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Introduction

- FLRW metric:
© ds? = —dt? + a?(t)dx.dx

- Hubble parameter:

_a_ d
Hza—alna(t)

- Deceleration parameter:
_ _a®da@) _ H

G -1 — o —1+€(t)

- Horizon Problem




Introduction: Single-Scalar Inflation

- Inflaton: ¢

- Lagrangian:
. R
o [ = \/—_g(— ;g“"aﬂq)avfp —V(p) + 161'[G)

- This model has the condition H(t) < 0: Weak Energy Condition.




Introduction: Scalar Inflation
Problems

- Assumes that the universe began with scalar field approximately spatially
homogenous over more than a Hubble volume V(¢) > H™3.

- Assuming V(@) must be flat enough makes the inflation last a long time.

- Assumes that the minimum of V' (¢) has just the right value V,,,;,,(¢) = 0 to

leave the post-inflationary universe with only the small amount of vacuum
energy we detect today.

- Assumes that the scalar field couples enough to ordinary matter so that its
kinetic energy can create a hot, dense universe at the end of inflation, but
not so much that loop corrections from ordinary matter compromise the
flatness of V' (¢).




Introduction: Gravity-Driven
Inflation

- A more natural mechanism for inflation can be found within gravitation.

- Suppose that the bare cosmological constant A is not unnaturally small but
rather large and positive. “Large” means a A induced by some matter scale
which might be as high as 10*® GeV. Then GA would be ~10™%, rather than
the putative of 107122,

- A 1s constant in space.

- A1s constant in time, and classical physics can’t offer a natural mechanism
for stopping inflation; quantum physics can: accelerated expansion
continually rips virtual infrared gravitons out of the vacuum and these
gravitons attract one another, thereby slowing inflation.




Introduction: Graviton Physical
Modes

- Metric field with a fluctuating graviton field:
° gi,j = az (t)[(?l,] +V32nG hZf(t, 7)]

. hl-TJT(t, X) = f(jzl){?) > {u(e, k)e‘%"zei’j(ﬁ, A)a(l_c), 1)+ (c.c.)}
* u(t, k): mode function;
* & j (l?, /'1): polarization tensor;
. a(E, A): annihilation operator;

* (c.c.): complex conjugate.

kZ

- i(t,k) + 3H(u(t, k) + T

u(t,k) =0




... Estimate of KE(t,k)

- Definition of energy is subtle for gravitons.

- Use a massless and minimally coupled scalar field ¢ (x) with the same mode
equation as u(t, k) for the estimate.
- Lagrangian density:
1 1 . 1
© L=—-y=gg" 0,9dyp = a*()¢? — V. Vo

- Lagrangian (in space):

L) = PrL= [EEL@O3ER)] - tawk|p(c k) )

- Classic harmonic oscillator Lagrangian in 1D:

1 ., 1
- L= mez —Emwzx2




- Any mode with wavenumber k evolves independently as a harmonic
oscillator q(t).
- m-a3(t)

Q=

* mw? > a(t)k? and so w =

- q(0) = ult, A +u*(t, kAT, [4,A4T] =1

C E(t, k) = 2a®(D42(8) + ;a(t)k?q? (1)




- k

- For de Sitter (a(t) = e't)
cu(t, k) =

ik

ik L
\/2k3[ _Ha(t) era®,  Epin(t k) = ska (D)

. (-QlE(t, k)l.Q) — a32(t) |1:t(t, k)lz + kzczl(t) |u(t, k)lz (t)< + [Ha(t) )

|Q2): Bunch-Davies vacuum- minimum energy state in a dlstant past

* Quantum harmonic oscillator: ( + N) Aw so N = [Ha(t)

phys = ( X Horizon crossing happens when kpp,s = al(('—t) =H
¢ Infrared modes: H < k < Ha(t)
+ Ultraviolet modes: k > Ha(t)




Model Building: Perturbative Results

- Here we consider de Sitter inflation: a(t) = et

- Gravitational Lagrangian is:

. _ V=g
Lyr = TG (R —2A)

- Quantum corrections should not grow faster than powers of In(a) = Ht.

- In the regime In(a) >» 1, the energy density induced by quantum
gravitational effects are:

© p ~ N
* pz~ — GA®In[a(t)]
« pp~ — N (GAIn[a(t)]DE™L, L is the order of the loop.




- Stress-energy is separately conserved at each loop order:
© pp=—3H(p, +p,) = p.(t) ~—p.(O)

- General form of p is:
- p(t) ~ N f[GAIn(a)]

- If GAIn(a) 1s small, petrubation theory is valid. It breaks down when the
number of e-foldings N = Ht = In(a) ~ (GA)~?




Guessing the Effective Field
Equations

- With L, = é;n‘gG(R — 2A) the classical gravitational equations of motion are:

‘ G,uv = _Aguv

- ... adding a quantum induced stress-energy tensor T,,[g]:
* G = —Agyy +8nGT,,[g]

- Principles T, [g] must obey:
+ Correspondence
+ Non-locality
+ Causality




Pertect Fluid Ansatz

- Considering T,,[g] is in the form of a perfect fluid:
+ Can represent any cosmology.
+ Provides enough free parameters to enforce conservation.

: Tuv [g] = (p + p)uuuv +DPIuv

* p,p and u, are functionals of the metric tensor.
* u, 1s chosen to be timelike and normalized:

g u,uy, = -1 = vy, =0
- Hence there are five independent functionals.

- VAT,, = 0 gives 4 equations and allows to determine any 4 of the 5
functionals in terms of the fifth.

- Specify p[g].




plg]

- To be a casual, non-local functional of the metric, one may use the following
ansatz:

2 de Sitter 2
© plgl(x) = A f(=GAX[g](x)) —— A*fIGAIn(a)]
+ —X[g](x): dimensionless and non-local functional of the metric.

- The inverse of some differential operator introduces causal non-locality

+ Covariant scalar d’Alembertian: O = \/i—_g . (g"v\=7g9,)

- Acting the inverse of O on a curvature scalar (R for example) gives a
dimensionless result.

- X[gl =o07'R




- In FLRW geometry:
- 0= —(0%+3H0,)
- R =12H?(t) + 6 H(t)

- Then:
/ ., deSi
© X[g]=0"'R =~ [ldt'a? f} dt"a*[12H? +6 H] = = —41n(a) + £[1 - e~31].
- This means that —X[g] grows during the inflationary regime of large R, and
1s approximately constant during the period of radiation domination (R(t) =
1
0 because a(t) « tz at this period).
. f(—GAX [g](x)) must be a function monotonically crescent and without bound

for the pressure to produce enough screening to end inflation in roughly the
right way.




Numerical Results

- Using the exponential model (f(x) = e* — 1) and GA = 2%, the authors made
numerical works and obtained graphs for X(t), R(t), H(t), H(t), a(t) and q(t).
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Figure 2: The evolution of the source X(t) during the oscillatory regime for the
exponential model.
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Figure 3: The evolution of the curvature scalar R(t) over the full range for the
exponential model. R
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Figure 4: The evolution of the curvature scalar R(t) during the oscillatory regime
for the exponential model.
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Figure 6: The evolution of the Hubble parameter H(t) during the oscillatory regime
for the exponential model.
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Figure 8: The evolution of H (t) during the oscillatory regime for the exponential model.




a(t) oscillations are centered around
a linear 1ncrease with time, which
may be a problem for reheating.
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Figure 11: The evolution of the scale factor ratio [a(t)/a(150000)] during the oscillatory
regime for the exponential model versus a linear interpolation.
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Figure 9: The evolution of the deceleration parameter ¢(t) during the oscillatory regime
for the exponential model.




Analytical Results

. 2H + 3H% = A — 87Gp = A{1 — 8nGAf[—GAX]}

- f(x) 1s growing monotonically and without bound so there is X, such that
1 — 8nGAf[-GAX,,] =0

- Inflationary evolution dominates roughly until the X_,.. Near X, the
quantum induced pressure p is nearly constant:

© f=f,—GAMXQ)f, AX(t) = X(t) - X,,.

R(t) = Sizg:;t). w 1is the same as the calculated one in the numerical work.




Post Inflationary Evolution

- Energy flows from the gravitational to the matter sector, leading to the
radiation domination period at t,.. Here R = 0 and the quantum induced
stress-energy simply cancels the bare cosmological constant.

- At t = t,, it’s possible to use first order perturbation theory to compute the
total pressure (p,, = 0):

A A ’ _
* DPtot = _% + p[g](x) ~ = E(GA)chrAX’ AX = X(t) - Xcr = - ;iln [1 + ;Hm(t - tm)] +
0(1)

- However, at matter domination period there are two problems:

* f'> 0 and f is unbounded so p;,; > 0 when X(t) < X, < 0. The observation of late
time acceleration implies negative pressure.

Pto GAH;\? ., ) 3
C(R) ~ (F) fAAX ~ 10%fLAX, Prow ¥ = g HEow Hi~1013GeV,

H,,,~10733¢eV. The magnitude of p,,, is too large.
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