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Inflation and the origin of Perturbations
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The (Perturbed) Fluid Equations

e Subhorizon and non-relativistic colisional fluid in causal Interaction:
Described by p(r,t), v(r,t), P(r,t), P(r,t), at constant Entropy.
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1) Static Space without Gravity

* Neglecting the effects of gravity, V(0®) - 0, we get a wave equation,
whose solution is that of a Constant Amplitude Plane Wave.




2) Static Space with Gravity

* Considering gravity, we get a wave equation with a source term, admiting a
plane wave as a solution, but with an w that can be real or imaginary
— allows exponential growth of perturbations above Jeans size-scales.
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3) Expanding Space with Gravity

e Using comoving coordinates, in a matter dominated universe, perturbations
evolve as damped oscilations (due to the expanding frictional term) below the
Jeans length and collapse as power laws above it.
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4) The case for (Cold) Dark Matter

* It can be proven, using the Liouville Equation, that a collisionless fluid
such as Dark Matter (DM) follow the same dynamics as a collisional
fluid, albeit with an averaged velocity of DM particles replacing c..

* Consequently Cold (low velocity) Dark Matter easily enters Jeans
Collapse at subhorizon scales.




SuperHorizon Perturbations

 What happens to Perturbations before their scale enters the particle horizon?

O" +3(1 + w)HD' + wk*d = 0 , N _
| | In superhorizon conditions this leads to ®(t) =Cte,
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Horizon Re-Entry of Gravitational Perturbations

 Computing now both cases, by solving the motion equation, ®(t) oscillates with
amplitude decreasing with t? at RD and stays constant during MD.
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Horizon Re-Entry of Radiation Field Perturbations

* Replacing ®(t) into the Poisson Equation during RD we get an oscillatory
solution
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Horizon Re-Entry of Dark Matter Perturbations

* While radiation dominates (y << 1), one obtains the Mészaros equation,
leading to a stagnant growth of matter perturbations, at 6., = In(y) = In(a) .
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* When matter dominates (y >> 1), one obtains the aforementioned linear
growth of perturbation contrast density, &,.,.

* For Late Times... accelerated expansion stops growth:
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Horizon Re-Entry of Baryon Perturbations
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Before baryons decouple from the radiation
fluid, subhorizon baryon fluctuations follow
the radiation oscillations — the origin of the
Baryonic Acoustic Oscillations.

After decoupling, subhorizon Baryon
fluctuations quickly couple to those of Cold
Dark Matter, allowing the formation of
baryonic structures such as galaxies.




Conclusion — The origin the Universe’s structures




