
Structure formation

Perturbations in general relativity



In General Relativity, we need to consider perturbations in the cosmological fluid 
and in the metric. 

We want to find a set of equations to study the time-evolution of any 
perturbed quantity (for each scale), and in particular we are interested in the  
time-evolution of the density contrast of the matter field (the basis for 
structure formation).

The perturbed quantities may be written as independent modes in harmonic space 
and the modes evolve independently in the linear regime à no spatial evolution in 
the linearized equations.

The set of equations are the (perturbed and linearized) Einstein equations 
plus energy-momentum conservation equations.  

The energy-momentum conservation equation is a continuity equation in 
the case of a perfect fluid. In the more complex case of a system of particles with an 
energy distribution evolving in the phase space, the conservation equation is the 
(perturbed) Boltzmann equation.

The set of equations are called the Einstein-Boltzmann equations.

General Relativistic Treatment



Metric Perturbations

It is convenient to write the diagonal Robertson-Walker (RW) metric using 
conformal time τ, i.e., to factorize the scale factor:

where δij is the Kronecker delta, i.e., the identity matrix, and i,j (spatial indexes) run 
from 1 to 3.

In matrix form and using cartesian coordinates (and in the case of 
flat space), the metric is thus,

we also define the conformal Hubble function         = a H = a’ / a  
that is useful when considering derivatives with respect to conformal time.



Now, the inhomogeneities in the density field (and in other sources of gravity) 
produce a change in the metric.

The metric becomes inhomogeneous and, if the modifications are small, it is 
usually written as a perturbation to Robertson-Walker metric à

RW is called the background metric in the inhomogeneous universe.

In general, we can perturb all 10 components of the symmetric 4x4 RW metric, and 
we may write a general (symmetric) 4x4 metric perturbation as:

This introduces 10 new random fields (which in principle, if they are independent, 
are expected to introduce 10 new degrees of freedom in the metric): 1S + 3V + 6T 
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These 10 new quantities are: 

Φ (1 scalar in the component tt)  ;
wi (a vector with 3 components ti)  ;
hij (a traceless tensor with 5 components ij);
ψ (the trace of the spatial tensor of the perturbed metric)

Here, the tensor was written as a traceless tensor + trace, i.e, the types of the 
10 components are now: 2S + 3V + 5T 

The vector and tensor components can be further decomposed as we will see 
next: the SVT decomposition. 

This is useful because S, V and T perturbations will evolve independently of 
each other, and so it will simplify the system of differential Einstein equations.



Scalar perturbations

What is the meaning of the two metric scalar perturbations?

Φ - From the equivalence principle :

Gravitational field (gravitational mass) ßà Acceleration of the reference 
system (inertial mass)

In the well-known “gedanken” experiment in 
special relativity:

Photon travel time from ceiling to floor    t = h/c
Floor’s velocity increased by  g h/c
Frequency shift  Δν/ν = Δv/c = gh/c2

Time dilation Δt/t = gh/c2

Equivalence principle à time dilation = ΔΦ /c2

Minkowski metric in an accelerated frame (or with a gravitational potential: a metric perturbation)



ψ - In GR, spatial curvature also contributes to gravity à a perturbation to spatial 
curvature also changes the dynamics 

The simplest inhomogeneous metric is the scalar one - it includes two potentials,
defining a space-time curvature that describes gravitational effects at first-order:

Null geodesics are determined by Φ + ψ
(= 2Φ if they are equal), 

while in Newtonian gravity, trajectories are 
determined by Φ (potential associated to the 
inertial mass), and curvature is not considered

à light deflection in GR is twice as large than 
in Newtonian gravity à first test of GR (1919 
eclipse)



Any vector can be decomposed in a sum of 2 special types of vectors: 

a gradient vector 
and a divergence-free vector:

Remember ‘;i’ stands for derivative in curved space-times , i.e., the covariant derivative with 
respect to the coordinate ‘i’. 
This is computed as the partial derivative ‘,i’ with respect to ‘i’ plus the appropriate contractions 
with the connection. 
For example the covariant derivative of a vector is:

