oe}} \geq 10 \mathrm{R}_{\mathrm{C}}} \\
& \left.\mathrm{~A}_{\mathrm{i}} \cong \mathrm{~h}_{\mathrm{fe}}\right|_{1 \mathrm{~h}_{\mathrm{oe}} \geq 10 \mathrm{R}_{\mathrm{C}}, \mathrm{R}^{\prime} \geq 10 \mathrm{~h}_{\mathrm{ie}}}
\end{aligned}
$$

Current Gain from Voltage Gain: $\quad A_{i}=-A_{v} \frac{Z_{i}}{R_{C}}$

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.

Impedance Calculations

Input Impedance: $\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{Z}_{\mathrm{b}} \quad \mathrm{Z}_{\mathrm{b}}=\mathrm{h}_{\mathrm{ie}}+\left(\mathrm{h}_{\mathrm{fe}}+1\right) \mathrm{R}_{\mathrm{E}}$

$$
\left.\mathrm{Z}_{\mathrm{b}} \cong \mathrm{~h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{E}}\right|_{\left(\mathrm{h}_{\mathrm{f}}+1\right) \mathrm{R}_{\mathrm{E}} \gg \mathrm{~h}_{\mathrm{i}} \mathrm{e}}, \mathrm{~h}_{\mathrm{fe}} \gg 1
$$

Output Impedance: $\mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}}$

Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is $\mathbf{1 8 0}$ degrees. This is independent of the DC bias.

Emitter-Follower Configuration

You may recognize this as the Common-Collector configuration. Indeed they are the same circuit.

Note the input is on the base and the output is from the emitter.

Hybrid Equivalent Model

You still need to determine $h_{f e}$ and $h_{i \mathrm{ie}}$.

Impedance Calculations (cont'd)

Output Impedance: $\quad Z_{o}=R_{E} \| \frac{h_{i e}}{h_{\mathrm{fe}}+1}$

$$
\left.\mathrm{Z}_{\mathrm{o}} \cong \frac{\mathrm{~h}_{\mathrm{ie}}}{\mathrm{~h}_{\mathrm{fe}}}\right|_{\left(\mathrm{h}_{\mathrm{fe}}+1\right)_{\mathrm{E}} \gg \mathrm{~h}_{\mathrm{ie}}, \mathrm{~h}_{\mathrm{e}} \gg 1}
$$

Phase Relationship

A CC amplifier or Emitter Follower configuration has no phase shift between input and output.

Common-Base (CB) Configuration

The input $\left(\mathrm{V}_{\mathrm{i}}\right)$ is applied to the emitter and the output $\left(\mathrm{V}_{\mathrm{o}}\right)$ is from the collector.
The Common-Base is characterized as having low input impedance and high output impedance with a current gain less than 1 and a very high voltage gain.

Hybrid Equivalent Model

You will need to determine h_{fb} and h_{ib}.

$$
\mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}}}{\mathrm{~h}_{\mathrm{fe}}+1}=\frac{25 \mathrm{mV}}{\mathrm{I}_{\mathrm{EQ}}} \quad \mathrm{~h}_{\mathrm{fb}}=-\alpha_{\mathrm{ac}} \cong-1
$$

Impedance Calculations

Input Impedance: $\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{E}} \| \mathrm{h}_{\mathrm{ib}}$
Output Impedance: $\mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}}$

Gain Calculations

$\operatorname{Voltage} \operatorname{Gain}\left(\mathbf{A}_{\mathrm{v}}\right): \mathrm{A}_{\mathrm{v}}=\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{i}}}=\frac{\mathrm{h}_{\mathrm{fb}} \mathrm{R}_{\mathrm{C}}}{\mathrm{h}_{\mathrm{ib}}} \cong \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{h}_{\mathrm{ib}}}$
$\operatorname{Current} \operatorname{Gain}\left(\mathbf{A}_{\mathrm{i}}\right): \quad \mathrm{A}_{\mathrm{i}}=\frac{\mathrm{i}_{\mathrm{o}}}{\mathrm{i}_{\mathrm{i}}}=h_{\mathrm{fb}} \cong-1$

Phase Relationship

A CB amplifier configuration has no phase shift between input and output.

CE Collector Feedback Configuration

This is a variation of the CE Fixed-Bias configuration.

Hybrid Equivalent Model

You will need to determine $h_{f e}$ and $h_{i e}$.

Impedance Calculations

Input Impedance: $\mathrm{Z}_{\mathrm{i}}=\frac{\mathrm{h}_{\mathrm{ie}}}{1+\mathrm{h}_{\mathrm{fe}} \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{F}}}}$
Output Impedance: $\mathrm{Z}_{\mathrm{o}} \cong \mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{F}}$

Gain Calculations

$\operatorname{Voltage} \operatorname{Gain}\left(\mathrm{A}_{\mathrm{v}}\right): \mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}=-\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{C}}}{\mathrm{h}_{\mathrm{ie}}}$
$\operatorname{Current} \operatorname{Gain}\left(A_{i}\right): A_{i}=\frac{I_{o}}{I_{i}}=\frac{h_{f e} R_{F}}{R_{F}+h_{f e} R_{C}}$

$$
\mathrm{A}_{\mathrm{i}}=\frac{\mathrm{I}_{\mathrm{o}}}{\mathrm{I}_{\mathrm{i}}} \cong \frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{C}}}
$$

