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Introduction



Hubble Tension

The Hubble tension describes the di↵erence between the Hubble constant

with ”early” and ”late” type measurements, which has been quantified to

be

(H
late

� H
early

)

H
early

= 9% ⇡ 6 km s�1 Mpc�1
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Hubble Tension

Credit: Di Valentino et al. (2021) 4



Hubble Tension

Adapted from Di Valentino et al. (2021)

5



Possible Solutions

Several suggestions have been proposed to try to solve the Hubble

tension, such as

• An underdense local Universe;

• Adding extra dark energy components;

• Modifying the ⇤CDM model with, for example, Modified Gravity;

• Many, many more...
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Local Void

In an underdense local Universe, nearby galaxies will tend to have positive

peculiar velocities, which will bias the ”late” type Hubble constant to

higher values than it should have.

I am going to explore, via 2 simulations, whether this local void is a

feasible enough explanation to show why the ”late” and ”early” type

Hubble constants have such di↵erent values.
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Simulation by Wu & Huterer

(2017)



Data and Procedings

Instead of using local density perturbations, Wu & Huterer opted to use

non-uniform spatial distributions of Supernovae (SNe) from the data of

the paper by Riess et al. (2016), or R16.

From the absolute magnitude of the SNe, we can get the Hubble

constant with the following equation

log
10

H loc

0

=
M0

x

5
+ a

x

+ 5

To quantify the di↵erence between the Hubble constant measured and

one where we’re considering a local void, then we have that

�H loc

0

= (H loc

0

ln 10)�a
x

=
1

N

NX

i=1

v
r ,i

r
i
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Data and Procedings

This di↵erence in the Hubble constant can also be written in a di↵erent

way, where we have

�H loc

0

=
NX

i=1

v
r ,i

�2

i

· r
i

·
 

NX

i=1

1

�2

i

!�1

The SNe were chosen to be in the redshift range of 0.023 < z < 0.15,

since at redshift z = 0.023 the e↵ects of peculiar velocities on SNe are

small.
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Data and Proceedings

Credit: Wu & Huterer (2017)
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Data and Proceedings

Credit: Wu & Huterer (2017)
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Results

At worst, the value of �H loc

0

is smaller than 0.01 km s�1 Mpc�1, with a

� = 0.12 km s�1 Mpc�1. At best, considering the most underdense

region, �H loc

0

= 0.65± 0.13 km s�1 Mpc�1.

Source of Scatter No Weighting Weighted by nSN(z)/nhalo(z)

Cumulative � 0.12 0.38

Source of Scatter Rotations, no Weighting Weighted by mag error

Cumulative � 0.42 0.31
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Results

Credit: Wu & Huterer (2017)

14



Results

We define the density of a medium as � =
(⇢� ⇢)

⇢

Credit: Wu & Huterer (2017)

15



Results

We define the density of a medium as � =
(⇢� ⇢)

⇢

Credit: Wu & Huterer (2017)
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Simulation by Kenworthy et al.

(2019)



Key Di↵erences

In terms of data, Kenworthy et al. decided to use several SNe data from

Pantheon, Foundation and Carnegie Supernova Project (CSP), to

attempt to cover as much of the sky as possible, instead of focusing on

the inhomogenous distribution of SNe across the sky.

To calculate the di↵erence in the local measurement of the Hubble

constant, they start o↵ with the same equation as Wu & Huterer

log
10

H loc

0

=
M0

B

5
+ a

B

+ 5

Instead of focusing on �H loc

0

, however, they focus on �a
B

, looking for

evidences in variation of this value with redshift in regards of the outflow

surrounding an isotropic void.
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Results

From the data that was mentioned previously, the authors applied their

results of �a
B

between two redshift ranges: 0.023 < z < 0.15 and

0.01 < z < 0.15, as they argue that at z = 0.01 the Hubble constant will

be further constrained than at z = 0.023. This also takes into account

two models for the local void - one where it ends at z = 0.05 (the

Whitbourn & Shanks (2014), or WS14, model) and another at z = 0.07

(the KBC model).

z range Field �a
B

(z
v

= 0.07) �a
B

(z
v

= 0.05)

0.023 < z < 0.15 Whole Sky 0.0013± 0.0040 0.0010± 0.0036

0.01 < z < 0.15 Whole Sky 0.0006± 0.0036 0.0002± 0.0034

0.01 < z < 0.15 KBC Fields �0.0031± 0.0043 -

0.01 < z < 0.15 WS14 Fields - 0.0040± 0.0045
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Results

None of these models are significantly di↵erent from the FLRW model.

Credit: Kenworthy et al. (2019)
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Results

Everything above assumes an isotropic void. However, if we consider

anisotropies, then this might account for the high shift between the

”late” and ”early” type measurements of the Hubble constant. Matching

the SNe data with the local void models proposed above we have the

following

Credit: Kenworthy et al. (2019)
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Results

Credit: Kenworthy et al. (2019)
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Overview



Summary

Overall, all the authors present reached the same conclusion: although

there could exist a local underdensity, it isn’t enough to explain the

di↵erence in values of the Hubble constant. Basing everything on two

papers isn’t very scientific, though, so, looking at the overview paper by

Di Valentino et al. (2021), they point out a couple more references where

the local void could explain the di↵erence in the ”late” and ”early” type

measurements.
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Summary
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Conclusion



Conclusion

No.
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Conclusion

• Although it is the simpler explanation for the Hubble tension, the

local void simply has too much damning evidence that tells us that

it isn’t a valid theory;

• Through simulations, observations and other methods, everything

seems to point that this theory is wrong when it comes to the

explanation of the Hubble tension;

• However, it has given us a better look at how the local Universe is

distributed - although the theories wildly range from underdense to

overdense, latest studies point towards a small underdensity.
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Hubble function

In the FRW background Universe, the Hubble function, H(z), can be written as

H(z) =
1

a

da

dt
= �(z + 1)

1

(1 + z)2
dz

dt
= � 1

1 + z

dz

dt
. (1)

Why is this expression useful?

It is model independent;

Allows the determination of H(z) from knowledge of:
z : obtained with < 0.1% uncertainty in spectroscopic measurements of
extragalactic objects;
dz : obtained from two su�ciently close z values;
dt: obtained from cosmic chronometers.
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Cosmic Chronometers (CC)

Cosmic chronometers are passively evolving galaxies that:

exhausted their fuel in a time scale (⇠ 0.3 Gyr) much shorter than their age;

all their stars are about the same age;

have a mass such that log10(M/M�) > 11;

were formed early at z ⇠ 2� 3.

If two such galaxies formed at the same time t, but at di↵erent z values, we can
measure their age di↵erence �t: small �t =) �t ⇡ dt =) can compute

�z

�t
! dz

dt
.

Take home message:

Cosmic chronometers allow the determination of H(z).
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The curvature parameter ⌦K

In the FRW Universe, for a normalized spatial curvature K , the curvature
parameter reads:

⌦K ⌘ � K

(H0a0)2
.

⌦K > 0 =) K = �1 =) open Universe;

⌦K = 0 =) K = 0 =) flat Universe;

⌦K < 0 =) K = 1 =) closed Universe;

⌦K quantifies the contribution of spatial curvature to the total energy density
of the Universe.

⌦K influences the expansion history of the Universe via

H(z)2 = H2
0

⇥
⌦m(1 + z)3 + ⌦r (1 + z)4 + ⌦⇤ + ⌦K (1 + z)2

⇤
.
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The value of ⌦K

The current most widely accepted model of our Universe is the ⇤CDM
concordance model =) ⌦K = 0.
⌦K = 0 is predicted by inflationary models and several measurements have
confirmed this value, such as:

Baryon Acoustic Oscilations (BAO)
distance and expansion rate;

Full-Shape (FS) galaxy power
spectra;

Planck CMB lensing;

local H0 measurements;

SNeIa distance moduli.
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Curvature parameter: the tension awakens

CMB temperature and polarisation anisotropies from the Planck satellite 2018
data release (PL18) yielded

�0.095 < ⌦K < �0.007 at 95% C.L. =) closed Universe,

in conflict with the ⇤CDM!
However, combined with other data sets (BAO, FS, ...) we can still get ⌦K = 0!

Origin of the tension:
The tension arises when one assumes the Universe is closed =) PL18 results are
incompatible with other data sets!
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Why we can’t jump to conclusions

One can not simply combine data sets!
First, we need to make sure the data sets are compatible.
Problem: Neither of data sets mentioned so far is compatible with the PL18
data set!
More caveats:

⌦K < 0 is mostly driven by the
anomalous gravitational lensing
which smoothens high ` acoustic
peaks of the CMB power spectrum;

the constraining power of PL18 is
limited by geometrical degeneracy
(GD);

the combination of PL18 with other
data sets to break GD assumes a
fiducial ⇤CDM values =) possible
erroneous interpretation of results.
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Anomalous gravitational lensing I

The anomalous gravitational e↵ect:

is quantified by the phenomenological parameter AL;

redistributes photons at the last scattering =) smoother low angular scale
peaks;

is correlated with the curvature parameter via

⌦m + ⌦K = 1� ⌦r � ⌦⇤.

So smaller ⌦K =) larger ⌦m =) stronger gravitational lensing

AL has no physical meaning! It was introduced to:

artificially re-scale high ` CMB peaks;

account for possible systematics;

test models of the Universe.

However PL18 arrived at
AL = 1.15+0.13

�0.12.
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Anomalous gravitational lensing II

[DVMS19] [DVMS19]

AL � ⌦K degeneracy stems from their correlation;
flat Universe would require AL > 1 (and is outside 68% C.L contour)!
⌦K < 0 is a way to ensure AL = 1 as expected!

Problem: Planck CMB lensing data favours ⇤CMD model!

Conclusion:
⌦K < 0 fits PL18 data better due to smoother high ` peaks than expected.
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Geometrical degeneracy

Let ✓s be the angular position of the first CMB peak. Then,

`s =
⇡

✓s
= ⇡

dM(zdec)

rs
.

rs is the comoving sound horizon scale;

dM is the comoving angular diameter distance at decoupling:

dM(z) =
c

H0

p
⌦K

sinh

✓
H0

p
⌦K

Z z

0

dz

H(z)

◆
.

Clearly, several combinations of ⌦K , ⌦m (via H(z)) and H0 yield the same dM
=) same `s for fixed rs (fixed by primitive Universe physics.) =) geometrical
degeneracy.

