Prof. António da Silva February 10th, 2022

PBHs as Dark Matter Candidates

00

Marta Botas, nº 52858

Primordial Universe

Introduction

- Dark matter (DM) constitutes a large majority of all matter in the Universe.
- Most accepted DM model is the non-baryonic, cold dark matter (CDM).
- One interesting CDM candidate is **primordial black holes** (PBHs).

Types of Black Holes

Stellar Black Holes

Formed by stellar gravitational collapse. Lower mass limit of ~ 3 M $_{\odot}$.

3

Primordial Black Holes

Formed by collapse of density fluctuations. Allows for a wide mass spectrum.

PBH Formation

* * + * * * + * * * + *

× × + •

• × +

× · · ·

1

PBH Formation

The primordial Universe would have been nearly uniform, apart from microscopic density fluctuations.

Density contrast

Jeans length

 $L_J = \sqrt{\frac{3H^2}{2c_s^2}} \checkmark$

For lengths higher than L_J , the fluctuation can undergo gravitational collapse. In the radiation domination epoch, $\delta_c \approx 1/3$. Numerical results show that $\delta_c \approx 0.45$.

 $\rightarrow \ddot{\delta} + 2H\dot{\delta} + \left(c_s^2 k^2 - \frac{3H^2}{2}\right)\delta = 0$

PBH Formation

PBH Mass

$$M_{PBH} \sim M_H(t) = \frac{4\pi\rho}{3H^2} \sim 10^{15} \left(\frac{t}{10^{-23}s}\right) g$$

- ♦ A wide range of M_{PBH} can be formed.
- ✤ PBH with $M_{PBH} = 1M_{\odot}$ would have originated • in the QCD phase transition.
- ★ Near critical gravitational collapse (for $\delta \rightarrow \delta_c$)...

$$M_{PBH} = \kappa M_H (\delta - \delta_c)^{\gamma}$$

≈0.35-0.36

PBH Abundance

7

•

PBH Abundance

For calculations of the PBH abundance, it is assumed that $M_{PBH} = \alpha M_H$.

$$\beta(M_{PBH}) = \alpha \int_{\delta_c}^{1} P(\delta) d\delta \quad \Longrightarrow \quad \Rightarrow = \alpha \int_{\delta_c}^{1} \frac{d\delta}{\sqrt{2\pi\sigma(M_{PBH})}} exp\left[\frac{-\delta^2}{2\sigma(M_{PBH})}\right]$$

gaussian distribution and are spherically symmetric.

For a scale-invariant power spectrum, $\sigma(M_{PBH}) \sim 10^{-5}$ at the CMB scale, leading to a low PBH abundance.

The beta parameter may also be expressed as a direct function of the PBH mass.

$$\beta(M_{PBH}) = \frac{\rho_{PBH}(t_i)}{\rho(t_i)} \approx 7.99 \times 10^{-29} \alpha^{-1/2} \left(\frac{g_{*i}}{106.75}\right)^{1/4} \left(\frac{M}{M_{\odot}}\right)^{3/2} \left(\frac{n_{PBH}(t_i)}{1 \, Gpc^{-3}}\right)$$

PBH Abundance

PBH Density Parameter

$$\Omega_{PBH} = \beta \Omega_R (1+z) \approx 10^{18} \beta \left(\frac{M_{PBH}}{10^{15} g}\right)^{-1/2}$$

9

(radiation dominated epoch)

- ✤ The PBH density parameter will remain constant in the matter-dominated era.
- ♦ Ω_{PBH} < 1 means that $M_{PBH}^{min} = 10^{15} g$.

PBHs as Dark Matter

03

× × + ×

Cold CDM particles are non-relativistic. MacHos MacHos

Fraction of PBHs in Halo

 $f(M_{PBH}) = \frac{\Omega_{PBH}}{\Omega_{CDM}} \approx 3.8\Omega_{PBH} = 3.8 \times 10^8 \beta \left(\frac{M_{PBH}}{M_{\odot}}\right)^{-1}$

Necessary to determine PBH abundance constraints.

Observational Constraints

Gravitational Waves

- LIGO has observed merging of black holes at ~ $30 M_{\odot}$.
- PBHs in binary systems could generate this gravitational waves background.

- Studies show agreement between PBH merger rates and LIGO analysis.
- PBH mass range determined by GWs background could be in conflict with other phenomena.

 $f(M_{PBH}) < 0.01$ for $10 < M_{PBH} < 300 M_{\odot}$

- The spherical limit may not apply.
- Results from WMAP and FIRAS collaboration are dependent on chosen model.

 $f(M_{PBH}) < 0.001 \text{ for } 10 < M_{PBH} < 300 M_{\odot}$

Observational Constraints

Do you have any questions?

FC Ciências ULisboa

Prof. António da Silva February 10th, 2022

Marta Botas, nº 52858

Primordial Universe