Vector perturbations

The decomposition leads to two important features:

i) The 3 components of the gradient vector  w;i are all computed from derivatives of 
the same scalar w (this is usually called the potential of the associated vector field) 
à the three components contain only 1 independent quantity, a scalar w



ii) The 3 components of the divergence-free vector are also not all 
independent, they are related due to the divergence-free nature of the vector, i.e.,

à the 3D divergence-free vector has only 2 independent vector components

So the vector perturbation with 3 components 3V was decomposed in 1S+2V



Tensor perturbations

Any traceless tensor can be decomposed in a sum of 3 special types of 
tensors: 

a gradient of a gradient, i.e., a laplacian tensor, 
a gradient of a divergence-free vector, 
and a divergence-free and traceless tensor:

with

Let us look at the 3 terms:

i) In the first term, the tensor is

and then the diagonal terms are subtracted by

This results in a tensor Dij h that is traceless.



ii) The second term is a tensor built from a vector hi :

Note that the full 3x3 symmetric tensor defined by the first term (containing in 
principle 6 independent quantities) is all built from 1 single quantity, the scalar h à it 
contains only 1 independent quantity, the scalar h

so in principle it has 3 independent vector components.

However, we will consider that the vector hi is divergence-free, i.e.

This makes  h(i;j) traceless  à the second term only contains 2 independent 
quantities



iii) The third term is a traceless and divergence-free tensor hT
ij . 

This means that its 6 independent components are constrained by 4 equations:

à it contains only 2 
independent quantities

So the (traceless) tensor perturbation with 5 components 5T was decomposed 
in 1S+2V+2T



This tensor decomposition was made for a traceless tensor. 

In general, the tensor perturbation do not need to be traceless. Now that the 
decomposition is made, it is very easy to generalize it to the case of a non-zero 
trace. 
We just to need to add a trace tensor, i.e., a diagonal tensor only with the trace 
information à the trace is then an additional degree of freedom, and it is a scalar.

The trace tensor is usually written as  -2 ψ δij à it contains only 1 independent 
quantity, the trace (the scalar ψ)

So the tensor perturbation with 6 components 6T was decomposed in 
2S+2V+2T



Collecting all terms, the metric SVT perturbations are:

So the fundamental types of the 10 degrees of freedom are:

4S + 4V + 2T

instead of 1S + 3V + 6T 



Energy-Momentum Tensor Perturbations

The homogeneous metric is sourced by a perfect fluid:

where u is the fluid 4-velocity 

A perfect fluid has no heat conduction q (a 0i vector) and no anisotropic stress π (a ij
tensor). A more general fluid is: 

The perturbed metric is sourced by a perturbed fluid:



The source quantities include components of a perturbed perfect fluid:

-- δ - density perturbation   

-- δp - pressure perturbation  

The ratio of the (dimensional) pressure and density perturbations is an important 
property of the fluid 

(as the equation-of-state that related the mean pressure and density was).

It is called the speed of sound cs: 

(it will become clear later why this quantity is the velocity of propagation of 
density waves in the fluid)



However, in cosmology, the temperature of the cosmological fluid decreases with 
the expansion and is non-isothermal.
A special case of non-isothermal evolution is the adiabatic (or isentropic) evolution, 
where the temperature changes in a way that heat transfer compensates the 
entropy change à entropy is conserved.

Usually, pressure perturbations are separated in 2 parts: adiabatic and non-
adiabatic:

Pressure and density perturbations are thermodynamically related. 
As the universe expands and the density decreases, pressure should also 
decrease if the temperature was constant (pV = nRT). 
This would be an isothermal evolution. This happens in astrophysics when the 
process has time to thermalize (the heat transfer is fast compared with the sound 
speed).



Now, the adiabatic case verifies

In this case, by Taylor expanding p(ρ) we can find a useful relation:

with

On the other hand, by definition

à inserting this in the Taylor expansion, it follows

Inserting the adiabatic condition, we find that the adiabatic speed of sound is 
also given by



-- δu - velocity perturbation

In the case of the homogeneous Universe, the background 4-velocity was  
uμ = (-a,0) (from its normalization) à there was no spatial velocity contribution à
the homogeneous fluid was comoving with the expansion.

