
Quantum Cosmology: 
towards the Planck 
time
João Lopes, 52866

Professor António Silva

Universo Primitivo



Main reference
• Quantum Gravity and Inflation, Maria G. Romania, N. C. Tsamis, R. P. 

Woodard, 2012



Introduction
• FLRW metric:

� 𝑑𝑠! = −𝑑𝑡! + 𝑎! 𝑡 𝑑𝑥⃗. 𝑑𝑥⃗

• Hubble parameter:
� 𝐻 ≡ #̇

#
= $

$%
ln 𝑎 𝑡

• Deceleration parameter:
� 𝑞 ≡ − #̇ % #̈ %

#̇! %
= −1 − '̇

'! %
= −1+ 𝜀(𝑡)

• Horizon Problem



Introduction: Single-Scalar Inflation
• Inflaton: 𝜑

• Lagrangian:
� ℒ = −𝑔 − !

"
𝑔#$𝜕#𝜑𝜕$𝜑 − 𝑉 𝜑 + %

!&'(

• This model has the condition 𝐻̇ 𝑡 ≤ 0: Weak Energy Condition.



Introduction: Scalar Inflation
Problems
• Assumes that the universe began with scalar field approximately spatially 

homogenous over more than a Hubble volume 𝑉 𝜑 > 𝐻)*.

• Assuming 𝑉(𝜑) must be flat enough makes the inflation last a long time.

• Assumes that the minimum of 𝑉 𝜑 has just the right value 𝑉+,-(𝜑) ≈ 0 to 
leave the post-inflationary universe with only the small amount of vacuum 
energy we detect today.

• Assumes that the scalar field couples enough to ordinary matter so that its 
kinetic energy can create a hot, dense universe at the end of inflation, but 
not so much that loop corrections from ordinary matter compromise the 
flatness of 𝑉(𝜑).



Introduction: Gravity-Driven 
Inflation
• A more natural mechanism for inflation can be found within gravitation.

• Suppose that the bare cosmological constant Λ is not unnaturally small but 
rather large and positive. “Large” means a Λ induced by some matter scale 
which might be as high as 10!. GeV. Then 𝐺Λ would be ~10)/, rather than 
the putative of 10)!"".

• Λ is constant in space.

• Λ is constant in time, and classical physics can’t offer a natural mechanism 
for stopping inflation; quantum physics can: accelerated expansion 
continually rips virtual infrared gravitons out of the vacuum and these 
gravitons attract one another, thereby slowing inflation.



Introduction: Graviton Physical 
Modes
• Metric field with a fluctuating graviton field:

� 𝑔(,* = 𝑎! 𝑡 𝛿(,* + 32𝜋G ℎ(,*++ 𝑡, 𝑥

• ℎ,,1
22 𝑡, 𝑥⃗ = ∫ 3!4

"' ! ∑5{𝑢 𝑡, 𝑘 𝑒, 4.8⃗𝜀,,1 𝑘, 𝜆 𝛼 𝑘, 𝜆 + 𝑐. 𝑐. }
� 𝑢 𝑡, 𝑘 : mode function;
� 𝜀(,* 𝑘, 𝜆 : polarization tensor;
� 𝛼 𝑘, 𝜆 : annihilation operator;
� 𝑐. 𝑐. : complex conjugate.

• 𝑢̈ 𝑡, 𝑘 + 3𝐻 𝑡 𝑢̇ 𝑡, 𝑘 + 4"

9" :
𝑢 𝑡, 𝑘 = 0



… Estimate of E(t,k)
• Definition of energy is subtle for gravitons.

• Use a massless and minimally coupled scalar field 𝜑 𝑥 with the same mode 
equation as 𝑢 𝑡, 𝑘 for the estimate.

• Lagrangian density:
� ℒ = − ,

!
−𝑔𝑔-.𝜕-𝜑𝜕.𝜑 =

,
!
𝑎/ 𝑡 𝜑̇! − ,

!
∇𝜑. ∇𝜑

• Lagrangian (in space):
� 𝐿 𝑡 = ∫ 𝑑/𝑥 ℒ = ∫ $"0

!1 "
,
!
𝑎/ 𝑡 İ𝜑 𝑡, 𝑘

!
− ,

!
𝑎 𝑡 𝑘! I𝜑 𝑡, 𝑘

!

• Classic harmonic oscillator Lagrangian in 1D:
� 𝐿 = ,

!
𝑚𝑥̇! − ,

!
𝑚𝜔!𝑥!



• Any mode with wavenumber 𝑘 evolves independently as a harmonic
oscillator 𝑞(𝑡).
� 𝑚 → 𝑎/ 𝑡
� 𝑚𝜔! → 𝑎 𝑡 𝑘! and so 𝜔 = 0

#

• 𝑞 𝑡 = 𝑢 𝑡, 𝑘 𝐴 + 𝑢∗ 𝑡, 𝑘 𝐴<, 𝐴, 𝐴< = 1

• 𝐸 𝑡, 𝑘 = !
"
𝑎* 𝑡 𝑞̇" 𝑡 + !

