Quantum Cosmology: towards the Planck time

João Lopes, 52866

Professor António Silva

Universo Primitivo

Main reference

Quantum Gravity and Inflation, Maria G. Romania, N. C. Tsamis, R. P. Woodard, 2012

Introduction

- FLRW metric: • $ds^2 = -dt^2 + a^2(t)d\vec{x}.d\vec{x}$
- Hubble parameter: • $H \equiv \frac{\dot{a}}{a} = \frac{d}{dt} \ln a(t)$

- Deceleration parameter: • $q \equiv -\frac{\dot{a}(t) \ \ddot{a}(t)}{\dot{a}^2(t)} = -1 \ -\frac{\dot{H}}{H^2(t)} = -1 + \varepsilon(t)$
- Horizon Problem

Introduction: Single-Scalar Inflation

• Inflaton: φ

• Lagrangian:

•
$$\mathcal{L} = \sqrt{-g} \left(-\frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - V(\varphi) + \frac{R}{16\pi G} \right)$$

• This model has the condition $\dot{H}(t) \leq 0$: Weak Energy Condition.

Introduction: Scalar Inflation Problems

- Assumes that the universe began with scalar field approximately spatially homogenous over more than a Hubble volume $V(\varphi) > H^{-3}$.
- Assuming $V(\varphi)$ must be flat enough makes the inflation last a long time.
- Assumes that the minimum of $V(\varphi)$ has just the right value $V_{min}(\varphi) \approx 0$ to leave the post-inflationary universe with only the small amount of vacuum energy we detect today.
- Assumes that the scalar field couples enough to ordinary matter so that its kinetic energy can create a hot, dense universe at the end of inflation, but not so much that loop corrections from ordinary matter compromise the flatness of $V(\varphi)$.

Introduction: Gravity-Driven Inflation

- A more natural mechanism for inflation can be found within gravitation.
- Suppose that the bare cosmological constant Λ is not unnaturally small but rather large and positive. "Large" means a Λ induced by some matter scale which might be as high as 10^{18} GeV. Then $G\Lambda$ would be $\sim 10^{-4}$, rather than the putative of 10^{-122} .
- Λ is constant in space.
- Λ is constant in time, and classical physics can't offer a natural mechanism for stopping inflation; quantum physics can: accelerated expansion continually rips virtual infrared gravitons out of the vacuum and these gravitons attract one another, thereby slowing inflation.

Introduction: Graviton Physical Modes

• Metric field with a fluctuating graviton field:

•
$$g_{i,j} = a^2(t) \left[\delta_{i,j} + \sqrt{32\pi G} h_{i,j}^{TT}(t, \vec{x}) \right]$$

- $h_{i,j}^{TT}(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \sum_{\lambda} \{u(t,k)e^{i\vec{k}\cdot\vec{x}}\varepsilon_{i,j}(\vec{k},\lambda)\alpha(\vec{k},\lambda) + (c.c.)\}$
 - u(t,k): mode function;
 - $\varepsilon_{i,j}(\vec{k}, \lambda)$: polarization tensor;
 - $\alpha(\vec{k}, \lambda)$: annihilation operator;
 - (c.c.): complex conjugate.

•
$$\ddot{u}(t,k) + 3H(t)\dot{u}(t,k) + \frac{k^2}{a^2(t)}u(t,k) = 0$$

... Estimate of E(t,k)

- Definition of energy is subtle for gravitons.
- Use a massless and minimally coupled scalar field $\varphi(x)$ with the same mode equation as u(t,k) for the estimate.
- Lagrangian density:

•
$$\mathcal{L} = -\frac{1}{2}\sqrt{-g}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi = \frac{1}{2}a^{3}(t)\dot{\varphi}^{2} - \frac{1}{2}\nabla\varphi.\nabla\varphi$$

• Lagrangian (in space):

•
$$L(t) = \int d^3x \, \mathcal{L} = \int \frac{d^3k}{(2\pi)^3} \left\{ \frac{1}{2} a^3(t) \left| \dot{\tilde{\varphi}}(t, \vec{k}) \right|^2 - \frac{1}{2} a(t) k^2 \left| \tilde{\varphi}(t, \vec{k}) \right|^2 \right\}$$

• Classic harmonic oscillator Lagrangian in 1D:

•
$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2$$

• Any mode with wavenumber \vec{k} evolves independently as a harmonic oscillator q(t). • $m \rightarrow a^3(t)$

•
$$m \rightarrow a^3(t)$$

•
$$m \to a^{\circ}(t)$$

• $m\omega^2 \to a(t)k^2$ and so $\omega = \frac{k}{a}$

•
$$q(t) = u(t,k)A + u^*(t,k)A^{\dagger}, [A,A^{\dagger}] = 1$$

•
$$E(t,k) = \frac{1}{2}a^3(t)\dot{q}^2(t) + \frac{1}{2}a(t)k^2q^2(t)$$

• For de Sitter
$$(a(t) = e^{Ht})$$

• $u(t,k) = \frac{H}{\sqrt{2k^3}} \left[1 - \frac{ik}{Ha(t)} \right] e^{\frac{ik}{Ha(t)}}, \quad E_{min}(t,k) = \frac{1}{2}ka^{-1}(t)$