Conclusion:
PL18 geometrical degeneracy might skew P(⌦K ) towards negative values =) it
must be broken!
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The ideal data set

One way to break the geometrical degeneracy is to introduce other data sets.
Problem: All data sets mentioned thus far are in tension with PL18 for a curved
Universe =) cannot be safely combined.
The ideal data set should:

break the geometrical degeneracy when combined with PL18;

not be in strong tension with PL18 for a closed Universe;

contain non to little amount of fiducial model assumptions.
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Why cosmic chronometers o↵er the ideal data set

Question: Does the ideal data set exist?
Answer: Yes! Cosmic Chronometers (CC)!
The CC data set is a strong contender to a ideal one because:

breaks the geometrical degeneracy through the computation of late time
H(z);

is virtually independent of model assumptions;

does not require any external calibration since they probe the H(z) scale
directly;

Most importantly: is mildly compatible with PL18, as we will show.
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Models and nomenclature

For the data sets we consider:

CMB temperature and polarisation measurements of the Planck 2018 legacy
release (PL18);

31 measurements of Cosmic Chronometers (CC) in the range
0.07 < z < 1.965.

[Pla20]

For the models we consider:

K⇤CDM: ⇤CDM (6 param.) + ⌦K allowed to vary uniformly in [�0.3, 0.3];

Kw⇤CDM:K⇤CDM +wDE allowed to vary uniformly in [�3, 1]

M⌫K⇤CDM: K⇤CDM but the sum of the neutrino masses, M⌫ , is allowed to
vary in [0, 5] eV.
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Some Bayesian inference definitions

The Bayes factor of K⇤CDM w.r.t ⇤CDM reads, for a fixed data set:

BK0 =
P(D|K⇤CDM)

P(D|⇤CDM)

P(K⇤CDM)

P(⇤CDM)
.

The best fit results in a larger posterior normalisation =)
BK0 < 1 =) ⇤CDM is preferred;

BK0 > 1 =) K⇤CDM is preferred;

For a parameter string ✓, the deviance information criterion (DIC) reads:

DIC = 2
⌦
�2(✓)

↵
� �2(✓̂).

For a fixed model, and two data sets:

I = exp


�DIC(D1 [ D2)� DIC(D1)� DIC(D2)

2

�
.

ln I < 0 =) data sets are discordant;

ln I > 0 =) data sets are concordant;
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Results for the K⇤CDM model for PL18 and PL18+CC

Parameters K⇤CDM
PL18 PL18+CC

⌦K �0.044+0.018
�0.015 �0.0054± 0.0055

H0[km s�1Mpc�1] 54.36+3.25
�3.96 65.23± 2.14

⌦m 0.485+0.058
�0.068 0.336± 0.022

[VLM21]

⌦K < 0 value for PL18 + geometrical degeneracy =) low H0 and large ⌦m

w.r.t ⇤CDM;

Strong tension between PL18 values and other late time measurements;

CC breaks geometrical degeneracy:
flat Universe at 1�;
values of H0 and ⌦m compatible with PL18+BAO and PL18+FL galaxy power
spectrum;

⌦k from PL18+CC has high uncertainty;

Miguel Martins (MEFT) Cosmic Chronometers and Spatial Curvature June 1, 2021 15 / 20



Posterior and contour plots for K⇤CDM model: PL18 and
PL18+CC

[VLM21]

Broken geometric degeneracy =)
narrower contours ⌦K � H0 and
⌦K � ⌦m for PL18 + CC;

Contour overlap of 95% C.L region
=) not a strong tension between
PL18 and PL18+CC even in curved
Universe;

PL18: Strong preference for
K⇤CDM: lnBK0 = 2.5

PL18+CC: Strong preference for
⇤CDM: lnBK0 = �3.4.

Miguel Martins (MEFT) Cosmic Chronometers and Spatial Curvature June 1, 2021 16 / 20



Tension between PL18 and CC data sets

To quantify the concordance or discordance of PL18 and CC data sets we
compute the factor I:

ln I(PL18,CC) = �0.47

The data sets have a mild disagreement;

I value visually justified by disjoint 68% regions in the contour plots;

Disagreement much milder w.r.t BAO and FS data sets

Conclusion:
Mild confidence in the combination of PL18 and CC data sets =) less tension
for a curved Universe =) more confidence in the flat Universe result from
PL18+CC.

Miguel Martins (MEFT) Cosmic Chronometers and Spatial Curvature June 1, 2021 17 / 20



Stability of ⌦K against a larger parameter space

[VLM21]

Increased parameter space =) test
the stability of ⌦K of PL18+CC;

Value of ⌦K = 0 at  1.7�;

Breaking geometrical degeneracy
with CC =) stable spatially flat
Universe against size of parameter
space;

Miguel Martins (MEFT) Cosmic Chronometers and Spatial Curvature June 1, 2021 18 / 20



Conclusions

Cosmic chronometers allow a model independent determination of H(z);

CC data set can be combined with PL18 data set, unlike BAO or FS;

PL18+CC yield a spatially flat Universe

⌦K = �0.0054± 0.0055.

CC and PL18 are not is a strong tension =) solves curvature tension!

PL18+CC determination is relativaly stable w.r.t increase in parameter space;

Downside: CC data set renders a more imprecise determination of ⌦K ;

CC systematics have little impact on the above analysis;

Miguel Martins (MEFT) Cosmic Chronometers and Spatial Curvature June 1, 2021 19 / 20
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Introduction

Dark matter is one of the most important topics of research in
Physics and our present knowledge comes from gravitational
interactions detected in observations.

In this presentation, I will show a 2D parameter space which
classifies different dark matter models in terms of their particle’s
interaction strength and the astrophysical scale on which new
physics appear.



Thought Experiment

Considering a "dark matter scientist" who can only observe the
"dark" sector of the Universe, the baryonic sector would be invisible
to him.

Using the equivalent particle physics of dark matter would be
extremely difficult but using astrophysics and cosmology would
prove rather useful.



Introducing The Parameters

In order to organize these searches, it is useful to have a compact
space in which to classify models both in terms of their
observability in the sky and in the laboratory.

The dark matter models will be classified according to their
interaction strength with the Standard Model (⇤�1) and the
cosmological scale at which it is expected to see a deviation from
the Cold Dark Matter paradigm (M

halo

).



Defining ⇤�1

The interaction strength with the Standard Model can be defined as

⇤�1 ⌘ �2

4⇡M

where � is the coupling constant, M the mass of the mediating
particle and 4⇡ is to account for phase space.

Larger values of ⇤�1 correspond to stronger interactions with the
Standard Model and smaller values correspond to dark matter
models which are less coupled to visible matter.



⇤�1

For Different Models

Table: Values of ⇤�1

for different dark matter models.

CDM ⇠ 10�19 GeV�1

WIMPs ⇠ (6 � 40)⇥ 10�5 GeV�1

TRDM ⇠ 5 ⇥ 10�5 GeV�1

Dark photons ⇠ 10�12 � 10�8 GeV�1

ADM & 5 ⇥ 10�5 GeV�1

Axions ⇠ 10�11 � 10�15 GeV�1

FDM ⇠ 10�17 � 10�19 GeV�1



⇤�1

For Different Models

Table: Values of ⇤�1

for different dark matter models.

Sterile neutrinos . 10�7 GeV�1

Gravitinos . 10�29 � 10�9 GeV�1

PBHs ⇠ 10�19 GeV�1

For baryons:
proton-proton scattering - ⇤�1 ⇠ 104 GeV�1

strong-force nucleon-nucleon scattering - ⇤�1 ⇠ GeV�1

weak-force nucleon-nucleon scattering - ⇤�1 ⇠ 10�4 GeV�1



Dark Matter Primer

Considering models which are invisible to our particle detectors, it
is possible to study them by their gravitational imprint on matter
and light.

The fundamental macroscopic unit of dark matter is the halo,
which is an overdensity that decoupled from the Hubble flow,
collapsed and virialized into a gravitationally bound clump.

The halos are defined via their virial mass (M
vir

), their virial radius
(R

vir

) and their virial velocity (v
vir

).



Introducing M
halo

Dark matter can form gravitationally bound structures down to a
mass of at least 108 M�.

If there exist interactions either between dark matter particles or
between dark matter and the Standard Model, then the number
and structure of these halos can be modified.



Introducing M
halo

Deviations from the CDM model can be expressed in terms of the
largest physical scale on which deviations from CDM appear
noticeable.

This scale if often represented in terms of the halo mass, M
halo

,
which can be expressed in terms of a comoving wavenumber, k .

These deviations can be of two forms - primordial and evolutionary.



Primordial Deviations

Free-streaming out of small density perturbations by particles with
semi-relativistic or relativistic momentum distribution can cause
truncations in the matter power spectrum.

Interactions with the Standard Model can also lead to truncations
with a structure of acoustic-type oscillations.



Primordial Deviations

Table: Values of M
halo

for different dark matter models.

Thermal relics ⇠ 10�5 M� � 10�2 M�
WIMPs (SUSY) ⇠ 10�8 M� � 10�2 M�
WIMPs (KK) ⇠ 10�2 M� � 10�1 M�
Dark photons . 1012 M�

ADM . 10�1 M�
Axions ⇠ 10�10 M� � 10�13 M�
FDM ⇠ 1010 M�(m�/10�22 eV)�4/3



Primordial Deviations

Table: Values of M
halo

for different dark matter models.

Sterile neutrinos 10�6 � 1011 M�
Gravitinos 10�17 M� � 1013 M�

SIDM . 1011 M�
PBHs ⇡ 10�(17�16) M�,10�(14�9) M�,100�3 M�

The growth of small halos at early times is suppressed by the flow
of baryons with respect to dark matter. This happens on scales of
M

vir

⇠ 108 M�.



Evolutionary Deviations

The structure of dark matter halos can also be altered by late-time
effects.

Instead of time-dependent effects that result from primordial
deviations, interactions or decays can cause evolutionary deviations.

For WIMPs and thermal relics, � ⇠ 10�11 Gyr�1 which means that
the relative evolution of WIMP-like thermal relic dark matter halos
vs. pure CDM halos is completely negligible.



Evolutionary Deviations

Table: Values of M
halo

for different dark matter models.

Axions ⇠ 1012 M�
FDM ⇠ 108 M� � 1010 M�
SIDM . 1015 M�

Baryons 108 M� . M
halo

. 1015 M�

The sterile neutrino lifetime is many orders of magnitude larger
than the age of the Universe therefore they have negligible
evolutionary deviations from CDM.



Combining Everything

By combining all of the information above, the 2D parameter space
has the following plot



Conclusion

We still don’t know a lot about dark matter but having a
framework where interdisciplinary collaboration in dark matter
physics is possible makes it easier to understand it.

With this new 2D parameter space, the bridge between particle
physics and astronomy is made and a common language between
these branches oh physics was created.
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Topics:  What are hydrodynamical simulations?

 What type of physical processes can be 
simulated?

 What is the impact of including baryonic 
effects in the matter power spectrum?

2

Credits: Y. Li et al./Proceedings of the National Academy of Sciences 2021
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→  Simulate a dynamical system of particles, usually 
under the influence of physical forces. 

Used to study processes of non-linear structure 
formation such as galaxy filaments and galaxy halos 

and to study the dynamical evolution of clusters. 