"
𝑎 𝑡 𝑘"𝑞" 𝑡



• For de Sitter (𝑎 𝑡 = 𝑒=:)

� 𝑢 𝑡, 𝑘 = '
!0"

1 − (0
'# %

𝑒
#$

%& ' , 𝐸2(3(𝑡, 𝑘) =
,
!
𝑘𝑎4,(t)

� Ω 𝐸(𝑡, 𝑘) Ω = #" %
!

𝑢̇ 𝑡, 𝑘 ! + 0!# %
!

𝑢 𝑡, 𝑘 ! = 0
# %

,
!
+ '# %

!0

!

� | ⟩Ω : Bunch-Davies vacuum- minimum energy state in a distant past. 

� Quantum harmonic oscillator: ,
!
+𝑁 ℏ𝜔 so 𝑁 = '# %

!0

!
.

• 𝑘>?@A =
4

9 :
, Horizon crossing happens when 𝑘>?@A =

4
9 :

= 𝐻

� Infrared modes: 𝐻 < 𝑘 < 𝐻𝑎(𝑡)
� Ultraviolet modes: 𝑘 > 𝐻𝑎(𝑡)



Model Building: Perturbative Results
• Here we consider de Sitter inflation: 𝑎 𝑡 = 𝑒=:

• Gravitational Lagrangian is:
� ℒ56 =

45
,718

𝑅 − 2Λ

• Quantum corrections should not grow faster than powers of ln 𝑎 = 𝐻𝑡.

• In the regime ln 𝑎 ≫ 1, the energy density induced by quantum 
gravitational effects are:
� 𝜌, ∼ Λ!

� 𝜌! ~ − 𝐺Λ/ ln 𝑎 𝑡
� 𝜌9 ~ − Λ! 𝐺Λ ln 𝑎 𝑡 94, , 𝐿 is the order of the loop.



• Stress-energy is separately conserved at each loop order:
� ̇𝜌9 = −3𝐻 𝜌9 + 𝑝9 ⇒ 𝑝9 𝑡 ~ − 𝜌9(𝑡)

• General form of 𝑝 is:
� 𝑝 𝑡 ~ Λ!𝑓 𝐺Λ ln 𝑎

• If 𝐺Λ ln 𝑎 is small, petrubation theory is valid. It breaks down when the 
number of e-foldings 𝑁 ≡ 𝐻𝑡 = ln 𝑎 ~ 𝐺Λ )!



Guessing the Effective Field 
Equations
• With ℒBC =

)B
!&'(

𝑅 − 2Λ the classical gravitational equations of motion are:
� 𝐺-. = −Λ𝑔-.

• … adding a quantum induced stress-energy tensor 𝑇#$ 𝑔 :
� 𝐺-. = −Λ𝑔-. + 8𝜋𝐺𝑇-. 𝑔

• Principles 𝑇#$ 𝑔 must obey:
� Correspondence
� Non-locality
� Causality



Perfect Fluid Ansatz
• Considering 𝑇#$ 𝑔 is in the form of a perfect fluid:

� Can represent any cosmology.
� Provides enough free parameters to enforce conservation.

• 𝑇#$ 𝑔 = 𝜌 + 𝑝 𝑢#𝑢$ + 𝑝𝑔#$
� 𝜌, 𝑝 and 𝑢- are functionals of the metric tensor.
� 𝑢- is chosen to be timelike and normalized:

� 𝑔#$ 𝑢# 𝑢$ = −1 ⇒ 𝑢#𝑢#;$ = 0

• Hence there are five independent functionals.

• ∇#𝑇#$ = 0 gives 4 equations and allows to determine any 4 of the 5 
functionals in terms of the fifth.

• Specify 𝑝[𝑔].



p[g]
• To be a casual, non-local functional of the metric, one may use the following 

ansatz:
� 𝑝 𝑔 𝑥 = Λ!𝑓 −𝐺Λ𝑋 𝑔 𝑥

$: ;(%%:6
Λ!𝑓 𝐺Λ ln 𝑎

� −𝑋 𝑔 𝑥 : dimensionless and non-local functional of the metric.

• The inverse of some differential operator introduces causal non-locality
� Covariant scalar d’Alembertian: □ ≡ ,

45
𝜕- 𝑔-. −𝑔𝜕.

• Acting the inverse of □ on a curvature scalar (𝑅 for example) gives a 
dimensionless result.

• 𝑋 𝑔 = □)!𝑅



• In FLRW geometry:
� □ = − 𝜕%! + 3𝐻𝜕%
� 𝑅 = 12𝐻! 𝑡 + 6 𝐻̇(𝑡)

• Then:
� 𝑋[𝑔] = □4,𝑅 = −∫<

% 𝑑𝑡= 𝑎4/ ∫<
%( 𝑑𝑡==𝑎/ 12𝐻! + 6 𝐻̇

$: ;(%%:6
= −4 ln 𝑎 + >

/
1 − 𝑒4/'% .

• This means that −𝑋[𝑔] grows during the inflationary regime of large 𝑅, and 
is approximately constant during the period of radiation domination (𝑅 𝑡 =
0 because 𝑎 𝑡 ∝ 𝑡

&
" at this period).

• 𝑓 −𝐺Λ𝑋 𝑔 𝑥 must be a function monotonically crescent and without bound 
for the pressure to produce enough screening to end inflation in roughly the 
right way.



Numerical Results
• Using the exponential model (𝑓 𝑥 = 𝑒8 − 1) and 𝐺Λ = !

"DD
, the authors made 

numerical works and obtained graphs for 𝑋 𝑡 , 𝑅 𝑡 , 𝐻 𝑡 , 𝐻̇ 𝑡 , 𝑎 𝑡 and 𝑞 𝑡 .



Inflation dominates until near 𝑋EC, defined 
as: 1 − 8𝜋𝐺Λ𝑓 −𝐺Λ𝑋EC = 0

𝑋(𝑡) oscillations have constant period and 
decreasing amplitude



𝑅(𝑡) oscillations are centered at 𝑅 = 0,
the amplitude grows like 𝑡)! and have 
𝜔 = 𝐺Λ𝐻D 72𝜋𝑓ECF .



There is net expansion, however 𝐻(𝑡)<0 
in some small time intervals where the 
universe is compressing. This may 
explain rapid reheating when matter 
couplings are included. 



During oscillations 𝐻̇ > 0 for about half of 
the time which violates the weak energy 
condition (𝐻̇ ≤ 0, 𝑞 ≥ −1). This the 
hallmark of a quantum effect. 



𝑎(𝑡) oscillations are centered around 
a linear increase with time, which 
may be a problem for reheating.



The epoch of inflation (𝑞 <
0) ends slightly before 𝑋(𝑡)
reaches 𝑋EC .

𝑞 𝑡 = 0 = −1 and 
𝑞 𝑡 = 𝑡EC = !

"
.

During oscillations q < −1 for some time 
intervals which violates the weak energy 
condition (𝐻̇ ≤ 0, 𝑞 ≥ −1). 



Analytical Results
• 2𝐻̇ + 3𝐻" = Λ − 8𝜋𝐺𝑝 = Λ 1 − 8𝜋𝐺Λ𝑓 −𝐺Λ𝑋

• 𝑓(𝑥) is growing monotonically and without bound so there is 𝑋EC such that 
1 − 8𝜋𝐺Λ𝑓 −𝐺Λ𝑋EC = 0

• Inflationary evolution dominates roughly until the 𝑋EC . Near 𝑋EC the 
quantum induced pressure 𝑝 is nearly constant:
� 𝑓 ≈ 𝑓?6 − 𝐺ΛΔ𝑋 𝑡 𝑓?6= , Δ𝑋 𝑡 ≡ 𝑋 𝑡 − 𝑋?6.

• 𝑅 𝑡 ≈ GHI J:
9 :

. 𝜔 is the same as the calculated one in the numerical work.



Post Inflationary Evolution
• Energy flows from the gravitational to the matter sector, leading to the 

radiation domination period at 𝑡C . Here 𝑅 = 0 and the quantum induced 
stress-energy simply cancels the bare cosmological constant.

• At 𝑡 = 𝑡+ it’s possible to use first order perturbation theory to compute the 
total pressure (𝑝+ = 0):
� 𝑝%@% ≡ − A

B1C
+ 𝑝 𝑔 𝑥 ≈ − A

C
𝐺Λ !𝑓?6= Δ𝑋, Δ𝑋 ≡ 𝑋 𝑡 − 𝑋?6 = − >

/
ln 1 + /

!
𝐻2 𝑡 − 𝑡2 +

𝑂(1)

• However, at matter domination period there are two problems:
� 𝑓= > 0 and 𝑓 is unbounded so 𝑝%@% > 0 when 𝑋 𝑡 < 𝑋?6 ≪ 0. The observation of late 

time acceleration implies negative pressure.

�
D')'
D*)+

≈ CAE,
'*)+

!
𝑓?6= Δ𝑋 ≈ 10B7𝑓?6= Δ𝑋, 𝑝3@F ≈ − /

B18
𝐻3@F! , 𝐻G ~ 10,/𝐺𝑒𝑉,

𝐻3@F~104//𝑒𝑉. The magnitude of 𝑝%@% is too large.
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