Now, on the contrary, there is a velocity perturbation and uμ = uμ + δuμ

with  δuμ = a (-Φ ,vi + wi)

vi is the fluid velocity perturbation - the peculiar velocity

wi comes from the vector metric perturbation

The usual (SV) decomposition defines a scalar part of vi, such that vi = grad(θ)  :  
the scalar velocity perturbation θ (also sometimes called v)



The source quantities may also in general include the components of a non-
perfect fluid:

-- qi - energy flux 

The energy flux (it is a perturbation there is no need to define a δq, since it was 
zero in the background) is a velocity vector, usually decomposed in S and V 
parts. 

-- Πij - anisotropic stress 

Anisotropic perturbations in the spatial part of Tμν form the Πij. 
It is decomposed in S (written as second-order derivatives of a scalar σ), V, T



Gauge transformation

To define a metric perturbation we needs both a perturbed and an unperturbed 
metric à the value of the metric perturbation at (x,t) is the difference between the 
metric value in the inhomogeneous universe at (x,t)  and the metric value that 
would exist without perturbations at the same point (x,t).

But it is the metric that defines the points (x,t) à the two 
sets of points (x,t) do not exist in the same space-time 
à we cannot uniquely say that one point is the same in 
different metrics à in order to define the perturbation we 
need to make an identification, a mapping, between 
points in the 2 metrics à the mapping fixes the gauge.

Gauge means a standard,  a prescription. 



Consider 2 different gauges (mappings), ~ and ^ 

à a point in the background metric is identified with 2 ‘different’ points in the 
perturbed metric 

à the 2 points have the same coordinates (x,t) in the 2 gauges à a quantity defined 
at (x,t) in both gauges may be different in the 2 gauges à it is not gauge invariant.



The transformation is described by the 4-vector  ξμ = (ξ0, ξi).

The spatial part may be decomposed as usual in a scalar and a two-component 
divergence-free vector: 

ξ , 

We can apply this generic gauge transformation to any quantity defined
in the space-time.

Consider the gauge ~   

The 2 ‘equivalent’ points have different coordinates in that gauge à the 
transformation between the 2 points is the  gauge transformation: 



(Taylor expansion)

(1) taking the derivative in
the background metric
(2) only time component is 
needed since the background is
isotropic(where s’ is the conformal derivative of s)

Transformation of a scalar function:

In the case the scalar is a perturbation:

The trivial solution is that any 
conformal time-invariant scalar 
is gauge-invariant.



Transformations may also be written for vectors, tensors, and for vector 
perturbations 

and tensor perturbations 

The total metric perturbation is a tensor perturbation, and this last formula applies.



We can apply this expression to compute the gauge transformation for all metric 
components. For example, for the (0,0) component:

Using the fact that the background metric is a symmetric and homogeneous
tensor, we get the expression for the gauge transformation of the metric 
perturbations:



We can also compute the gauge transformations for the perturbed energy-
momentum components.

For example:

δ scalar perturbation:

vi vector perturbation:

The gauge transformations of the 4 scalar components of the metric are:



Fixing the gauge

Defining a particular (arbitrary) ξ fixes the gauge.

The transformation with the 4-vector ξ introduces 4 constraints between the 10 
metric perturbations (2S + 2V) à reduces the number of scalar degrees of 
freedom from 4 to 2, and vector dof from 4 to 2 and keeps the number of tensor 
dof at 2 à reduces the total degrees of freedom from 10 to 6 à there are only 6 
independent components of the metric perturbations. 

Instead of defining the quadrivector ξ, the gauge can alternatively be fixed 
by assigning the values of 4 perturbations (2S + 2V).

Some examples of gauges:



Synchronous gauge

w = 0 à no cross terms x,t in the metric à allows to define comoving
observers for which x does not change as time goes by (just like it happens 
for the background RW).

Φ = 0 à all comoving observers (at different x positions) have synchronous 
time à no gravitational redshift (i.e., no conformal cosmological redshift).