Modern simulations model dark matter, dark energy, 
and ordinary matter in an expanding space-time 

starting from well-defined initial conditions. Springel et al. (2005) 



Mark Vogelsberger et a l .  (2019) 4

N-body simulations consider only dark-matter.

Hydrodynamical simulations consider dark 
matter plus baryons. 

Two types of simulations: “zoom” (more detail) 
and “large volume”.



Credi ts :  NASA/ LAMBDA Arch ive /  
WMAP Sc ience Team
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Components of our simulation = cosmological model + 
specific initial conditions.

Cosmological model:

- Cold dark matter: negligible random motions when 
decoupled from other matter, and collisionless. 

- Dark energy: drives the accelerated expansion of the 
Universe. 

→  Concordance  ɅCDM  model.

Initial conditions: 

- Specify the perturbations imposed on top of a homogeneous 
expanding background (spatially flat FLRW space-time). 



6

Dark matter follows the equations of 
collisionless gravitational dynamics 
that are solved through the N-body 

method.

Gas component of baryons is 
described through the equations of 
hydrodynamics that are solved with 

Lagrangian or Eulerian methods.

Mark  Vogelsberger  et  a l .  (2019)
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Simulating baryons is crucial to make predictions for the visible Universe! 

Initially, the baryon component is 
only made of gas (mostly H and He) 

but in high density regions, it will 
form  stars  →  fraction  of  the  available  
gas  is  converted  to  “star  particles”.  

Gas is described as ideal gas 
following Euler equations.

Assumes an observer that follows an 
individual fluid parcel, with its own 

properties (like density), as it moves 
through space and time.

Focuses on specific locations in 
space through which the fluid 

flows as time passes. 

Mark  Vogelsberger et a l .  (2019)



S.  Mutch et a l .  (2013)
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The results from simulations can be directly confronted with 
observational data.

Early simulations successfully reproduced properties of the 
intergalactic medium but suffered from inconsistencies and only 

recently began to produce realistic galaxies.

 Galaxy stellar mass function - quantifies the comoving 
number density of galaxies as a function of galaxy stellar mass.

It requires a strong suppression of star formation at both the low 
and  high  mass  ends  →  Including  supernova feedback and

feedback from AGN seems to provide better results.



9

 Scaling relations: 

Supermassive black hole mass-stellar velocity dispersion 
relation, the mass-metallicity relation and the color of 

galaxies as a function of galaxy stellar mass.

For the late-type galaxies simulations struggled to form 
galaxies with extended and rotationally supported discs but 

the after introducing stellar feedback the star formation 
appears to be more efficiently regulated.

NGC 1566; ESA/Hubble & NASA



J .  Schaye et a l .  (2009)

1 0

Matter power spectrum, P(k), where k is the comoving wave 
number  corresponding  to  a  comoving  spatial  scale  λ  =  2π/k.  

→  If  we  have  a  sufficiently  accurate  model,  we can infer the 

initial, linear power spectrum from the observed, non-linear 

one.

OWLS project: large number of state-of-the-art 
hydrodynamical simulations to systematically study the effects 
of various baryonic processes on the matter power spectrum 

for k ∼ 0.1  −  500  h/Mpc.  



1 1

Could provide sufficient energy to 
have a large effect on the matter 

power spectrum

Not realistic because the omitted processes 
exist, but they are valuable tools to 

investigate on what scales these processes 
affect the total matter power spectrum.

M. P. van Daalen et  a l . (2011)



1 2

Reference simulation (REF) = SN feedback, radiative cooling 
and  heating  but  doesn’t  have  AGN.

The contribution of the baryons is significant, decreasing the 
power  by  more  than  1%  for  k  ≈  0.8  −  5  h/Mpc  →  Gas 

pressure smooths the density field relative to that expected 
from dark matter alone. 

On scales with k > 6 h/Mpc the power in the reference 
simulation quickly rises far above that of the dark matter 
only  simulation  →  radiative cooling enables gas to cluster 

on smaller scales than the dark matter.

1% level

Larger
scales

Smaller
scales

10% level

More structureLess structure

M. P. van Daalen et  a l . (2011)



1 3

When AGN feedback is included, the results change drastically! 

There is a reduction in power relative to DMONLY of 1% for 
k≈0.3  h/Mpc  and  it  exceeds  10%  for  2  <  k  <  50  h/Mpc.  

→  AGN  feedback  suppresses the total matter power spectrum 
on very large scales and has tremendous effects!

Larger
scales

Smaller
scales

10% level

1% level

Less structure

M. P. van Daalen et  a l . (2011)



1 4

SN  feedback  heats  and  ejects  gas  →  should  decrease the 

small-scale power spectrum →  model  without  SN  will  have  
a higher power spectrum in smaller scales.

The power in NOSN is > 1% higher than in the reference 
simulation (that includes SN feedback) for k > 4 h/Mpc and 

the  difference  reach  10%  at  k  ≈  10  h/Mpc.

10% level

1% level

M. P. van Daalen et  a l . (2011)



1 5

Turning off metal-line cooling should reduce the power on 
small scales because less gas can cool down and accrete 

onto galaxies.

Model  NOZCOOL  predicts  10  −  50%  less  power  for  k  ≥  30  
h/Mpc.

However, the absence of metal-line cooling increases the 

power for  λ  ∼ 1 h-1 Mpc because the lower cooling rates 

force more gas to remain at large distances.

10% level

1% level

Less structureMore structure

M. P. van Daalen et  a l . (2011)



M. P. van Daalen et  a l . (2011)
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AGN feedback decreases the power by heating and ejecting gas.

With respect to the reference model, the power is decreased by 
more than 30% for k > 10 h/Mpc.

The reduction in power only falls below 1% for k < 0.4 h/Mpc.

10% level

1% level

Less structure



Three -d imens iona l  d i s t r ibut ion  o f  dark  matter  
in  a  patch  o f  the  universe .  Credi ts :  N ASA /  ESA  /  

Ca l tech

1 7

Even though dark matter is unable to cool through the 
emission of radiation, its distribution can still be altered by 
the inclusion of baryons due to changes in the gravitational 

potential.

Because the baryons can cool, they are able to collapse to 
very high densities, and in the process, they steepen the 

potential wells of virialized dark matter haloes, causing 
these to contract. The effect is larger closer to the centers of 

these haloes so smaller scales are more affected by this.



1 8

- Simulations have improved recently and will 
continue to improve, greatly because of our increasing 

knowledge of physical processes. 

- Feedback effects modify the matter power spectrum 
by more than 1% and AGN feedback suppresses the 
total matter power spectrum on very large scales.

Credit: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); 
NASA/CXC/CfA/R.Kraft et al. (X-ray)
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Index

1. The cusp/core problem
2. The Missing Satellites problem
3.  “Too  Big  To  Fail”
4. The baryonic Tully-Fisher relation
5. Importance of baryons in each one of the problems
6. Overall and conclusions



1. Cusp/core problem

Earliest  CDM  simulations  and  calculations  →  dark  matter  halos  should  achieve  extremely  high  densities  at  their  
centers.

CDM halos do not follow the scale-free                              →  NFW  density  profile

fits CDM-only simulations quite well

Evidence:  spiral  galaxies  with  unusually  diffuse  disks  (low  baryon  density)  →  should  be  dark  matter  dominated

Galaxies  have  rotation  curves  which  rise  linearly  as  a  function  of  radius  →  halo  core

• Shape of the density profile

• Mean density within some radius

Discrepancy between  simulations  and  observations  →  “cusp/core  problem”



1. Cusp/core problem

density profile
α> 1 – “cusped”  profile
α= 1 – NFW profile
α< 1 – “cored”  profile

• Comparison between NFW  “cusped”  profile and Burkert “cored”  
profile

• Burkert – good fit for both dwarf rotation curves and self-
interacting dark matter halos



2.  “Missing Satellites”  problem

Arise from the non-smooth components

Hierarchical  Universe  →large  objects  grow  by  the  accretion  of  smaller  objects

Accretion  incomplete  →  Due  to  satellite  galaxies  and  unmixed  stellar  streams

MW like  systems  →  Same  substructure  as  galaxy  clusters

Abundances  →  Cumulative  number  of  subhalos of maximum velocity per unit host halo

Velocity function – Comparison between substructure and MW satellites  →  Significant  mismatch

Vertical interpretation  →  Fewer  large  satellites  than  expected  in  CDM  →  “Missing  Satellites”  problem

How and why galaxies inhabit halos? At what scale halos remain totally dark?  →  Gravity



2.  “Missing Satellites”  problem

• Red region – counts using a SMHM relation
applied to Monte Carlo realizations

• Early reionization suppression – bottom
• No reionization suppression – top
• Gap between satellite counts and analytic 
prescription  →  tidal  disruption  of  cored  
satellite galaxies



3.  “Too  Big To  Fail”  problem

Alternative  way  to  “missing  satellites”  problem  →  Comparison  between  observations  and  simulations  of
central densities of satellites  →  More precise measurements 

Mismatch similar  to  “Missing  Satellites”  problem  →  Maximum  velocity  →  More  dense  subhalos CDM 
prediction than dense satellites observation

Most massive subhalos in  simulations  →  “too  big  to  fail” to  producing  stars  →  Expected visible satellites not
present in observations

TBTF →  Central  densities  of  classical  dwarf  satellites  of  MW as measured and in simulations

Degeneracy between velocity anisotropy of stellar orbits, mass profile of dark matter and stellar density profile 
→  Can  be  break  at  half-light radius 



3.  “Too  Big To  Fail”  problem

TBTF →  grey  shaded  region  does  
not overlap with the observed 
circular velocity values of the 
classical dwarfs.



4. The Baryonic Tully-Fisher (BTF) relation

Tully-Fisher  relation    →  Power-law correlation between the intrinsic luminosity of spiral galaxies and 
spectroscopic rotation velocity

Tully-Fisher  relation  →  Higher  scatter  for  small  galaxies  →  Gas-dominated

Cool  Gas  +  Stars  →  Power-law correlation between the rotation velocity of galaxies and baryonic mass 
reappears  →  Baryonic Tully-Fisher relation

Tension with other measurements of the relation between the halo mass and baryonic mass of galaxies

Furthest measured point of the rotation curve is a good tracer  of  the  halo  potential  →  dwarf  galaxies  live  in  
smaller halos than expected from SMHM



4. The Baryonic Tuller-Fisher (BTF) relation



5. Importance of Baryons

Baryons are relatively minor contributors in the energy budget of the Universe but 
they are dynamically important in the parts of the Universe where dark-matter-
induced deviations from CDM might appear.

A true mapping between dark matter models and halo mass requires an accurate 
treatment of baryons.