•
$$\langle \Omega | E(t,k) | \Omega \rangle = \frac{a^3(t)}{2} |\dot{u}(t,k)|^2 + \frac{k^2 a(t)}{2} |u(t,k)|^2 = \frac{k}{a(t)} \left(\frac{1}{2} + \left[\frac{Ha(t)}{2k} \right]^2 \right)$$

• $|\Omega\rangle$: Bunch-Davies vacuum- minimum energy state in a distant past.

• Quantum harmonic oscillator: $\left(\frac{1}{2} + N\right) \hbar \omega$ so $N = \left[\frac{Ha(t)}{2k}\right]^2$.

•
$$k_{phys} = \frac{k}{a(t)}$$
, Horizon crossing happens when $k_{phys} = \frac{k}{a(t)} = H$

- Infrared modes: H < k < Ha(t)
- Ultraviolet modes: k > Ha(t)

Model Building: Perturbative Results

• Here we consider de Sitter inflation: $a(t) = e^{Ht}$

• Gravitational Lagrangian is:

•
$$\mathcal{L}_{gr} = \frac{\sqrt{-g}}{16\pi G} (R - 2\Lambda)$$

- Quantum corrections should not grow faster than powers of ln(a) = Ht.
- In the regime $\ln(a) \gg 1$, the energy density induced by quantum gravitational effects are:
 - $\bullet \ \rho_1 \sim \Lambda^2$
 - $\rho_2 \sim -G\Lambda^3 \ln[a(t)]$
 - * $\rho_L \sim -\Lambda^2 (G\Lambda \ln[a(t)])^{L-1}$, L is the order of the loop.

- Stress-energy is separately conserved at each loop order:
 - $\dot{\rho_L} = -3H(\rho_L + p_L) \Rightarrow p_L(t) \sim -\rho_L(t)$
- General form of p is: • $p(t) \sim \Lambda^2 f[G\Lambda \ln(a)]$
- If $G\Lambda \ln(a)$ is small, petrubation theory is valid. It breaks down when the number of e-foldings $N \equiv Ht = \ln(a) \sim (G\Lambda)^{-1}$

Guessing the Effective Field Equations

• With $\mathcal{L}_{gr} = \frac{\sqrt{-g}}{16\pi G} (R - 2\Lambda)$ the classical gravitational equations of motion are: • $G_{\mu\nu} = -\Lambda g_{\mu\nu}$

- ... adding a quantum induced stress-energy tensor $T_{\mu\nu}[g]$:
 - $G_{\mu\nu} = -\Lambda g_{\mu\nu} + 8\pi G T_{\mu\nu}[g]$
- Principles $T_{\mu\nu}[g]$ must obey:
 - Correspondence
 - Non-locality
 - Causality

Perfect Fluid Ansatz

- Considering $T_{\mu\nu}[g]$ is in the form of a perfect fluid:
 - Can represent any cosmology.
 - Provides enough free parameters to enforce conservation.
- $T_{\mu\nu}[g] = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$
 - ρ , p and u_{μ} are functionals of the metric tensor.
 - u_{μ} is chosen to be timelike and normalized:

 $\cdot \ g^{\mu\nu} \, u_\mu \, u_\nu \ = \ -1 \ \ \Rightarrow \ u^\mu u_{\mu;\nu} = 0$

- Hence there are five independent functionals.
- $\nabla^{\mu}T_{\mu\nu} = 0$ gives 4 equations and allows to determine any 4 of the 5 functionals in terms of the fifth.
- Specify p[g].

p[g]

- To be a casual, non-local functional of the metric, one may use the following ansatz:
 - $p[g](x) = \Lambda^2 f(-G\Lambda X[g](x)) \xrightarrow{de \ Sitter} \Lambda^2 f[G\Lambda \ln(a)]$
 - -X[g](x): dimensionless and non-local functional of the metric.
- The inverse of some differential operator introduces causal non-locality
 - Covariant scalar d'Alembertian: $\Box \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} (g^{\mu\nu} \sqrt{-g} \partial_{\nu})$
- Acting the inverse of \square on a curvature scalar (R for example) gives a dimensionless result.