In this gauge the two scalar perturbations remaining are:
ψ and h, that only affect the spatial ii and ij components.

(and there are also 2V and 2T d-o-f remaining)



(Conformal) Newtonian gauge (also called longitudinal gauge) 

w = 0 à no cross terms x,t in the metric à allows to define comoving
observers for which x does not change as time goes by (just like it happens for 
the background RW).

h = 0 à spatial perturbations are diagonal à no shear perturbations

In this gauge the metric is defined by  ψ and Φ (besides  2V and 2T dof) 

Φ gives the gravitational redshift à it is a gravitational potential (taking the limit 
of GR for weak fields,  like in Newtonian gravity, hence the name of this gauge)

ψ is called the curvature potential



From the choice of metric perturbation values in two particular gauges, we 
can compute the transformation ξ between the two gauges.

For example, the scalar part of the gauge transformation between the synchronous
and Newtonian gauge is:

(Note that here we are working with quantities in Fourier space à the transformation is 
function  of scale.

With this we can compute the transformations between these gauges for all
quantities:

the density contrast transforms between the synchronous and the Newtonian
gauge as:

the velocity perturbation transforms as:   v_S = v_N + ξ’



We see that the metric perturbations are different from gauge to gauge and δ
depends on the gauge,

however, observables should be gauge-independent. 

The measurement of a power spectrum (or δ value) should not depend on the 
theoretical choice of the gauge.

Looking at the gauge transformation expression, we see this is indeed the case 
for large values of k (small scales), and for Universes with metric perturbations 
that vary slowly à this is the case of sub-Hubble scales (small, intermediate and 
even large scales in the late universe)

Only for the ‘very relativistic universe’ is there an ambiguity in observations, i.e.
for very large scales or in the early universe. 

However, some gauge-invariant combinations can be defined.  On very 
large scales these quantities are the ones that have physical meaning. 

Gauge invariance 



An example of gauge-invariant metric quantities are the Bardeen potentials:

Notice that in the Newtonian gauge, these gauge-invariant Bardeen potentials are 
identical to the scalar perturbations.

An example of a gauge-invariant metric-source quantity is the curvature perturbation:

The power spectrum of the curvature perturbation 
is computed in inflation à it gives the initial condition
for the potential power spectrum à and consequently for
the matter power spectrum.

An example of a gauge-invariant source quantity is the comoving-gauge density 
contrast:



Einstein equations

scalar perturbations 

We will consider metric scalar perturbations and derive the Einstein equations 
in the Newtonian gauge to linear order

In this case, the perturbed Robertson-Walker metric is:

Note that there are different sign conventions (+,-) (-,+) (+,+) and different naming 
conventions found in the literature:

For example

is used in Dodelson

is used in Liddle & Lyth
and Baumann 



Einstein tensor:

Ricci scalar: 

Ricci tensor:

Connection: 

In order to write the Einstein equations, we need first to compute the following 
quantities:

given our metric:

and its inverse:



The results for all terms are:

We need first to compute the connections.

For example, for the term 000 we have,



Note the results show a natural separation between the background RW and 
perturbation: 



From this we can compute the Ricci tensor

(it includes sums over all t,x derivatives and sums of products of two connections)

Now, computing for example for 00:

in this case, a term with ρ=0 always cancels out some other term, and so:

Note: some useful sums are: 



The results for all terms are:

To compute the Einstein tensor, we also need the Ricci scalar: 

This requires to raise an index. Note that this needs to be done using the full 
metric, we cannot just raise the index of the background and perturbed parts 
separately:  

(i.e., there are cross-terms)



The results for all terms are:

(Note: here the results are given for Rμ
ν and not for Rμν, hence the a-2 factors)

and the Ricci scalar is thus:



Finally, the Einstein tensor is:

This is the linearized Einstein tensor for the scalar-perturbed Robertson-
Walker metric in the conformal Newtonian gauge.

It depends on :
a(t) and its time derivative,
the two metric potentials and their time and spatial derivatives.

Note that the off-diagonal components only have perturbations, while the diagonal 
components have both perturbations and background terms.