5.1. Baryons – Cusp/Core Problem

Hydrodynamic  simulations  →  Baryons  aggravated the cusp/core problem

Baryons cooled efficiently in halos and dragged dark matter in as they deepened the gravitational potential 
wells  →  Halos  appeared  denser  in  hydrodynamic  simulations

Insufficient  spatial  resolution  →  Energy  and  gas  difficulties  to  leave  the  ISM  →  Very  efficient  Star  Formation

Simulations  at  realistic  scales  →  Energy  and  gas  escaped  from  the  ISM  →  Clumpy  Star  Formation  →  Dark  
Matter  Halos  →  Less  dense  than  CDM-only simulations

→  Including  baryons  in  simulations  →  Lead to cusp/core problem resolution



5.2. Baryons – “Missing Satellites”  problem

Baryonic  solutions  to  the  “missing  satellites”  problem:

1. subhalo mass functions and survival

2. the mapping between the line-of-sight velocities of individual stars in galaxies and the maximum velocity of 
dark-matter halos

3. the probability that some subhalos have no visible baryons in them at all

→  Evidence  that  “Missing  satellites”  problem  is  solved  in  CDM  context

Baryons can significantly reduce the abundance of dark matter halos at fixed maximum velocity in several ways

Baryonic outflows – Prevent halos to grow as fast

Halos  fall  into  larger  halos  →  Small  halos  easily  destroyed  in  hydrodynamic  simulations



5.3. Baryons – Too Big To Fail 

Hydrodynamic CDM  simulations  →  Baryons  play an important role in shaping the central densties of MW 
satellites to solve TBTF

If baryons can push dark matter out of the cores of halos, then the central densities of halos can be low even if 
the total halo mass is high.

Low densities of some satellites remain difficult to reconcile with simulations of CDM + baryons

Baryons can address TBTF on halo mass scales 



5.4. Baryonic Tuller Fisher relation

Relationship between stellar and dark matter mass found in hydrodynamic + CDM simulations
shows good agreement with extrapolations from empirical measurements for larger masses and 
inferences based on Local Group satellite populations.

The problem with Baryonic Tully-Fisher lies in the assignment of galaxies to halos based on rotation 
curves, both on the simulation and observational sides.



6. Overall



6. Conclusions

• We described 4 problems where we can see that CDM is an inadequate description of dark matter on scales 
from             to the              .

• Baryons also affect halos on these scales. Baryons are important for 10 to   to the 10 to t  and above. It is not 
clear if baryons can solve all small-scale problems with CDM, but the physics goes in a good direction.

• Regardless of what the true nature of dark matter is, its cosmic distribution is governed by the gravitational 
effects of baryons in addition to dark physics, and so the baryons must be well understood before non-
gravitational interactions in the dark sector can be identified or ruled out with any confidence.
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Outline 
1.  What is Line-Intensity Mapping? 

2.  Types of Line-Intensity Mapping 

•  [CII] Fine Structure Line 

•  Rotational CO Line 

•  Lymann-α Line 

•  21-cm Line 

3.  Probing the Epoch of Reionization (EoR) 

4.  Conclusions 
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What is Line-Intensity Mapping? 
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What is Line-Intensity Mapping? 

Credits: E. Kovetz et al (2017) 

~4 500 hours ~1 500 hours 

VLA COMAP 
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What is Line-Intensity Mapping? 

Galaxy Surveys Intensity Mapping 

Discrete objects whose emission lies 

above some flux limit 

Sensitive to all sources of emission in 

the line 

High angular resolution is required 

€€€€ 

High angular resolution not required 

€ 

Take a lot of time covering a specific 

area of the sky 

Take less time covering a specific 

area of the sky 
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What is Line-Intensity Mapping? 

•  Measures the spatial fluctuations in the 

spectral line emission in galaxies and/or 

the intergalactic medium (IGM). 

•  It does so in multiple redshift slices 

(different frequencies) resulting in a data 

cube. 
Credits: NASA / LAMBDA Archive Team 

Credits: Li et al. (2015) 
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What is Line-Intensity Mapping? 7 



Types of Line-Intensity Mapping 
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•  [CII] fine-structure line 
o  λ = 157.7 µm (restframe) 

o  Brightest among all metal lines emitted by the ISM of star formation galaxies 

o  Traces gas in the Interstellar Medium (ISM), probes the Star Formation Rate (SFR) 

 

•  Rotational CO line  
o  Rotational transitions, J ! J-1 

o  Ground-state CO(1-0) transition at 115.27GHz (λ = 2.6mm, restframe) 

o  Traces H2 gas (where stars form efficiently) 
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•  Lymann-α line 
o  λ = 121.57 nm (restframe) 

o  Emitted when an electron jumps from n=2 to n=1 

o  Traces star formation 

•  21-cm line [Chang et al. (2010)] 

o  Emitted when electron jumps between the 2 hyperfine levels of 

the hydrogen 1s ground state (“spin-flip”) 

o  Traces HI in the IGM during reionization and in galaxies post-

reionization 
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Types of Line-Intensity Mapping 

Credits: E. Kovetz et al (2017) 

Credits: E. Kovetz et al (2019) 
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Probing the Epoch of Reionization 
(EoR) 
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What is the Epoch of Reionization? 

•  Dark Ages: Universe consists mostly of HI formed after recombination 

•  Cosmic Dawn: First stars (population III) and galaxies form 

•  Epoch of Reionization: UV photons from stars reionize the intergalactic medium (“bubbles”) 

Probing the EoR 

Credits: J. Wise et al (2019) Credits: R. Kaehler, M. Alvarez & T. Abel 
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There are some questions… 
•  When does reionization begin and end? 

•  Occurred between z = 6 – 15 

•  What sources were responsible for the reionization? 

•  How abundant are galaxies as a function of luminosity and 

redshift? 

•  How many ionizing photons escaped from these galaxies into the 

IGM? 

Probing the EoR 

Credits: Atek et al. (2018) 
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Probing the EoR 

Credits: E. Kovetz et al (2017) 

•  How do we know that an initial 21-cm 

detection is real and not residual 

foregrounds? 

•  Cross-correlation: Reionization involves 

the interplay between the ionizing sources 

and intergalactic hydrogen. 
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Credits: E. Kovetz et al (2017) 

Probing the EoR 

•  Solution: Line-intensity mapping observations using various emission lines 

•  21-cm and galaxy emission should be anti-correlated on large scales 

•  Cross-correlation sensitive to bubble sizes 
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Credits: E. Kovetz et al (2017) 

https://lambda.gsfc.nasa.gov/product/expt/lim_experiments.cfm 
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Conclusion 
•  Advantages over traditional galaxy surveys: can cover extremely large cosmological volumes in a 

relatively short time 

•  Astrophysical and Cosmological probe 

•  Will provide a more detailed reconstruction of ionization history, star formation rates and 

growth of structure. 

•  Use of multiple line tracers enhances the picture of physical conditions and allows for consistency 

checks (21-cm, [CII], CO, Ly-α,…) 
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III. Beyond ΛCDM 







1 2

The
Index

1. Historical Remarks
2. Introduction to Field Theory
3. The Quintessence



3

1. Historical 
Remarks

4



5 6

In the Begging there was...

Fire Water

Air Earth

And then it became...
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Introduction to
Field Theory
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The action is defined as:

The action principle states:

A small change δ  in  S  is:

Using the action principle:

ClassicalAction
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To respect the relativity principle:

Where is the Lagrangian density.

The action then becomes:

A small change δ  in  S  is:

Using the action principle:

Field Theory Action
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Scalar Field
A generic scalar field 𝜙 Lagrangian is:

Using the Euler-Lagrange equation:

We obtain the following:

Where the d'Alembertian is given by:

For a homogeneous field:
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Action for G.R.
Considering the action:

Geometry
(LHS)

Energy
(RHS)

Applying the action principle:

Where:

Where:
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Scalar field in G.R.
Considering the action:

Where 𝜙 is again a scalar field and:

Using FLRW and the E-L equation:

Assuming that 𝜙 is homogeneous:

Using the expression for :
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The Quintessence
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The Action is given by:

Where:

In a FLRW background:

The equation of state is:

Equations of Motion As we saw before, for the scalar field:
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Assuming a flat universe:

The equation of motion is:

In radiation/matter dominated epochs:

In late time:
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Analysis of motion
It is convenient to define:

The densities can be written as:

We can also rewrite the EoS:

The number of e-foldings is:
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Where:
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Matter dominated Radiation dominated
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The End?
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∑
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∑
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Σ( , ) ≡ µ( , )[ + η( , )]

Ω ( )







Φ = − π
∑
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∑
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Introduction

1

Macroscopical World

Quantum World

Boltzmann Equation
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Introduction

ܰ Ԧݔ, Ԧ, ݐ = ݂ Ԧݔ, Ԧ, ݐ οݔ ଷ ο ଷ

ߨ2 ଷ ݏ

݀ܰ
ݐ݀ = 0ฺ

݂݀
ݐ݀ = 0

݂݀
ݐ݀ =

߲݂
ݐ߲ +

߲݂
ݔ߲ ȉ

ݔ݀

ݐ݀ +
߲݂
߲

݀
ݐ݀ +

߲݂
߲ Ƹ ȉ

݀ Ƹ

ݐ݀
݂݀
ݐ݀ = ܥ ݂ ݏ

݂ = ݂ Ԧݔ, Ԧ, ݐ

߲݂
ݐ߲ +

߲݂
ݔ߲ ȉ

ݔ݀

ݐ݀ +
߲݂
߲

݀
ݐ݀ +

߲݂
߲ Ƹ ȉ

݀ Ƹ

ݐ݀ = ܥ ݂

Fundamental 
Interactions

Gravity
Effects

Distribution Function

Particle conservation implies
conservation of the distribution function

Number of particles

Taking the total time derivative of ݂ we get: 



Inhomogeneous Universe
Metric

݃ Ԧݔ, ݐ = െ1 െ 2Ȳ( Ԧݔ, (ݐ

݃ Ԧݔ, ݐ = 0

݃ Ԧݔ, ݐ = ܽଶ ݐ ߜ 1 + 2Ȱ Ԧݔ, ݐ

Conformal Newtonian GaugeMetric Elements

• Ȳ corresponds to the Newtonian gravitational potential, which governs the dynamics of the nonrelativistic regime.

• Ȱ is a perturbation to the spacial curvature, but it also can be seen as a local perturbation to the scale factor:

ܽ ݐ ՜ ܽ Ԧݔ, ݐ = (ݐ)ܽ 1 + 2Ȱ Ԧݔ, ݐ
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After many tedious steps one can get the

(Perturbed Linearized) Boltzmann Equation

in an Inhomogeneous Universe

Boltzmann Equation
In an Inhomogeneous Universe

߲݂
ݐ߲ +


ܧ

Ƹ

ܽ
߲݂
ݔ߲ െ ܪ + ሶȰ +

ܧ
ܽ ƸȲ, 

߲݂
߲ = ܥ ݂

4

These terms are of the same order of the Bardeen fields Ȳ and Ȱ

Its 0-th order does not depend on position and momentum vector t We assume that
the equilibrium distribution is isotropic:        and are first order perturbative terms.߲݂

߲ Ƹ ݏ
߲݂
ݔ߲ ݏ
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Boltzmann Equation
For Cold Dark Matter

݀ ݂
ݐ݀ = ܥ ݂ = 0• Cold Dark Matter does not have interactions The collision term is gone!

