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Kinetic Theory

The gaseous condition is exemplified in the soirée, where the members rush about 
confusedly, and the only communication is during a collision, which in some 
instances may be prolonged by button-holing.

JAMES CLERK MAXWELL (1873)
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Kinetic theory deals with the statistical 
distribution of a “gas” made from a huge 
number of “particles” that travel freely, 
without collisions, for distances (mean free 
paths) long compared to their sizes.

In kinetic theory, the key concept is the 
distribution function, or number density of 
particles in phase space, N, that is, the 
number of particles of some species (e.g., 
electrons) per unit of physical space and of 
momentum space.

This N and the frame-independent laws it obeys provide us with a means for computing, from 
microphysics, the macroscopic quantities of continuum physics: mass density, thermal energy density, 
pressure, equations of state, thermal and electrical conductivities, viscosities, diffusion coefficients, . . . .
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Kinetic Theory
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Examples:

• Whether neutrons in a nuclear reactor can survive long enough to maintain a 
nuclear chain reaction and keep the reactor hot.
• How galaxies, formed in the early universe, congregate into clusters as the 

universe expands.
• How spiral structure develops in the distribution of a galaxy’s stars.
• How, deep inside a white-dwarf star, relativistic degeneracy influences the 

equation of state of the star’s electrons and protons.
• How a supernova explosion affects the evolution of the density and temperature 

of interstellar molecules.
• How anisotropies in the expansion of the universe affect the temperature 

distribution of the cosmic microwave photons—the remnants of the big bang.
• How changes of a metal’s temperature affect its thermal and electrical 

conductivity (with the heat and current carried by electrons).
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KT in different limits
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Real (physical) and momentum spaces
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Phase space

The 3-dimensional physical space and 3-dimensional momentum space together constitute 
a 6-dimensional phase space, with coordinates {x, y, z, px , py , pz}.

Consider the 6-dimensional volume d2V ≡ dVxdVp. 

In any Cartesian coordinate system, we can think of dVx as a cube located at (x, y, z) with 
edge lengths dx, dy, dz, and similarly for dVp. Then, as computed in this coordinate system, 
these volumes are
dVx= dx dy dz,  dVp= dpx dpy dpz, 

and

d2V = dx dy dz dpx dpy dpz.

19

19



24/10/24

4

Phase space

Direct product of direct space and reciprocal space
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Newtonian distribution function

is called the particle distribution function.

The number density of particles at location (x, p) in phase space at time t 
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Newtonian and relativistic distribution function N
In Newtonian theory, the volumes dVx and dVp occupied by our collection of dN 
particles are independent of the reference frame that we use to view them. 

Not so in relativity theory: dVx undergoes a Lorentz contraction when one views it 
from a moving frame, and dVp also changes; but (as we shall see) their product d2V = 
dVxdVp is the same in all frames. 

Therefore, in both Newtonian theory and relativity theory, the distribution function 
N = dN/d2V is independent of reference frame, and also, of course, independent of 
any choice of coordinates. 

N is a coordinate independent scalar in phase space.
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Spacetime

Relativistic distribution function
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Momentum space and mass hyperboloid

24

24

25

25



24/10/24

7

Phase space
This 7- or 8-dimensional phase 
space, by contrast with the 
nonrelativistic
6-dimensional phase space, is 
frame independent. No 
coordinates or reference
frame are actually needed to 
define spacetime and explore its 
properties, and
none are needed to define and 
explore 4-momentum space or 
the mass hyperboloid—
though inertial (Lorentz) 
coordinates are often helpful in 
practical situations.

26

26

Volumes in phase space and distribution function
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Distribution function for photons
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Mean occupation number	𝜂 
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Quantum states 
in momentum 
space

37

37



24/10/24

13

Density of states & occupation number
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Fermions, bosons and the classical limit
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Equilibrium distribution functions 
(derived previously)
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Classical or Boltzmann distribution function
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The
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Mean occupation number:  𝜂 =	< 𝑛! >
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Particle density and flux (N)
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Stress tensor (N)
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Equations of state
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Classical ideal gas PV = NkBT
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Relativistic Number-Flux 4-Vector S and Stress-
Energy Tensor T
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0th, 1st and 2nd moments of N
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Meaning of the moments of N
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Zeroth
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Time component of S: number density
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Spatial components of S: particle flux
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Components of T: energy&momentum density
and stress (flux of momentum)
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Hydrogen (p+e): Boundaries of various regimes as 
a function of density and temperature
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Non-relativistic plasma (chapter 20)
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Non-relativistic plasma
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Non-relativistic degeneracy
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Isotropic number density and pressure (non-
relativistic)
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Evolution of stars
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Evolution of the Sun
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White dwarfs
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Neutron stars

Eq. 3.43 for P with me substituted by mn
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Relativistic degeneracy
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Relativistic equations of state
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Relativistic Density, Pressure, Energy Density, and 
Equation of State (isotropic systems)

72

72

73

73



24/10/24

31

Equation of State for a Relativistic Degenerate 
Hydrogen Gas (zero T)
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Relativistic Degenerate Electron Gas
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White dwarfs

76

76

77

77



24/10/24

33

78

78

Equation of state for termal radiation
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Comparison of blackbody radiation to the solar 
irradiance
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EoS through 
Statistical Mechanics 
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Quantum gases: fermions and bosons (grand 
canonical ensemble)
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3D

82

EoS of Bosons for any 
dimension D
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Note the classical limit when the dimensionality 
D → ∞

𝑧 = 𝑒!"where
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EoS for Bosons and 
Fermions in 2D
• The classical limit is the straight line 

for positive p below the FD and above 
the BE equations. 

• The effective repulsions in FD increase 
p while the effective attractions in BE 
decrease it, w. r. to the classical EoS.
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Formalism: Liouville’s Theorem
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Proof
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Collisionless Boltzmann equation
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Boltzmann transport equation
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Transport 
coefficients
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Transport 
coefficients
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Transport 
coefficients
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Transport 
coefficients
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