We can now write the Einstein equations 

considering the energy-momentum tensor background + perturbations

Remember: the perturbations are density contrast δ, pressure δp , peculiar 
velocity, anisotropy tensor

-- vi , δ, δp are 5 components = 3S+2V 

(for scalar perturbations, we just consider the scalar perturbation v associated with 
the vector vi à vi = grad(v) )



-- the traceless anisotropic stress Πijaccounts for the remaining 
5 components = 1S+2V+2T

(the 3x3 spatial tensor)

There is also the velocity 4-vector with norm -1

in the background: 

the perturbation defines the peculiar velocity: 

Hence, the 4-velocity vector is:

Note the 0 component does not introduce a new perturbation because of the
norm constraint. 
The perturbation is the spatial part vi



In conclusion, the perturbed part of the energy-momentum tensor is: 

Note that the velocity perturbation does not contribute to the diagonal at linear 
order because it would contribute with a quadratic term vδ.



We can now write the Einstein equations 

showing only linearized perturbations, i.e., 

- no background zero-order terms present

- no higher-order terms present à not valid for non-linear evolution



The ij equations can be separated in diagonal and off-diagonal parts, and the full set
of equations is, 

The equations can also be written in Fourier space:



In the case of a perfect fluid (Πij= 0) and only scalar fluid perturbations, there are only 
4 independent Einstein equations (00, 0i, ii, ij) since all spatial i are identical.

In this case, the 4 first-order linearized Einstein equations in the Newtonian gauge 
reduce to:

“Friedmann / Poisson”

“Raychaudhuri / eq. movement”

new “velocity”

new “anisotropy”

We see that there are 4 fundamental Einstein equations at first-order perturbative
level, in contrast with only 2 at background level.

For dark matter (no pressure or pressure perturbations) they can be used 
to solve for the 4 unknowns: Φ, Ψ, δ, v  



We can also write separate zeroth-order Einstein equations, i.e., for the 
homogeneous background. 

Since Tμν is the sum of background + matter perturbations and only two of the 
Einstein tensor components (G00 and GII) are a sum of background + metric 
perturbations, there are only 2 background Einstein equations.



The two background Einstein equations are

i.e., we recover Friedmann and Raychaudhuri equations.

notice that



Let us go through the equations one by one.

00 - the Hamiltonian constraint

This equation relates the Laplacian of the potential with the matter density à it is a 
relativistic Poisson equation.

The two new terms, Ψ’ and Φ, function of the potentials, are relativistic corrections 
to the Newtonian Poisson equation. 

The corresponding background equation is the Friedmann equation

à so Friedmann equation is a kind of Poisson equation, relating the density with 
gravity (metric) properties. 

In the homogeneous case the metric property is the scale factor and not the 
potential. The potential is a perturbation and does not appear in the homogeneous 
FRW universe.

The scale factor is related to the “potential of the homogeneous universe”, being 
responsible for the redshift (like the potential is responsible for a gravitational 
redshift). The potential has dimensions of velocity square à the Hubble flow.



0i - the momentum constraint

This is the peculiar velocity equation. 

It has no background counterpart.

Combining equations 00 and 0i, we can cancel out the relativistic corrections and 
obtain a Poisson equation for the gauge-invariant Δ

that thus defines the GR meaningful “effective density contrast”.



ii - the pressure constraint (potential evolution equation)

This equation involves second-order time derivative of the potential à it is
an equation of movement of the potential, describing the evolution of the metric
perturbation. 

The corresponding background equation is the Raychaudhuri equation à
it is the equation of movement for the scale factor.



ij - the anisotropy constraint

This equation tells us that the two Bardeen potentials are equal à it is called the 
anisotropy equation. 

If there is anisotropic stress, the two potentials are no longer equal à in GR, a 
perfect fluid always induces a metric with equal potentials. 

It has no background counterpart.

Let us see a few results of these equations.



This signature is usually parameterized introducing the gravitational slip 
parameter η

Since there are 2 independent scalar metric perturbations à 2 scalar dof à 2 
gravitational potentials in a relativistic theory of gravitation à there is room for a 
second independent modified gravity signature.
This is usually parameterized by the mass screening parameter Q, or equivalently 
by an effective gravitational constant G_eff.