• Cold Dark Matter is very nonrelativistic ()ܧ ൎ ݉ ฺ

݉

ଶ
~ 0 Higher-order powers of 

are negligible!

߲ ݂
ݐ߲ +


ܧ

Ƹ

ܽ
߲ ݂
ݔ߲ െ ܪ + ሶȰ +

ܧ
ܽ ƸȲ, 

߲ ݂
߲ = 0

Collisionless Boltzmann Equation
for Cold Dark Matter

• Distribution Function ݂ ื ݂

Vanishes at  = 0 and  ՜ +λ

Its 0-th order does not depend on position and momentum vector

డ
డ ො and డడ௫ are of the same order as the Bardeen fields
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Boltzmann Equation
Taking Its 0-th Moment

න
߲ ݂
ݐ߲ +


ܧ

Ƹ

ܽ
߲ ݂
ݔ߲ െ ܪ + ሶȰ+

ܧ
ܽ ƸȲ, 

߲ ݂
߲

݀ଷ
ߨ2 ଷ = න 0 ×

݀ଷ
ߨ2 ଷ

֞
߲
නݐ߲ ݂

݀ଷ
ߨ2 ଷ +

1
ܽ
߲
ݔ߲ න ݂


()ܧ Ƹ

݀ଷ
ߨ2 ଷ െ ܪ + ሶȰ න

߲ ݂
߲

݀ଷ
ߨ2 ଷ െ

1
ܽ
߲Ȳ
ݔ߲ නܧ  Ƹ

߲ ݂
߲ = 0

(1) (2) (3) (4)

Multiplying the Boltzmann Equation by the phase space volume ݀ଷ/ ߨ2 ଷ and integrate we get:
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Boltzmann Equation
Taking Its 0-th Moment

݊ ؠ න ݂
݀ଷ
ଷCDM Density(ߨʹ) Number CDM Fluid Velocity ݑ ؠ

1
݊
න ݂


()ܧ Ƹ

݀ଷ
ଷ(ߨʹ)

1 -
߲
ݐ߲ න ݂

݀ଷ
ߨ2 ଷ

݊

2 -
1
ܽ
߲
ݔ߲ න


()ܧ Ƹ

݀ଷ
ߨ2 ଷ

ݑ ݊

3 - ܪ + ሶȰ න
߲ ݂
߲

݀ଷ
ߨ2 ଷ = ܪ + ሶȰ න



ାஶ
ଷ
߲ ݂
߲

݀
ଷ(ߨʹ) න݀ȳ

= ܪ + ሶȰ
ଷ ݂()
ଷ(ߨʹ) 

ାஶ

න݀ȳ െන


ାஶ
ଶ3 ݂

݀
ଷ(ߨʹ) න݀ȳ

݊

Expressing 1 , 2 and 3 in terms of ݊ and ݑ we get: 

=
߲݊
ݐ߲

=
1
ܽ
߲ ݑ ݊
ݔ߲

= െ3 ܪ + ሶȰ න ݂
݀ଷ
ଷ(ߨʹ) = 3 ܪ + ሶȰ ݊
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Boltzmann Equation
Taking Its 0-th Moment

Thus we obtain ߲݊
ݐ߲ +

1
ܽ
߲ ݑ ݊
ݔ߲ + 3 ܪ + ሶȰ ݊ = 0

Expanding the number density ݊ Ԧݔ, ݐ = ത݊ ݐ + ത݊ ݐ ߜ Ԧݔ, ݐ

߲ ത݊ 1 + ߜ
ݐ߲ +

1
ܽ
߲ ݑ ത݊ 1 + ߜ

ݔ߲ + 3 ܪ + ሶȰ ത݊ 1 + ߜ = 0


߲ത݊
ݐ߲ + ܪ͵ ത݊ +

߲ ത݊
ݐ߲ ߜ +

ߜ߲
ݐ߲ ത݊ + ܪ͵ ത݊ߜ + 3 ሶȰ ത݊ +

ത݊
ܽ
ݑ߲

ݔ߲ +
ത݊
ܽ ݑ

ߜ߲
ݔ߲ +

ത݊
ܽ
ݑ߲

ݔ߲ ߜ + 3
ሶȰ ത݊ߜ = 0

Zeroth-order Second-orderFirst-order

and plugging in the eq. above we get
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Boltzmann Equation
Taking Its 0-th Moment

߲ ത݊
ݐ߲ + ܪ͵ ത݊ = 0

߲ത݊
ݐ߲ = െ͵ܪ ത݊ 

1
ത݊
߲ ത݊
ݐ߲ = െ3

1
ܽ
߲ܽ
ݐ߲ ฺ ത݊ ן ܽିଷ

߲ ത݊
ݐ߲ ߜ +

ߜ߲
ݐ߲ ത݊ + ܪ͵ ത݊ߜ + 3 ሶȰ ത݊ +

ത݊
ܽ
ݑ߲

ݔ߲ = 0

Continuity equation for the Cold
Dark Matter in the homogeneous
universe!

Collecting the zeroth-order terms we get:

Doing the same with the first-order terms we obtain:

െ͵ܪ ത݊

ߜ߲
ݐ߲ +

1
ܽ
ݑ߲

ݔ߲ + 3
ሶߔ = 0

Perturbed linearized
Continuity Equation for the
Cold Dark Matter!
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Boltzmann Equation
Taking Its 1-st Moment

One equation for two perturbation variables... We need to find another! 

න
߲ ݂
ݐ߲ +


ܧ

Ƹ

ܽ
߲ ݂
ݔ߲ െ ܪ + ሶȰ +

ܧ
ܽ ƸȲ, 

߲ ݂
߲


()ܧ Ƹ

݀ଷ
ଷ(ߨʹ) = න 0 ×


()ܧ Ƹ

݀ଷ
ଷ(ߨʹ)

Multiplying the Boltzmann Equation by ) Ƹ/ܧ)݀ଷ/ ߨ2 ଷ and integrate we get:

߲ ݂
ݐ߲ +


ܧ +

Ƹ

ܽ
߲ ݂
ݔ߲ െ ܪ + ሶȰ +

ܧ
ܽ ƸȲ, 

߲ ݂
߲ = 0


߲
නݐ߲ ݂


ܧ  Ƹ

݀ଷ
ߨʹ ଷ +

1
ܽ
߲
ݔ߲ න

ଶ

ଶܧ  ݂ Ƹ Ƹ
݀ଷ
ߨʹ ଷ െ ܪ + ሶȰ න

ଶ

ܧ  Ƹ
߲ ݂
߲

݀ଷ
ߨʹ ଷ

െ
1
ܽ
߲Ȳ
ݔ߲ න

߲ ݂
߲ Ƹ Ƹ

݀ଷ
ߨʹ ଷ = 0

(1) (2) (3)

(4)

ൎ

݉

ଶ
~ 0
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Boltzmann Equation
Taking Its 1-st Moment

݊ ؠ න ݂
݀ଷ
ଷ(ߨʹ) ݑ ؠ

1
݊
න ݂


()ܧ Ƹ

݀ଷ
ଷ(ߨʹ)

߲
ݐ߲ න ݂


ܧ  Ƹ

݀ଷ
ߨʹ ଷ

1 -

Expressing 1 and 3 in terms of ݊ and ݑ we get: 

ݑ
 ݊

3 - ܪ + ሶȰ න
ଶ

ܧ  Ƹ
߲ ݂
߲

݀ଷ
ߨʹ ଷ = ܪ + ሶȰ න

Ƹ

ߨʹ ଷ ݀ȳන


ାஶ ସ

()ܧ
߲ ݂
߲ ݀

= ܪ + ሶȰ න
Ƹ

ߨʹ ଷ ݀ȳ
ସ

()ܧ ݂


ାஶ

െ න


ାஶ ߲
߲

ସ

()ܧ ݂ ݀

= െ ܪ + ሶȰ න
Ƹ

ߨʹ ଷ ݀ȳන


ାஶ
4
ଷ

ܧ  െ
ହ

ଷܧ  ݂ ݀ = െ4 ܪ + ሶȰ න ݂


ܧ  Ƹ
݀ଷ
ߨʹ ଷ

= െ4 ܪ + ሶȰ ݑ
 ݊

ܧ  = ଶ +݉ଶ ൎ ݉

ൎ

݉

ଶ ଷ

݉ ~0 ݑ
 ݊

=
߲ ݑ

 ݊
ݐ߲
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Expressing 4 in terms of ݊ and ݑ we get: 

Boltzmann Equation
Taking Its 1-st Moment

݊ ؠ න ݂
݀ଷ
ଷ(ߨʹ)

ݑ ؠ
1
݊
න ݂


()ܧ Ƹ

݀ଷ
ଷ(ߨʹ)

4 - 1
ܽ
߲Ȳ
ݔ߲ න

߲ ݂
߲ Ƹ Ƹ

݀ଷ
ߨʹ ଷ

=
1
ܽ
߲Ȳ
ݔ߲ න

Ƹ Ƹ

ߨʹ ଷ ݀ȳන


ାஶ
ଷ
߲ ݂
߲ ݀

=
1
ܽ
߲Ȳ
ݔ߲ න

Ƹ Ƹ

ߨʹ ଷ ݀ȳ ଷ ݂ 
ାஶ െ න



ାஶ
ଶ3 ݂ ݀

= െ
1
ܽ
߲Ȳ
ݔ߲ ߜ

 න ݂
݀ଷ
ߨʹ ଷ = െ

1
ܽ
߲Ȳ
ݔ߲ ݊

݊

න
Ƹ Ƹ

ߨʹ ଷ ݀ȳ = ߜ
ߨ4
3
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Boltzmann Equation
Taking Its 1-st Moment

So we get
߲ ݑ

 ݊
ݐ߲ + 4 ܪ + ሶȰ ݑ

 ݊ +
1
ܽ
߲Ȳ
ݔ߲ ݊ = 0 ݊ ื ത݊

Hence ߲ ݑ
 ത݊
ݐ߲ + ݑܪ4

 ത݊ +
1
ܽ
߲Ȳ
ݔ߲ ത݊ = 0

 ത݊
ݑ߲



ݐ߲ + ݑ
 ߲ ത݊
ݐ߲ + Ͷݑܪ

 ത݊ +
1
ܽ
߲Ȳ
ݔ߲ ത݊ = 0

െ͵ܪ ത݊

We can set everywhere

because this eq. does not have 0th-terms

Perturbed linearized Euler Equation
for the Cold Dark Matter!