• $X[g] = \Box^{-1}R$

- In FLRW geometry:
 - $\Box = -(\partial_t^2 + 3H\partial_t)$
 - $R = 12H^2(t) + 6\dot{H}(t)$
- Then:

•
$$X[g] = \Box^{-1}R = -\int_0^t dt' \ a^{-3} \int_0^{t'} dt'' a^3 [12H^2 + 6\dot{H}] \xrightarrow{de Sitter} = -4\ln(a) + \frac{4}{3}[1 - e^{-3Ht}].$$

- This means that -X[g] grows during the inflationary regime of large R, and is approximately constant during the period of radiation domination (R(t) = 0 because a(t) ∝ t^{1/2} at this period).
- $f(-G\Lambda X[g](x))$ must be a function monotonically crescent and without bound for the pressure to produce enough screening to end inflation in roughly the right way.

Numerical Results

• Using the exponential model $(f(x) = e^x - 1)$ and $G\Lambda = \frac{1}{200}$, the authors made numerical works and obtained graphs for X(t), R(t), H(t), $\dot{H}(t)$, a(t) and q(t).

Figure 2: The evolution of the source X(t) during the oscillatory regime for the exponential model.

Figure 3: The evolution of the curvature scalar R(t) over the full range for the exponential model.

R(t) oscillations are centered at R = 0, the amplitude grows like t^{-1} and have $\omega = G\Lambda H_0 \sqrt{72\pi f'_{cr}}$.

Figure 4: The evolution of the curvature scalar R(t) during the oscillatory regime for the exponential model.

Figure 6: The evolution of the Hubble parameter H(t) during the oscillatory regime for the exponential model.

350 000

Figure 8: The evolution of $\dot{H}(t)$ during the oscillatory regime for the exponential model.

Figure 11: The evolution of the scale factor ratio [a(t)/a(150000)] during the oscillatory regime for the exponential model *versus* a linear interpolation.

a(t) oscillations are centered around a linear increase with time, which may be a problem for reheating.

Figure 10: The evolution of the decelaration parameter q(t) around the end of inflation for the exponential model.

During oscillations q < -1 for some time intervals which violates the weak energy condition ($\dot{H} \le 0, q \ge -1$).

The epoch of inflation (q < 0) ends slightly before X(t) reaches X_{cr} .

$$q(t = 0) = -1$$
 and
 $q(t = t_{cr}) = \frac{1}{2}$.

9

Figure 9: The evolution of the deceleration parameter q(t) during the oscillatory regime for the exponential model.

Analytical Results

•
$$2\dot{H} + 3H^2 = \Lambda - 8\pi Gp = \Lambda \{1 - 8\pi G\Lambda f[-G\Lambda X]\}$$

- f(x) is growing monotonically and without bound so there is X_{cr} such that $1 8\pi G\Lambda f[-G\Lambda X_{cr}] = 0$
- Inflationary evolution dominates roughly until the X_{cr} . Near X_{cr} the quantum induced pressure p is nearly constant:

•
$$f \approx f_{cr} - G\Lambda\Delta X(t)f'_{cr}, \ \Delta X(t) \equiv X(t) - X_{cr}.$$

•
$$R(t) \approx \frac{\sin(\omega t)}{a(t)}$$
. ω is the same as the calculated one in the numerical work.

Post Inflationary Evolution

- Energy flows from the gravitational to the matter sector, leading to the radiation domination period at t_r . Here R = 0 and the quantum induced stress-energy simply cancels the bare cosmological constant.
- At $t = t_m$ it's possible to use first order perturbation theory to compute the total pressure $(p_m = 0)$:

•
$$p_{tot} \equiv -\frac{\Lambda}{8\pi G} + p[g](x) \approx -\frac{\Lambda}{G}(G\Lambda)^2 f'_{cr}\Delta X$$
, $\Delta X \equiv X(t) - X_{cr} = -\frac{4}{3} \ln\left[1 + \frac{3}{2}H_m(t - t_m)\right] + O(1)$

- However, at matter domination period there are two problems:
 - f' > 0 and f is unbounded so $p_{tot} > 0$ when $X(t) < X_{cr} \ll 0$. The observation of late time acceleration implies negative pressure.
 - $\left(\frac{p_{tot}}{p_{now}}\right) \approx \left(\frac{G\Lambda H_I}{H_{now}}\right)^2 f'_{cr}\Delta X \approx 10^{86} f'_{cr}\Delta X$, $p_{now} \approx -\frac{3}{8\pi G} H_{now}^2$, $H_I \sim 10^{13} GeV$, $H_{now} \sim 10^{-33} eV$. The magnitude of p_{tot} is too large.

References

- Quantum Gravity and Inflation, Maria G. Romania, N. C. Tsamis, R. P. Woodard, 2012.
- A Phenomenological Model for the Early Universe, N. C. Tsamis, R. P. Woodard, 2009.
- Super-Acceleration from Massless, Minimally Coupled ϕ^4 , V. K. Onemli, R. P. Woodard, 2002.
- Cosmology Part III Mathematical Tripos, Daniel Baumann.
- Elements of Cosmology and Structure Formation, António J. C. da Silva.