This means that G would be different in that theory à it would be equivalent 
to consider that the same value of the potential is created by a different 
value of density, through a modified Poisson equation:

Equation 4 (ij): anisotropy equation

A detection of a difference between the potentials  (in the case of a perfect fluid) 
is a possible signature of modified gravity. 

Ψ



Let us start by introducing the definition of sound speed in the equation

We see that the right-hand sides of equations 00 and ii only differ by a
factor cs

2, i.e. à 00 = ii cs
2

Inserting eq. 00 in  eq. ii, and using  eq. ij (Ψ = Φ) , we obtain an equation of 
motion for Φ:

Equation 3 (ii): evolution of the potential Φ



On small scales 

the evolution of the metric perturbation Φ can be approximated by (in the 
harmonic space)

i.e., all terms with H are neglected.

This is a wave equation à Φ oscillates in time, propagating with a 
velocity given by cs. 

This equation confirms that the ratio of the pressure to the density 
perturbations is the velocity of propagation in the fluid.



On large scales 

the terms with k are neglected

In the case of a barotropic fluid: p = wρ

In the case of a adiabatic fluid:  
à cs

2 = w 

In this case, the evolution of the potential is given by:

This second-order differential equation has 2 solutions:  

-- a constant à the potential remains constant in time

-- a decaying solution 

The actual solution Φ (t) depends on the background evolution H(t). 

(since                                   ) 



In the late universe when dark energy becomes important, the dominating 
behaviour is the decaying solution à the potential decreases with time. 

That evolution can be used to test dark energy models à when CMB
photons cross an evolving LSS potential they are blue-shifted (gain energy 
when entering) and then redshifted (lose energy when leaving). 

The energy balance is not zero, they gain energy if the potentials decay à
their temperature increases with respect to their original temperature.



The effect is larger on large scales (because photons take longer to cross the 
larger potentials) à it is measurable as a change in the amplitude of the 
CMB power spectrum at large scales. 

It is a test of dark energy (or also a 
signature of modified gravity), called 
the Integrated Sachs-Wolfe effect.



Taking now the 0i equation, and inserting the constant potential solution, and 
the Friedmann equation, the equation for the velocity becomes,

In the matter-dominated epoch, the conformal Hubble function 
decreases as a-1/2 à the peculiar velocity grows with a1/2 as dark matter 
clusters in the matter-dominated epoch.

Equation 2 (0i): evolution of the peculiar velocity v



Inserting the constant potential solution in the 00 equation (Poisson), 
and using Friedmann’s equation, the equation for the density becomes,

Equation 1 (00): evolution of the density contrast δ

Small-scales à the k2 term dominates.  

In the matter-dominated epoch, the conformal Hubble function decreases as a-1/2 

à the density contrast grows with a  

Large-scales à the constant term dominates. 

δ does not grow. 
However, on large scales we need to consider the comoving gauge-
invariant density contrast Δ. This is the one that enters the relativistic Poisson 
equation and is the quantity that has physical meaning in a general relativistic 
covariant framework.



From this Poisson equation, we see that:

- radiation epoch à Δ ~ a-2 a4 ~a2

- matter epoch à Δ ~ a-2 a3 ~a1

This result can also be found with the mini-universe approach.

Now: the Einstein equations do not contain differential equations for the 
source perturbations, but only for the metric perturbations.

However, observations measure parameters of the source (not of the metric 
potential) à it would be more convenient to study the evolution of δ from a 
differential equation for δ, defining initial conditions (cosmological 
parameters) for δ.



Energy conservation equations

Like it is done for the background, we can obtain more equations by considering the
energy conservation of the energy-momentum tensor:

i.e., 

At first-order we obtain 2 conservation equations (instead of a single one as was the 
case for the background)



ν = 0

This case has a time derivative of T00 and a spatial derivative of T0i , 
plus dependence on the potential through the metric (covariant derivative).

Inserting the energy-momentum components and the connection coefficients, the 
result is an energy conservation equation.

Collecting the pure background terms, the result is the zero-order continuity 
equation, that accounts for the energy conservation in the expanding background:



The remaining terms are the first-order relativistic continuity equation:

We can compare it with the Newtonian first-order (linearized) comoving continuity 
equation (for dark matter): 

For dark matter (w=0, cs
2 = 0), the only difference (i.e. the relativistic correction) is 

the term with the derivative of the potential, that is negligible for slow-varying or 
constant potentials.

note that the divergence of the peculiar velocity is usually denoted 



ν = 1

This case has a time derivative of T0i and spatial derivatives, plus dependence on 
the potential through the metric (covariant derivative).

At background level there is no T0i term and thus there is just one conservation 
equation. 

At perturbative level we get a momentum conservation equation:

This is also a fundamental equation in fluid dynamics - the Euler equation - it is the 
(acceleration) equation of movement of a Newtonian fluid. 



These two fluid evolution equations are not independent of the Einstein 
equations, but they can be used instead of the two Einstein evolution 
equations, or in combination with them.

They have the interest of introducing explicitly differential equations for the 
density contrast and peculiar velocity.

It tells us that the rate of change of velocity depends on the background expansion, 
and of the gradients of pressure and gravitational potential (“forces”).

Like we saw, it has no counterpart in homogeneous cosmology. 

We can compare it with the Newtonian first-order (linearized) comoving Euler 
equation (for dark matter): 

For dark matter (w=0, cs
2 = 0, w’=0), the Newtonian and relativistic equations are 

identical.



Up to now, the results we found in the relativistic approach are not very 
different from the ones in the Newtonian approach.  

The main differences were:

- the Friedmann equation appears as a Poisson equation (no need to introduce 
it by hand) 

- the Raychadhuri equation appears as an equation for the evolution of the 
potential (was not part of the set of Newtonian equations)

- the relativistic terms of those equations contain new information that allows us  
to compute the evolution on large scales, and define a gauge-invariant 
density contrast

- the continuity and Euler equation appear naturally as before



However, the energy-momentum fluid description is not always valid.

Beyond background level, radiation is not well described by a cosmological
fluid approach.

The perturbations in the plasma density cannot be described by a coherent fluid with 
a well-defined velocity à various particle fluxes intersect in the global fluid (multi-
streams).  

Even for dark matter, in the radiation epoch, the evolution is not accurately 
computed by using an energy-momentum fluid in the Einstein equations.

The energy-momentum conservation must be studied at the level of particles and 
not at fluid level, using a kinetic approach (statistical physics) à a transport 
equation that describes the evolution of a distribution function f(x,p,t) of the 
cosmological species in the phase space.

Perturbed Boltzmann equation



The evolution of a distribution function f(x,p,t) is described by the Boltzmann 
equation: 

or the Vlasov equation if the total derivative of f is conserved (the collisionless
case):

The perturbations - density contrast = n(1) / n(0); and velocity v - are moments 
of the energy-momentum distribution.
Remember that the α- order moment of a distribution of a variable, is the integral of 
the variable over its space weighted by its distribution function. 

(the normalization of f) (the weighted mean of the velocity)



Since the Boltzmann equation describes the evolution of the distribution f in 
the phase space à the moments of this equation will be equations that 
describe the evolution of the moments of particles that follows that 
distribution à i.e. equations for the evolution of energy density and 
momentum à i.e. conservation equations.

This description implies a hierarchy of equations, corresponding to the moments of 
the Boltzmann equation. 

For cold dark matter the energy and momentum of particles of mass m in the 
perturbed scalar RW metric, are written as

(Notation: here the naming of the potentials is inverted)

The collisionless Boltzmann equation is then:



The zeroth-order moment of the collisionless CDM Boltzmann equation for dark 
matter is found by computing the integral of each term : 

Integrating all terms, the result is:

this is the continuity equation

The first-order moment of the collisionless CDM Boltzmann equation is its
integration in momentum space with its terms multiplied by

The result is:

this is the Euler equation



For cold dark matter, this approach just provided an alternative method that led to 
the same conservation equations (alternative to using the conservation of the Tab
tensor). 