ݑ߲


ݐ߲ + ݑܪ
 +

1
ܽ
߲Ȳ
ݔ߲ = 0
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Boltzmann Equation
Continuity and Euler Equations

ݑ߲


ݐ߲ + ݑܪ
 +

1
ܽ
߲Ȳ
ݔ߲ = 0

ߜ߲
ݐ߲ +

1
ܽ
ݑ߲

ݔ߲ + 3
ሶߔ = 0 Continuity Equation

Euler Equation

Probability Density Funtion Distribution Function

0-th Moment

Mean Value

1

Variance

1-st Moment

2-nd Moment Velocity Dispersion

ݑ

݊

Boltzmann Equation

Generalization of the
Continuity Equation

Generalization of the
Euler Equation
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Boltzmann Equation
Continuity Equation in a conformal way in Fourier Space

ߜ߲
ݐ߲ +

1
ܽ
ݑ߲

ݔ߲ + 3
ሶߔ = 0Continuity Equation

ݑ =
݇

݇ ݑ
ݑ߲

ݔ߲ =
߲
ݔ߲

݇

݇ ݑ =
݇

݇
ݑ߲
ݔ߲ = ݅

݇

݇ ݇ݑ = ݅
݇ଶ

݇ ݑ = ݑ݇݅

ݐ݀ = ܽ ݀߬

1
ܽ
ߜ߲
߲߬ +

1
ܽ ݑ݇݅ + 3

1
ܽ
߲Ȱ
߲߬ = 0

߲
߲߬ ؠ Ԣ

ᇱߜ + ݑ݇݅ + 3Ȱᇱ = 0

Physical Time

Velocity Component

The Continuity Equation becomes
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Boltzmann Equation
Euler Equation in a conformal way in Fourier Space

ݑ߲


ݐ߲ + ݑܪ
 +

1
ܽ
߲Ȳ
ݔ߲ = 0Euler Equation ߲Ȳ

ݔ߲ = ݅ ݇Ȳ

ݑ
 =

݇

݇ ݑ
ݑ߲



ݐ߲ =
߲
ݐ߲

݇

݇ ݑ =
݇

݇
ݑ߲
Velocityݐ߲ Component

Potential

݇

݇
1
ܽ
ݑ߲
߲߬ +

1
ܽଶ
߲ܽ
߲߬

݇

݇ ݑ +
1
ܽ ݅ ݇Ȳ = 0

߲
߲߬ = Ԣ

ᇱݑ ݑ+ + ݅݇Ȳ = 0

The Euler Equation becomes

ܽԢ
ܽ ؠ 

ݐ݀ = ܽ ݀߬Physical Time



Summary

¾ The Boltzmann Equation makes the bridge between
fundamental interactions and the effects of gravity and the
distribution function evolution;

¾ The equations which arise from its moments describe the
evolution of a certain species;

¾ The integrated Boltzmann Equation for the n-th moment
depends on the moment of order n+1.

¾ For Cold Dark Matter we deduce a close set of two equations
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Structure formation



Key Concepts – Structure Formation 3

For realistic models of structure formation, the initial spectrum of perturbations is 
such that at large scales, fluctuations are small and reflect the primordial spectrum

The angular power spectrum characterizes the size of the 
fluctuations as a function of angular scale

The angular power spectrum from CMB temperature 
fluctuations contains a convolved signal of the shape of 
initial fluctuation, i.e. the primordial power spectrum



Key Concepts – Structure Formation 4

For realistic models of structure formation, the initial spectrum of perturbations is 
such that at large scales, fluctuations are small and reflect the primordial spectrum

At early epochs, the growth of density perturbations can be 
described by linear perturbation theory

The variance of density fluctuations is a 
decreasing function of scale R 𝜎 (𝑅)

Linear regime

Non-Linear regime



Key Concepts – Linear Regime

Since 𝜎 𝑅 decreases with R  then the Linear regime at large scales is characterized by

𝜎 (𝑅) ≪ 1

In the linear regime, perturbation Fourier modes evolve independently of one another. 

1. Conserves the statistical properties of the primordial fluctuations
2. Density and velocity fields are completely determined by the 

two-point correlation function or the power spectrum

5



Key Concepts – Non-Linear Regime

The Non-Linear regime at small scales is characterized by

𝜎 (𝑅) ≫ 1

When the fluctuations become non-linear, coupling between different 
Fourier modes becomes important

The correlation length 𝑅 is defined where 𝜎 𝑅 = 1. 
Because of gravitational instability, 𝑅 grows with time and therefore a 

given scale eventually becomes non-linear under time evolution

6



Non-linear Cosmological Perturbation Theory

Is a theoretical framework for the calculation of the induced higher-order correlation 
functions in the weakly non-linear regime, defined by scales R such that 𝜎(𝑅) ≲ 1

And tree-level (leading order) perturbation theory quantities at the largest scales

Contains no closed loops

Next to leading order (loop) are corrections to the tree-level results which are 
expected to become important in the non-linear regime

7

𝜎 (𝑅) ≪ 1

𝜎 (𝑅) ≫ 1



Non-linear Cosmological Perturbation Theory

Our understanding of non-linear clustering can be extended from the 
largest scales into the transition region to the non-linear regime?

Extend the leading order calculations to one-loop, in order to understand 
better the limitations of the tree-level results and see the extent to which one 

can improve the agreement of perturbation theory with fully non-linear 
numerical simulations.

8



We concentrate on one-loop corrections to the three-point function of density 
perturbations in Fourier space, also known as the bispectrum, and its one-point 

counterpart, the skewness

Non-linear Cosmological Perturbation Theory

The bispectrum is the lowest order correlation function which, for Gaussian initial 
conditions, vanishes in the linear regime and its structure therefore reflects truly non-

linear properties of the matter distribution giving direct physical information on the 
anisotropic structures and flows generated by gravitational instability.

9



Dynamics and Perturbation Theory 10

Equations  of  motion  relevant  to  gravitational  instability  referred  as  “exact  dynamics”  (ED)

Continuity Equation

Euler Equation

Poisson Equation

Further notes on this derivation can be seen in Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe



Dynamics and Perturbation Theory
Equations of motion relevant to gravitational instability (ED)

Further notes on this derivation can be seen in Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe

𝐱 ≡ Comoving spatial coordinates

𝜏 ≡ Conformal time

𝑎(𝜏) ≡ Cosmic scale factor

𝛿(𝐱, 𝜏) ≡ Density contrast

ℋ ≡ Conformal expansion rate

11



Dynamics and Perturbation Theory

Taking the divergence of Euler equation and Fourier transforming the result equations we get

Where was defined: 
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Dynamics and Perturbation Theory

The matrix 𝛾 constituting the mode coupling can be written in 
symmetric form with the elements

13



Perturbation Theory Solutions
We want a statistical description of cosmological perturbations.
So  as  a  general  solution  for  the  ED’s:

The  density  contrast  δ(x)  is  usually  written  in  terms  of  its  Fourier  components

And where we define

14



Perturbation Theory Solutions 15



The  subscript  “c”  stands  for  the  connected  contribution

Statistics and Diagrammatics
Fluctuations can be described by statistically homogeneous and isotropic random fields

Ergodicity - approximate a statistical ensemble, so that 
spatial averages are equivalent to ensemble averages

The non-linear evolution of the three-point cumulant of the density field, the bispectrum 
𝐵(𝑘 , 𝐾 , 𝜏), and its 1-point counterpart, the skewness factor 𝑆 𝑅, 𝜏 .

16



Statistics and Diagrammatics
Where we defined variance of density fluctuations 

Giving us the new power-spectrum

(n) denotes an n-loop contribution

17



(n) denotes an n-loop contribution

Statistics and Diagrammatics

𝑃 denotes the amplitude given by the above rules for a connected diagram 
representing the contribution from to the power spectrum

18



Feynman rules of standard perturbation theory

Diagrams for the power spectrum up to one-loop

p-point cumulants of the density field come from connected diagrams with p external (solid) lines 
and  r  =  p  −1,  p,  .  .  .  internal (dashed) lines

19



Bispectrum

The loop expansion for the bispectrum reads

All tree level and one-loop contributions to the power spectrum.

20



Bispectrum
We have Tree-level part is given

The one-loop contribution consists of four distinct diagrams

21



Bispectrum
The one-loop contribution consists of four distinct diagrams

22



Thanks!
Any questions?
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N-Body Simulations

Diogo Mendonça Belo Moreira Calado, nº48357

videoref: https://www.youtube.com/watch?v=fit1uX1HIlc&ab_channel=JesseJesse

Speed=4x (original)



Introduction
Contextualization

➢First N-body simulation: P.J.E. Peebles

Image taken from the original paper



Introduction
Contextualization

➢ Klypin and Shandarin already using 3D 
Particle-Mesh simulating with 32,768 
particles.

Images taken from the original paper



Introduction
Contextualization

➢M. Davis et al. used the 
Particle–Particle–
Particle–Mesh (P3M) code 
developed by Hockney 
and Eastwood to run 323 
particles with high (at 
that time) resolution 
simulates both galaxies 
and dark matter flux

Image taken from the original paper



Introduction
Contextualization
➢Nowadays…

There are 2 techniques that prevail: 

• The Adaptive Mesh Refinement (AMR)

https://www.youtube.com/watch?
v=g2JaOBsGumk&ab_channel=BradGibsonBradGibson



Introduction
Contextualization
➢Nowadays…

There are 2 techniques that prevail: 

• PM + Tree Codes



How can we build an N-body simulation?
We start by understanding the essence of the problem.
For given coordinates  and velocities of N massive particles at moment  

, find their velocities  and coordinates  at the next moment  assuming 
that the particles interact only through the force of gravity. 
The equations of motion are:

→! "#"$
→% "#"$  

$ = $"#"$  →% →! $ = $#&'$

(2→! "

($2 = − )
*

∑
+=1, "≠+

,+(→! " − →! +)

|→! " − →! + | 3
But first we need to solve 2 problems before we think 
how can we translate this to an algorithm...



How can we build an N-body simulation?
We start by understanding the essence of the problem.
First, we need to introduce force softening: we make the force weaker (“softer”) at small 
distances to avoid very large accelerations when two particles collide or come very close to 
each other.

’= ∆ →! "+ = |→! " − →! + |   → ∆ →! "+ ( ∆ →! "+ + -2)1/2

Second, we need to introduce new variables to avoid dealing with too large or too small 
physical units of a real problem.

$0 = ( ).
/3 )−1/2

!" =  ~!"/

%" =  ~%"
/
$0

, =  ,".

$ =  ~$   $0



How can we build an N-body simulation?
We start by understanding the essence of the problem.
We can now change the equation of motion to this coordinates, and we get:

(2→! "
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*
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How can we build an N-body simulation?

All numerical algorithms for solving these equations 
include three steps, which are repeated many times:

➢ Find acceleration: 
➢ Update the velocity: 
➢ Update the coordinates: 

g(r)
% = % + ∆ %(0)

! = ! + ∆ !(%)
Although this variations are usually treated as integrals to get a higher 
precision.



