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Coupling constants

In order to observe the unification a short reminder of the Coupling
constants from SM.

αem =
5

3

α

cos2(ΘMS)

αW =
α

sin2(ΘMS)
(1)

αs =
g2
s

4π
.



Renormalization Group equation

In order to unify those coupling constants a renormalization group
equation is tried to be solved [6].

Renormalization Group equation

µ
∂Φ

∂µ
=
∑

βα
∂Φ

∂gα
(2)

βi are the β-functions of gi with gi being the coupling constants
from the fine-structure constants. In this equation Φ(g1, g2, ..., gA)
is the wanted relation which is able to express all other terms.



Earliest phase transition
Topological defects

At a grand unification different topological defects are likely to
have occurred [8].
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At a grand unification different topological defects are likely to
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Topological defects
Cosmic strings

The choice of potential governs the description of the formation of
defects.
For cosmological strings the potential in the gauge theory is
described by [8]

V (φ) =
1

2
λ(φ∗φ− 1

2
ν2)2 (3)

Change into Polar Coordinates.



Topological defects
Cosmic strings

Figure: The scalar field which is considered in the field theory for cosmic
strings [7].



Monopoles

Assuming a chain of symmetry breaking intermediate scale
monopoles form.

Overclosure

mm

TR
< 20

Monopole density of with applied constraints [5]:

nm = 3 · 103
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)3

nγ exp
− 2mm

TR . (4)
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Limitations due to Proton lifetime

Figure: The limitations for the model parameters arising from the finite
proton lifetime in a theory with various colored Higgs multiplets as a plot
for MR from αU [5]. Left: Without threshold correction for soft masses.
Middle: Typical threshold correction at GUT-scale for soft masses. Right:
Threshold corrections for split SUSY spectrum with masses of gauginos
fixed at 1 TeV.



Unification for MSSM

Figure: The evolution of the three coupling constants in the minimal
standard model with 3 families and 1 Higgs, with α1 for the
electromagnetic, 2 for the weak and α3 for the strong interaction [1].



Reducing coupling as Test for unification theories
Numerical scheme

Test agreement for Theory Candidates with Higgs mass
prediction and CDM relic density experimental limits

Figure: Example of computer codes used to test multiple candidates for
grand unified theories [6].



Reducing coupling as Test for unification theories
Validation via Higgs mass

Figure: Left: lightest Higgs mass Mh plotted against mass M, right:
theoretical uncertainty of Higgs mass computed with FeynHiggs for the
all loop finite N=1 super symmetric model [6].
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Electroweak phase transition

Figure: Representation of
collision between two
bubbles [3].
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Electroweak phase transition

Figure: Result of the theoretical calculation and experimental findings of
parameter space shown in a mA versus mH plane where mH indicates the
heavier of the two CP-even Higgs bosons identified with the SM-like
Higgs boson. Comparison of two different methods to identify the strong
first order phase transitions (in color) versus the ones passing all applied
constraints (grey). Left panel: ‘Parwani’ method. Right panel:
‘ArnoldEspinosa’ method [2]
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Conclusion

I Provides explanation for

I Boson asymmetry
I Magnetic fields
I Lack of Monopoles
I Proton Lifetime
I Dark matter candidate ...

I Lot of possible candidates
→ Combine experimental data and numerical simulations

I Future experiments are promising



Thank you for listening!

Do you have any questions?
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Appendix
Gravitational waves

Figure: Limitation from gravitational wave experiments to cosmic string
parameters by gravitational waves measuring experiments [4]. Gµ

describes the dimensionless string tension
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