However, for perturbations in the radiation component this approach is really 
needed, since they cannot be described by a fluid. 

It is the correct procedure to compute the density perturbations in the 
radiation-baryonic plasma (needed to compute the CMB power spectrum) or 
the velocity radiation perturbations (needed to compute dark matter 
perturbations in multi-fluid coupled equations) 

For example, for photons, we need to consider the Bose-Einstein distribution 
function:

where the temperature fluctuations are



The Boltzmann equation leads to the differential equation for the evolution of 
the temperature fluctuations:

For baryons, this approach is also needed, but since they are massive particles, the 
distribution function is different, as well as the relation between energy and 
momentum.

This allows us to derive the full set of photon-baryon coupled equations:
(written in Fourier space)

The public codes (CAMB, CLASS) that compute the linear evolution of cosmological 
structures for all cosmological species and for a large range of scales and redshift, 
implement this approach à they solve the system of Einstein-Boltzmann differential 
equations (in a certain gauge).



There are 4 V perturbations in the metric and 2 V components of the 
transformation vector ξ (the 2 vector components       ) à the choice of gauge 
fixes 2 V components of the metric. 

This can be done, for example, by setting the vector part of h to 0, 
(in addition to fixing 2 scalar components, for example w = h = 0)

There remains 2 V components of the metric (the vector parts of w). 

In the Einstein equations, there are 3 equations that involve the vector metric 
perturbations and the vector source perturbations. 

Vector perturbations

Up to know we focused on scalar perturbations.

However, remember that there are also vector and tensor perturbations, and a 
possible total of 10 Einstein equations.

Other types of perturbations



The solution, from the first equation is:

This shows that the vector perturbations decay with time.

The vector part of initial velocity perturbations eventually disappear, and they are 
not relevant in the standard cosmological model.

Those 3 equations are:



There are 2 T perturbations in the metric and no T components of the transformation 
vector ξ à tensor perturbations are gauge-invariant by construction à no 
gauge fixing needed.

Even if the energy-momentum tensor has no tensor part (no anisotropic stress) there 
exists still one equation in the Einstein - energy conservation system that involves 
only tensor metric perturbations

(in fact 2 equations, since there are 2 T components) à these 2 components may 
also be written as a polarization vector (a polar vector).

The equations are:

This is a second-order differential equation in time and space: a wave equation, also 
containing a first-order derivative term (a friction term, known as the Hubble drag).

Tensor perturbations



The solution is:

This means that the tensor perturbations evolve in time and space in a coherent 
way, as a propagating wave.

Even with no sources, initial tensor metric perturbations do not vanish and 
propagate as a wave. 
We can say it is an intrinsic property of GR à these are the gravitational waves.

It seems a more fundamental property than gravity being attractive, because 
attraction depends on the source à with no initial sources (δ), there would be 
no structure formation, but there would still exist gravitational waves.  

The amplitude of the wave does not remain constant, it decreases in time
due to the Hubble drag term.



Remember that inflation sets the initial conditions for scalar and tensor metric 
perturbations:

For scalar perturbations à sets the slope of the primordial power spectrum of the 
curvature potential  (the scalar index ns) à sets the slope of the primordial matter 
power spectrum (through Poisson equation).

For tensor perturbations à sets the slope of the primordial power spectrum of 
tensor perturbations  (the tensor index nt) à no equivalence in a source power 
spectrum.

These are the primordial gravitational waves.

Local interactions of strong gravity can produce secondary gravitational waves 
à produced by periodic movement of compact objects: black holes, neutron stars 
binaries, etc. 
(These are the ones that have been detected, not related to cosmology).



Observationally, there are two main signatures of (cosmological) primordial 
gravitational waves that are being explored:

- The metric at a location changes as the wave passes à produces a periodical 
change in the size (or distance) of objects

- GW polarize the CMB photons à could be detected in the CMB polarization 
power spectra.

Being a fundamental property of gravitation, GW can also be used to test modified 
gravity. Some theories of gravity may have a different number of tensor modes à
different types of polarization in their gravitational waves.