How can we build an N-body simulation?
So, we usually treat the variation of positions or velocity's as:

'1 = '0 +
$1

∫
$0

%($) ($

%1 = %0 +
$1

∫
$0

0($) ($
And to solve it, we expand the integral into a Taylor series around 

. If the aproximation is only in the first order, we get:$0
'1 = '0 + %0 ∆ $ %1 = %0 + 00 ∆ $ (Euler)



How can we build an N-body simulation?

Not going into much detail on 
how the more advanced time-
stepping algorithms work, we 
can see that both Leap Frog 
and Kick-Drift-Kick methods 
will accomplish a more precise 
position of the particles (and its 
velocity) at each step made.



Brief discussion on the different methods
The different methods of approach and their main 
differences:
PM codes (fastest) :  
Solves using a regularly spaced 3D mesh that covers the cubic 
domain of a simulation. The gravitational potential is differentiated 
to produce acceleration and particles are advanced by one time step.

AMR code:  
increased resolution only where it is needed: by placing additional 
small-size elements — cubic cells — only in regions where there are 
many particles and where the resolution should be larger.



Brief discussion on the different methods
The different methods of approach and they’re main 
differences:
Tree and Tree-PM code : 
Instead of solving the Poisson equation on a mesh as PM and 
AMR codes do, the Tree codes split particles into groups of 
different sizes and replace the force from individual particles in 
the group with a single multipole force of the whole group. The 
larger the distance from a particle, the bigger the allowed size 
of the particle group.
Modern variants of the Tree algorithm are typically hybrid 
codes with the long-range force treated by a PM algorithm and 
the short range handled by a Tree code.



Relevant results that N-body Simulations provided
Dark matter density distribution function:

We start with the evolution of the probability density function 
(PDF), that will have two regimes:

12(3) = 1
2452

exp( − 62

252 )

➢ The Linear

1*2(3) = 1
2452

( 3
3,

)−1 exp( −
[ln( 3

3, ) + 52 /2]
2

252 )

➢ The Nonlinear



Relevant results that N-body Simulations provided
Dark matter density distribution function:

➢ When the fluctuations become strongly nonlinear, 
the PDF develops a very long tail at large densities 
while its maximum shifts to even lower densities

➢ At at a stronger nonlinear regime, the distribution 
function develops a nearly power-law shape with 
an exponential decline:

17*2(3) =  3−2exp( − 833/4)
3 > 10 3,



Relevant results that N-body Simulations 
provided

I. linear growth on very long waves (small k≈0.1 
h−1Mpc). 

II. the weakly nonlinear regime where fluctuations 
grow much faster than predictions of the linear 
theory. 

III. strongly nonlinear evolution at k > 1 h−1Mpc. In this 
regime, the power spectrum gradually approaches 
power law P(k) ∝ k−2 shown as the dashed line in 
the plot.

Calculating the power spectrum, we observe that exist 3 
distinte regimes:

Dark matter power spectrum:



Relevant results that N-body Simulations 
provided

Dark matter power spectrum:

Bias: 

Measures how linear the 
power spectrum is: 

92(:, ;) = < (:, ;)
<="#(:, ;)



§ńǛƦŊēöŢ�!ŸƦūŸŢŸļǛ�

7RSLF������:HDN�OHQVLQJ�WKHRU\

�,X�&KL�7RX��IF�����



2YHUYLHZ

�� ,QWURGXFWLRQ�RI�*UDYLWDWLRQDO�OHQVLQJ��IRFXV�RQ�ZHDN�OHQVLQJ�

�� 7KH�OHQV�HTXDWLRQ

�� 3URSDJDWLRQ�HTXDWLRQ�IRU�WKH�WUDQVYHUVH�VHSDUDWLRQ�EHWZHHQ�WKH�OLJKW�

UD\V

�� $PSOLILFDWLRQ�PDWUL[��FRVPLF�VKHDU�DQG�FRVPLF�FRQYHUJHQFH�

�� 5HODWLRQ�EHWZHHQ�WKH�VKHDU�SRZHU�VSHFWUXP�&RVPRORJLFDO�SUREHV��

DQG�WKH�PDWWHU�SRZHU�VSHFWUXP�

�� 6XPPDU\



,QWURGXFWLRQ��*UDYLWDWLRQDO�OHQVLQJ�
*UDYLWDWLRQDO�OHQVLQJ�LV�WKH�HIIHFW�RI�GHIOHFWLRQ�RI�OLJKW�FDXVHG�E\�JUDYLW\
,PDJH��PXOWLSOH�LPDJH���LPDJH�GLVWRUWLRQ���IOX[�HQKDQFHPHQW�HQDEOHV�JDOD[LHV�WR�EH�VHHQ�GRZQ�
WR�IDLQWHU�LQWULQVLF�PDJQLWXGHV



*UDYLWDWLRQDO�/HQVLQJ
7ZR�JHQHUDO�W\SH�RI�OHQVLQJ��ZHDN�OHQVLQJ�DQG�VWURQJ�OHQVLQJ
2FFXU�LQ�UHJLRQV�RI�WKH�LPDJH�SODQH�ZKHUH�WKH�YDOXHV�RI�WKH�FRQYHUJHQFH�DQG�VKHDU�ILHOGV�DUH�
VPDOO��ZHDN�OHQVLQJ��RU�ODUJH��VWURQJ�OHQVLQJ��



:HDN�/HQVLQJ
:HDN�/HQVLQJ�RFFXUV�IXUWKHU�IURP�WKH�OLQH�RI�DOLJQPHQW�RI�VRXUFH�OHQV�REVHUYHU��RU�ZLWK�OHQVHV�
RI�ORZHU�GHQVLW\�FRQWUDVW

(IIHFWV��VPDOO�LQFUHDVH�RI�HOOLSWLFLW\�RI�WKH�VRXUFH�JDOD[\��VKHDU��
VOLJKW�DOLJQPHQW�RI�LPDJHV

'LIILFXOW\��7KH�VKHDU�LV�VR�VPDOO�WKDW�LW�FDQQRW�EH�GHWHFWHG�LQ�LQGLYLGXDO�JDOD[LHV

6ROYHG�E\���0HDVXUHPHQW�RQ�WKH�FRUUHODWLRQ�RI�HOOLSWLFLWLHV�IURP�ODUJH�DPRXQW�RI�JDOD[LHV�
VRXUFHV

8VH�:HDN�OHQVLQJ�DV�D�FRVPRORJLFDO�SUREH�RI�WKH�ODUJH�VFDOH�VWUXFWXUH�GLVWULEXWLRQ�OLNH�GDUN�
PDWWHU�



7KH�OHQV�HTXDWLRQ
6XSSRVH�D�JDOD[\�FOXVWHU�SODFH�EHWZHHQ�2EVHUYHU�DQG�VRXUFH�JDOD[\

�JDOD[\�FOXVWHU�DFW�DV�D�OHQV
�SURGXFHV�D�GHIOHFWLRQ�RI�Į�IRU�D�OLJKW�UD\�HPLWWHG�IURP�VRXUFH�IURP�D�GLVWDQFH�'V
������GHQRWH�WKH�WZR�GLPHQVLRQDO�SRVLWLRQ�RI�WKH�VRXUFH�RQ�WKH�VRXUFH�SODQH

6RXUFH�SRVLWLRQ�LQ�WKH�VRXUFH�SODQH

'HIOHFWLRQ�DQJOH��9HFWRU�DOSKD

,PDJH�SRVLWLRQ�LQ�WKH�LPDJH�SODQH2SWLFDO�D[LV

,PSDFW�SDUDPHWHU�LQ�WKH�OHQV�SODQH��
$QJXODU�GLDPHWHU�GLVWDQFH�'V��'G���'GV

/HQ�(TXDWLRQ



/LJKW�SURSDJDWLRQ�IURP�VRXUFH�WR�REVHUYHU�LQ�WKH�8QLYHUVH�GHVFULEHG�E\�WKH�
5REHUWVRQ�:DONHU�PHWULF�ZLWK�D�VPDOO�LQKRPRJHQHLW\��OHQVLQJ�SRWHQWLDO��

/LJKW�IROORZV�QXOO�JHRGHVLFV��SDWK�RI�H[WUHPDO�WLPH���DQG�VHWWLQJ����������� ��
6SHHG�RI�OLJKW�FKDQJH�ZKHQ�WUDYHOOLQJ�LQ�WKH�JUDYLWDWLRQDO�ĆHOG�RI�WKH�OHQV��LW�DFW�DV�D�
FKDQJH�RI�PHGLXP��

5HDUUDQJH�WKH�WHUPV�ZH�KDYH�WKH�HIIHFWLYH�LQGH[�RI�UHIUDFWLRQ�

5REHUWVRQ�:DONHU�PHWULF�ZLWK�D�VPDOO�LQKRPRJHQHLW\



)LQGLQJ�WKH�ODJUDQJLDQ�RI�WKH�V\VWHP��
)LQG�WKH�SDWK�RI�H[WUHPDO��WLPH��E\�VHWWLQJ�D�VPDOO�FKDQJHV�LQ�WKH�FRQILJXUDWLRQ�HTXDO�
]HUR��6LQFH�UHIUDFWLRQ�LQGH[�LV�GW�G[

:H�KDYH�IRXQG�WKH�(XOHU�/DJUDQJH�HTXDWLRQV�
'HVFULEH�WKH�OLJKW�SDWK�XVLQJ�WKH�(XOHU�/DJUDQJH�HTXDWLRQV�

:H�REWDLQ���������������������������������������DQG�����������

(XOHU�/DJUDQJH�HTXDWLRQV

�[�O���OLJKW�SDWK�FURVVLQJ�WKH�PHGLXP



7RWDO�GHIOHFWLRQ

6XEVWLWXWH�WKH�SUHYLRXV�HTXDWLRQ�DQG�UHDUUDQJH�WKH�WHUP�

7KH�OLJKW�SDWK�LV�GHVFULEHG�E\�(XOHU�/DJUDQJH�HTXDWLRQ��FKDQJH�LQ�YHORFLW\�

ZKHUH�������LV�WKH�YHORFLW\�YHFWRU�WDQJHQW�WR�WKH�OLJKW�SDWK

GHULYDWLYH�RI�WKH�DFFHOHUDWLRQ�YHFWRU��������LV�GHILQH�DV�WKH�GHIOHFWLRQ

7RWDO�GHIOHFWLRQ�

��������������������



(YROXWLRQ�RI�WKH�FRPRYLQJ�WUDQVYHUVH�VHSDUDWLRQ�
'HILQH�WKH�VHSDUDWLRQ�[�EHWZHHQ�WZR�OLJKW�UD\V�ZKHQ�WUDYHOOLQJ�WKURXJK�WKH�KRPRJHQHRXV�

XQLYHUVH��ZLWKRXW�GHIOHFWLRQ�

7KH�GLIIHUHQWLDO�HTXDWLRQ�IRU�WKH�HYROXWLRQ�RI�WKH�FRPRYLQJ�WUDQVYHUVH�VHSDUDWLRQ�

,I�.� �����QRFXUYDWXUH��WKH�OLJKWUD\�WUDYHO�VWUDLJKW�WR�REVHUYHU

$GG�WKH�ORFDO�GHIOHFWLRQ�WR�WKH�HTXDWLRQ�RI�FRPRYLQJ�WUDQVYHUVH�VHSDUDWLRQ�

GHILQHG�ZLWK�UHVSHFW�WR�D�UHIHUHQFH�OLJKW�UD\�DW�VHSDUDWLRQ�YHFWRU�[� ���

I.�Z��FRPRYLQJ�GLDPHWHU�DQJXODU�GLVWDQFH
�7ULJRQRPHWULF��OLQHDU��RU�K\SHUEROLF�IXQFWLRQ�RI�Z�



$PSOLILFDWLRQ�PDWUL[
*UDYLWDWLRQDO�OHQVLQJ�UHIHUV�WR�H[WHQGHG�VRXUFHV�1HLJKERXULQJ�SRLQWV�IURP�WKH�VRXUFH�
H[SHULHQFH�VOLJKWO\�GLIIHUHQW�GHIOHFWLRQV�LQ�WKH�OHQV�SODQH�
UHVXOW�LQ�D�LPDJH�GLVWRUWLRQ�

7KH�OHQV�HTXDWLRQ�LV�D�PDSSLQJ�IURP�LPDJH�SRVLWLRQV�WR�VRXUFH�SRVLWLRQV�

$�LV�WKH�DPSOLILFDWLRQ�PDWUL[�GHVFULEHV�WKH�OHQVLQJ�OLQHDU�WUDQVIRUPDWLRQ�EHWZHHQ�VRXUFH�DQG�
LPDJH�SODQHV�

$LM�LV�D��'�PDWUL[��VLQFH�ȕ��SRVLWLRQ�LQ�WKH�VRXUFH�SODQH��DQG�ș��SRVLWLRQ�LQ�WKH�OHQV�
SODQH��DUH��'�YHFWRUV



$PSOLILFDWLRQ�PDWUL[

6HSHUDWH�DPSOLILFDWLRQ�PDWUL[�FDQ�EH�GHFRPSRVHG�LQ���SDUWV��

:H�FDQ�VHSHUDWH�WKH�DPSOLILFDWLRQ�PDWUL[�LQWR�
�WUDFHOHVV��V\PPHWULF����WUDFHOHVV��DQWLV\PPHWULF���GLDJRQDO

����Ȗ�VKHDU�Ȧ��URWDWLRQ���N�FRQYHUJHQFH�

6KHDU�DQG�FRQYHUJHQFH�DUH�GHULYDWLYHV�RI�WKH�GHIOHFWLRQ�ILHOG��DQG�VHFRQG�RUGHU�GHULYDWLYHV�RI�
WKH�SRWHQWLDO��$QG�

VKHDU

FRQYHUJHQFH�



$PSOLILFDWLRQ�PDWUL[

$PSOLILFDWLRQ�PDWUL[���/HQVLQJ�GLVWRUWLRQ�GRHV�QRW�SURGXFHV�URWDWLRQV�

7KH�GHWHUPLQDQW�RI�WKH�DPSOLILFDWLRQ�PDWUL[�GHILQHV�WKH�PDJQLILFDWLRQ�
GHW$� ����LQILQLW\�PDJQLILFDWLRQ���GLIIHUHQW�FRPELQDWLRQ�RI�VKHDU�DQG�FRQYHUJHQFH�PD\�JLYH�
VDPH�PDJQLILFDWLRQ

3RLVVRQ�(TXDWLRQ



6ROYLQJ�WKH�FRPRYLQJ�WUDQVYHUVH�VHSDUDWLRQ�HTXDWLRQ�E\�
*UHHQ�)XQFWLRQ

6ROYLQJ�WKH�LQKRPRJHQHRXV�GLIIHUHQWLDO�HTXDWLRQ�XVLQJ�JUHHQ�IXQFWLRQ
6ROXWLRQ� �KRPRJHQHRXV�VROXWLRQ���FRQYROXWLRQ�RI�WKH�HTXDWLRQ�*UHHQ¶V�IXQFWLRQ�ZLWK�WKH�
LQKRPRJHQHRXV�WHUP��

7KH�VROXWLRQ�LV�WKH�
IRUP�RI�

/HQVLQJ�HIILFLHQF\�IDFWRU�



%RUQ�DSSUR[LPDWLRQ�

6LQFH�WKH�VHSHUDWLRQ�YHFWRU�[�LV�D�5HFXUVLYH�VROXWLRQ�
6HSDUDWLRQ�[�GHSHQGV�RQ�WKH�SRWHQWLDO�DW�WKH�SRVLWLRQ�[�

6LPSOLI\��WKH�SUREOHP ��������7D\ORU�H[SDQG�WKH�SRWHQWLDO�DURXQG�WKH�XQSHUWXUEHG�

WUDMHFWRU\�[� �I.�ș���

1RZ��ZH�FDQ�UHODWHG�WKH�SK\VLFDO�JUDYLWDWLRQDO�SRWHQWLDO�WR�WKH�DPSOLILFDWLRQ
PDWUL[



$PSOLILFDWLRQ�PDWUL[

(IIHFWLYH�OHQVLQJ�SRWHQWLDO�
6XP�RYHU�DOO�WKH�OHQV�UHVSHFW�WR
LV�RZQ�/HQVLQJ�HIILFLHQF\�IDFWRU

7KH�VHFRQG�GHULYDWLYH�RI�SRWHQWLDO�
LQ�VKHDU�DQG�FRQYHUJHQFH�LV
UHODWHG�WR�WKH�PDWWHU�GHQVLW\�
WKURXJK�SRLVVRQ�HTXDWLRQ

/HQV�H[LVW�EHWZHHQ�WKH�
VRXUFH�DQG�REVHUYHU

3RLVVRQ�(TXDWLRQ



&RQYHUJHQFH�ILHOG
5HODWH�GHQVLW\�FRQWUDVW�ILHOG�WR�$PSOLILFDWLRQ�PDWUL[�WKURXJK�WKH�3RLVVRQ�HTXDWLRQ�
7KLV�LQGLFDWH�WKH�FRQYHUJHQFH�SRZHU�VSHFWUXP�FDQ�EH�UHODWHG�WR�WKH�GDUN�PDWWHU�SRZHU�VSHFWUXP�

6LQFH�ZHDN�OHQVLQJ�VLJQDO�FDQ�RQO\�EH�GHWHFWHG�VWDWLVWLFDOO\�
ZH�QHHG�WR�PHDVXUH�RYHU�D�ODUJH�QXPEHU�RI�VRXUFH�JDOD[LHV�

VRXUFH�UHGVKLIW�GLVWULEXWLRQ

&RQYHUJHQFH�IRU�RQH�VRXUFH�DW�SRVLWLRQ�WKHWD�DQG�]�H[SHULHQFH�PXOWL�OHQV�



&RQYHUJHQFH�ILHOG

)RU�PXOWL�VRXUFHV�DORQJ�WKH�SDWK�H[SHULHQFH�PXOWL�OHQV�

1RWLFH�WKDW�WKH�OHQ�ZLWK�VDPH�SRVLWLRQ�WKHWD��DW�
GLIIHUHQW�UHGVKLIW��WKH�FRQYHUJHQFH�PD\�FRQWULEXWLRQ�E\�
GLIIHUHQW�VHWV�RI�OLJKW�UD\V�E\�EDFNJURXQG�VRXUFHV�WKDW�
ZK\�ZH�QHHG�WR�LQWHJUDWH�IURP�Z�WR�Z+�RI�J�Z¶�



3RZHU�VSHFWUXP�RI�WKH�FRQYHUJHQFH�ILHOG
3RZHU�VSHFWUXP�RI�WKH�FRQYHUJHQFH�LV�SURMHFWHG�SRZHU�VSHFWUXP�ZKLFK�LV�D�ZHLJKWHG�OLQH�RI�
VLJKW�LQWHJUDO�RI�WKH�PDWWHU�SRZHU�VSHFWUXP

'LIILFXOW\�+DUG�WR�REWDLQ�&RQYHUJHQFH�3RZHU�VSHFWUXP
*RDO�����0HDVXUH�VKHDU�SRZHU�VSHFWUXP�IURP�WKH�REVHUYHG�LPDJH

����2EWDLQ�&RQYHUJHQFH�3RZHU�VSHFWUXP�WKURXJK�WKH�WKHRUHWLFDO�PRGHO
����2EWDLQ�3RZHU�VSHFWUXP�RI�PDWWHU�GHQVLW\�

UHGVKLIW�RI�WKH�VRXUFHV��GLDPHWHU�DQJXODU�GLVWDQFHV0RGHO�GHSHQGHQW��

6KHDU�DQG�WKH�FRQYHUJHQFH�
SRZHU�VSHFWUD�DUH�LGHQWLFDO�



6XPPDU\
Ɣ 7KH�REVHUYHG�VKHDU�JUDYLWDWLRQDO�OHQVLQJ�GLVWRUWLRQ�LV�DQ�XQELDVHG�WUDFHU�RI�įBGP

Ɣ 7KH�WKHRU\�DOORZ�XV�WR�REWDLQ�WKH�SURSDJDWLRQ�HTXDWLRQ�IRU�WKH�WUDQVYHUVH�VHSDUDWLRQ�
EHWZHHQ�WKH�OLJKW�UD\V

Ɣ 2EWDLQ�WKH�DPSOLILFDWLRQ�PDWUL[�IURP�OHQVLQJ�HTXDWLRQ�

Ɣ &RPELQH�WKH�WZR�HTXDWLRQV�DQG�VLPSOLI\�LW�XVLQJ�PDWKHPDWLFDO�WHFKQLTXHV�OLNH�%RUQ�
DSSUR[LPDWLRQ�DQG�*UHHQ�IXQFWLRQ�



6XPPDU\
Ɣ :H�WUHDW�WKH�ODUJH�VFDOH�VWUXFWXUH�DV�OHQV�DW�GLIIHUHQW�UHGVKLIW�DQG�ZH�REWDLQ�WKH�

DPSOLILFDWLRQ�PDWUL[�IRU�WKH�XQLYHUVH��VSHFLILF�PRGHO�

Ɣ 3RLVVRQ�HTXDWLRQ�SURYLGH�XV�D�ZD\�WR�OLQN�WKH�PDWWHU�GHQVLW\�WR�WKH�6KHDU�3RZHU�VSHFWUXP

Ɣ 7KHUHIRUH�E\�PHDVXULQJ�WKH�VKHDU�SRZHU�VSHFWUXP�WKURXJK�REVHUYDWLRQ��ZH�FDQ�REWDLQ�WKH�
PDWWHU�GHQVLW\�SRZHU�VSHFWUXP�LQGLUHFWO\

Ɣ



7KDQN�\RX�




