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Overview

e Fluid Kinematics deals with the motion of fluids without

considering the forces and moments which create the
motion.

 Reference: (Chap. 4) Fluid Mechanics: Fundamentals and
Applications, by Cengel & Cimbala, McGraw-Hill series in
mechanical engineering.



What is a fluid ?

Tension (or stress): Force per unit area

* Normal tension: perpendicular to the surface
* Shear tension: parallel to the surface

Materials respond differently to shear stresses:
* Solids deform non-permanently
* Plastics deform permanently
* Fluids do not resist: they flow

In a fluid at mechanical equilibrium the shear stresses are
ZERO.

A fluid may be a gas or a liquid

solid gas
(ice) (water vapor)

liquid
/ (water) \
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Lagrangian Description

 Lagrangian description of fluid flow tracks the position and
velocity of individual particles.

e Based upon Newton's laws of motion.

* Difficult to use for practical flow analysis.
* Fluids are composed of billions of molecules.
* Interaction between molecules hard to describe/model.

* However, useful for specialized applications
» Sprays, particles, bubble dynamics, rarefied gases.
* Coupled Eulerian-Lagrangian methods.

 Named after Italian mathematician Joseph Louis Lagrange
(1736-1813).



Eulerian Description

* Eulerian description of fluid flow: a flow domain or control volume is defined by
which fluid flows in and out.

* We define field variables which are functions of space and time.
* Pressure field, P=P(x,y,z,t)
* Velocity field, V=V(x,y,z,t)

— —_

14 :u(x’y,Z,t)lT+v(x,y,Z,t)j+W(X,y,Z,t)k

* Acceleration field,

—

a= Zz(x,y,z,t)

—

a= ax(x,y,z,t)f+ay (x,y,z,t)]’+az (x,y,z,t)l;

* These (and other) field variables define the flow field.

* Well suited for formulation of initial boundary-value problems (PDE’s).

* Named after Swiss mathematician Leonhard Euler (1707-1783).



Example: Coupled Eulerian-Lagrangian Method

Forensic analysis of Columbia accident: simulation of shuttle
debris trajectory using Eulerian CFD for flow field and Lagrangian
method for the debris.



Acceleration Field

 Consider a fluid particle and Newton's second law,

—
—_

particle ~ m particlea particle

* The acceleration of the particle is the time derivative of the
particle's velocity. %

- . particle

[4) : =
article
b dt

* However, particle velocity at a point is the same as the fluid

velocity, -

Vparticle = V(xpa’”fide (t) ? ypa’”fide (t) ? Zparticle (t))

* To take the time derivative of Vyaricie the chain rule must be
used.

Obtain the expression for the acceleration and for the material derivative.



Acceleration Field

EXAMPLE 4-2 Acceleration of a Fluid Particle through a Nozzle

Nadeen is washing her car, using a nozzle similar to the one sketched in
Fig. 4-8. The nozzle is 3.90 in (0.325 ft) long, with an inlet diameter of
0.420 in (0.0350 ft) and an outlet diameter of 0.182 in (see Fig. 4-9).
The volume flow rate through the garden hose (and through the nozzle) is
V = 0.841 gal/min (0.00187 ft3/s), and the flow is steady. Estimate the
magnitude of the acceleration of a fluid particle moving down the centerline
of the nozzle.

Solve the problem and discuss the assumptions.

Answer: 160 ft/s"2




Material Derivative

* The total derivative operator is called the material derivative and
is often given special notation, D/Dt.

,D/: ,}’ + _\74q
D ot

» Advective acceleration is nonlinear: source of many phenomena
and primary challenge in solving fluid flow problems.

* Provides ‘transformation' between Lagrangian and Eulerian
frames.

* Other names for the material derivative include: total, particle,
and substantial derivative.




Flow Visualization

* Flow visualization is the visual examination of flow-field
features.

* Important for both physical experiments and numerical
(CFD) solutions.

* Numerous methods
e Streamlines and streamtubes
e Pathlines
e Streaklines
* Timelines
* Refractive techniques
e Surface flow techniques



Streamlines

Point (x + dx, y + dy) Vv
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* A Streamline is a curve that is
everywhere tangent to the
instantaneous local velocity vector.

* Consider an arc length

dr = dxi +dyj + dzk

e d7 must be parallel to the local
velocity vector

—_

V=ui +vj +wk

 Geometric arguments results in the
equation for a streamline

Expression



Streamlines

NASCAR surface pressure contours and Airplane surface pressure contours,
streamlines volume streamlines, and surface

streamlines




Calculate the streamlines for the following velocity field: 1',. = sin(t) and Vy = |



Pathlines

Fluid particle at ¢ = £,

Pathline s
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Fluid particle at some
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Photo by Michael H. Krane, ARL-Penn State.

* A Pathline is the actual path traveled by
an individual fluid particle over some time
period.

* Same as the fluid particle's material
position vector

(xparticle (t) ” y particle (t) )< particle (t))

e Particle location at time t:

t
X=x,, + J. Vdt

t

start

 Particle Image Velocimetry (PIV) is a
modern experimental technique to
measure velocity field over a plane in the
flow field.



Calculate the pathlines for the following velocity field: Vy = .S'Z-}‘Z( [) and \'.}_ = |



Streaklines

* A Streakline is the locus
of fluid particles that
have passed sequentially
through a prescribed
point in the flow.

* Easy to generate in
experiments: dye in a
water flow, or smoke in
an airflow.




Refractive Flow Visualization
Techniques

Timelines: A timeline is a set of
adjacent fluid particles that were
marked at the same

(earlier) instant in time.

Timelineatr=0

Timeline Timeline

all=!| at!=12

Timeline at r =14




Comparisons

* For steady flow, streamlines, pathlines, and
streaklines are identical.

* For unsteady flow, they can be very different.
* Streamlines are an instantaneous picture of the flow field.

 Pathlines and Streaklines are flow patterns that have a
time history associated with them.

e Streakline: instantaneous snapshot of a time-integrated
flow pattern.

* Pathline: time-exposed flow path of an individual
particle.



Flow rate

* The volumetric flow rate is the
volume of fluid which passes
per unit time; usually it is
represented by the symbol Q.




Kinematic Description
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In fluid mechanics, an element
may undergo four fundamental
types of motion.

a) Translation
b) Rotation

c) Linear strain
d) Shear strain

Because fluids are in constant
motion and deformation, they
are better described in terms of
rates

a) velocity: rate of translation
b) angular velocity: rate of rotation

c) linear strain rate: rate of linear
strain

d) shear strain rate: rate of shear
strain

)



Rate of Translation and Rotation

* To be useful, these rates must be expressed in terms
of velocity and derivatives of velocity

* The rate of translation vector is described as the
velocity vector. In Cartesian coordinates:

—

V=ui +vj +wk

* Rate of rotation at a point is defined as the average

rotation raté of two initially perpendicular lines that -
intersect at that point. The rate of rotation vector in e

Cartesian coordinates:
. 1(ow ov)- 1(6u awja, 1(ov ou)- ; \1
Qo=—| ———— |l +—| ——— ]+_ - — k : Line b Line a
2 8)/ aZ 2 aZ ax 2 ax 6)/ v Flu.id element
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L J Flu.id element b T—’




Tabela com o operador del em coordenadas cartesianas, cilindricas e esféricas

Operagao

campo vetorial A

Coordenadas cartesianas (X, , z)

A+ Ay + A2

Coordenadas cilindricas (p, ¢, 2)

App+ Agp+ A

Coordenadas esféricas (, 8, @), onde ¢ é o polar e 6 é o angulo azimutal ©

At Agl 4 Ay

) of . Of. f of ., 10f . 3fA f. 10f, 1 of .,
Gradiente Vf 2 Ty T 6s 30" 2 9,° T 8" o "o’ T rembap”
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1 04, 8A¢, 1 . 044\ .
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Rotacional V x A ( ) ( ” (smﬁ 3 ar (r v))e
(2 L1 (004 L2 a0 -2,
v ( ap ar T Top
5 o f f o f 18 ([ 8f 1 azf &f 18 (,0f 1 af 1 8%f
V= —_—t — 4+ — —— =+ = 0— —
Operador de Laplace V= Af 92 + o2 + 52 > p ( 8 ) 7 oy 5 oy (r 37')+7‘23'1n059< 80) "25in? § 00
. 24 2 9(Agsinb) 2
A 9 8 A (Vz _ afdy )A
(V2Ap - _= AV) A T2 72 sin 6 a0 " r2siné c')(p r
Vetor de Laplace V°A = AA V2A, %+ VZ2A, ¥+ VA2 f‘f p22 g‘r + (V2A - l + EOA 3c0sd BA(P)é
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https://pt.wikipedia.org/wiki/Del_em_coordenadas_cil%C3%ADndricas_e_esf%C3%A9ricas




Linear Strain Rate

* Linear Strain Rate is defined as the rate of increase in length per unit length.
In Cartesian coordinates
ou ov _ow

E =—, & =—, & =—
oo Y oy T oz

* VVolumetric strain rate in Cartesian coordinates

1 DV ou ov ow

——— =g _+&, +E, =—+—+
V Dt > ox 0Oy Oz

* Since the volume of a fluid element is constant for an incompressible flow, the
volumetric strain rate must be zero.

Interpret the divergence



Shear Strain Rate

*Shear Strain Rate at a point is defined as half of the
rate of decrease of the angle between two initially
perpendicular lines that intersect at a point.

* Shear strain rate can be expressed in Cartesian
coordinates as:

_1{ Ou 6\/ 1 ( 8w ou j 1{ov ow
& JE £, = +
v 2\ oy 8x 2\lox oz 2lez oy




Shear Strain Rate

We can combine linear strain rate and shear strain rate

into one symmetric second-order tensor called the
strain-rate tensor.

[ Mfou o 1(@_%@_@
. \ Ox 2\oy ox) 2\ 0z oOx
E_E. &
xx xy Xz
1({o0v ou oV 1({ov ow
s. =&, €. &, |=|—= + — — 4
’ oo 2\ 0x oy Oy 2\ 0z oy
\ gzx gzy gzz )
(5\/\/ Guj 8w ov (9_w
2\ ox Oz 2 oy 82 Oz

Write in tensor form




Shear Strain Rate

* Purpose of our discussion of fluid element kinematics:

 Better appreciation of the inherent complexity of fluid
dynamics

* Mathematical sophistication required to fully describe fluid
motion

e Strain-rate tensor is important for numerous reasons.
For example,

* Develop relationships between fluid stress and strain rate.
* Feature extraction and flow visualization in CFD simulations.



Shear Strain Rate

Example: Visualization of trailing-edge turbulent eddies
for a hydrofoil with a beveled trailing edge

Feature extraction method is based upon eigen-analysis of the strain-rate tensor.



Vorticity and Rotationality

* The vorticity vector is defined as the curl of the velocity vector

£ =VxV

* Vorticity is equal to twice the angular velocity of a fluid particle.
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F=2d

Cartesian coordinates
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* In regions where = 0, the flow is called irrotational.

* Elsewhere, the flow is called rotational.
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Vorticity and Rotationality

Fluid particles not rotating

Irrotational outer flow region

Rotational boundary layer region Boundary Layer

____.@___,/@___, _____

X
Fluid particles rotating



EXAMPLE 4-8 Determination of Rotationality

in a Two-Dimensional Flow

Consider the following steady, incompressible, two-dimensional velocity field: 3

V=(v) =30+ (2y - 1)j (M 7,3
Is this flow rotational or irrotational? Sketch some streamlines in the first . &
quadrant and discuss. : ] Ar=050s
e S ARanas
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—
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Comparison of Two Circular Flows

Special case: consider two flows with circular streamlines

Flow A Ug 4 Flow B Uy 4

e u(,:wr

S/ artt]
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Reynolds—Transport Theorem (RTT)

* A system is a quantity of matter of fixed identity. No mass
can cross a system boundary.

* A control volume is a region in space chosen for study. Mass
can cross a control surface.

* The fundamental conservation laws (conservation of mass,
energy, and momentum) apply directly to systems.

* However, in most fluid mechanics problems, control volume
analysis is preferred over system analysis (for the same
reason that the Eulerian description is usually preferred over
the Lagrangian description).

* Therefore, we need to transform the conservation laws from
a system to a control volume. This is accomplished with the
Reynolds transport theorem (RTT).



FIGURE 4-53

Two methods of analyzing the spray-
ing of deodorant from a spray can:

(a) We follow the fluid as it moves
and deforms. This is the system
approach—no mass crosses the
boundary, and the total mass of the
system remains fixed. (b) We consider
a fixed interior volume of the can. This
is the control volume approach—mass
crosses the boundary.



Reynolds—Transport Theorem (RTT)

Mass ) Mass
entering " leaving P
* Material derivative (differential analysis): \\\‘\\ A S—
Db 6b — - ) ‘/l\\ Control volume ) /l
- +(V'V)b U ROt B E
Dt ot Ik

* General RTT (integral analysis):

dB

sys J , . —
— = —(pb) dV + bV-n dA
(]f JCV ()t (p ) JCS p " A : B
,/ o( \ ,/ ( Vaas
. . Cenalp ConT e
* Interpretation of the RTT: ~ «/_(, ... S/ ace
* Time rate of change of the property B of the system is equal to (Term 1) +

(Term 2)
 Term 1: the time rate of change of B of the control volume

* Term 2: the net flux of B out of the control volume by mass crossing the
control surface

* b=B/m (intensive property)



Reynolds—Transport Theorem (RTT)

General

d f
—/ de:/ 6—dV+/ (v’ -n)fdA
dt Jo () Ot a0(t)

Intensive property

Material element v
" - A
Vi:A=vV-0N /

https://en.wikipedia.org/wiki/Reynolds_transport_theorem

cv

1




Reynolds—Transport Theorem (RTT)

Lagrangian D Eulerian
description Dt description

System Control
analysis | RTT | — volumf:
analysis

There is an analogy between the transformation from Lagrangian
to Eulerian descriptions (for differential analysis using
infinitesimally small fluid elements) and that from systems to
control volumes (for integral analysis using finite flow fields).



Conservation of mass (continuity equation)

* Integral form E (
2 [ .pi +_[ V.dA =0
3 Jov ! p
7 ed
] d¥ = - V-dA
()1 p (.‘Sp '
Rate of increase Net influx of
of massinCV ~ — mass G S
: d [ .
General conservation of mass: — pdV + p(V-n)dA = 0
) 7 B e
I+ V. (V) -0 g
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Conservation of mass (continuity equation)

e Differential form

* Use divergence theorem to transform the surface integral into a
volume integral and equate the integrands,

(= Cre 77@
— ap - -0

e For an incompressible fluid (constant density) the continuity equation
reduces to

V-V=0

* The velocity field has ZERO divergence.



