Kinetic Theory

The gaseous condition is exemplified in the soirée, where the members rush about
confusedly, and the only communication is during a collision, which in some

instances may be prolonged by button-holing.

JAMES CLERK MAXWELL (1873)
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Kinetic Theory

o

Kinetic theory deals with the statistical
distribution of a “gas” made from a huge
number of “particles” that travel freely,
without collisions, for distances (mean free
paths) long compared to their sizes.

In kinetic theory, the key concept is the
distribution function, or number density of
particles in phase space, ‘N, that is, the
number of particles of some species (e.g.,
electrons) per unit of physical space and of
momentum space.

This N and the frame-independent laws it obeys provide us with a means for computing, from
microphysics, the macroscopic quantities of continuum physics: mass density, thermal energy density,
pressure, equations of state, thermal and electrical conductivities, viscosities, diffusion coefficients, . . . .
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Examples:

* Whether neutrons in a nuclear reactor can survive long enough to maintain a
nuclear chain reaction and keep the reactor hot.

* How galaxies, formed in the early universe, congregate into clusters as the
universe expands.

* How spiral structure develops in the distribution of a galaxy’s stars.

* How, deep inside a white-dwarf star, relativistic degeneracy influences the
equation of state of the star’s electrons and protons.

* How a supernova explosion affects the evolution of the density and temperature
of interstellar molecules.

* How anisotropies in the expansion of the universe affect the temperature
distribution of the cosmic microwave photons—the remnants of the big bang.

* How changes of a metal’s temperature affect its thermal and electrical
conductivity (with the heat and current carried by electrons).
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Real (physical) and momentum spaces

()

FIGURE 31 (a) Euclidean physical space, in which a particle moves along a curve x(r) that is
parameterized by universal time . In this space, the particle’s momentum p(¢) is a vector tangent to
the curve. (b) Momentum space, in which the particle’s momentum vector p is placed, unchanged,
with its tail at the origin. As time passes, the momentum’s tip sweeps out the indicated curve p(t).
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Phase space

The 3-dimensional physical space and 3-dimensional momentum space together constitute
a 6-dimensional phase space, with coordinates {x, y, z, ps, p, , P.}-

Consider the 6-dimensional volume d2V = dV,dV,,

In any Cartesian coordinate system, we can think of dV, as a cube located at (x, v, z) with
edge lengths dx, dy, dz, and similarly for dV,. Then, as computed in this coordinate system,

these volumes are
dV,=dx dy dz, dV,=dp,dp, dp,,

and

d2V = dx dy dz dp, dp, dp,.
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Phase space

Direct product of direct space and reciprocal space

Phase Path
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Newtonian distribution function
The number density of particles at location (x, p) in phase space at time t
- dN dN
NE,p,t)= =— 0
a2V~ dV,dV,
is called the particle distribution function.
21
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Newtonian and relativistic distribution function N

In Newtonian theory, the volumes dV, and dVp occupied by our collection of dN
particles are independent of the reference frame that we use to view them.

Not so in relativity theory: dV, undergoes a Lorentz contraction when one views |t
from a moving frame, and dV also changes; but (as we shall see) their product d?V =
dV,dV, is the same in all frames.

q\l}erefore in both Newtonian theory and relativity theory, the distribution function
dN/d V is independent of reference frame, and also, of course, independent of
any choice of coordinates.

N'is a coordinate independent scalar in phase space.

22
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Relativistic distribution functi
Spacetime
u=dP/dt =dx/dt
p =mu, t=1t/m
FIGURE3.2 (a) Theworldline ¥ (¢) ofa particle in spacetime (with one spatial coordinate, z, suppressed),
parameterized by a parameter ¢ that is related to the particle’s 4-momentum by p = dX/d¢. (b) The
trajectory of the particle in momentum space. The particle’s 4-momentum is confined to the mass
hyperboloid, 5? = —m? (also known as the mass shell).
23
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Momentum space and mass hyperboloid

The momentum-space diagram drawn in Fig. 3.2b has as its coordinate axes the
components (p’, p' = p; = p,, p* = p = py,» p° = p3 = p,) of the 4-momentum
as measured in some arbitrary inertial frame. Because the squared length of the 4-

momentum is always —m?,

p-p=—"+ () + (p) + (p) =—m’, (3.4¢)

the particle’s 4-momentum (the tip of the 4-vector p) is confined to a hyperboloid in

momentum space. This mass hyperboloid requires no coordinates for its existence; it

is the frame-independent set of points in momentum space for which p - p = —m?.

24
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E=p° (3.4d)

(with the £ in script font to distinguish it from the energy E = £ — m with rest mass
removed and its nonrelativistic limit £ = —;m v?), and we embody the particle’s spatial
momentum in the 3-vector p = p,e, + p,e, + p.e,. Therefore, we rewrite the mass-
hyperboloid relation (3.4c) as

E=m* + |p]~ (3.4¢)

If no forces act on the particle, then its momentum is conserved, and its location
in momentum space remains fixed. A force (e.g., due to an electromagnetic field)
pushes the particle’s 4-momentum along some curve in momentum space that lies
on the mass hyperboloid. If we parameterize that curve by the same parameter ¢ as
we use in spacetime, then the particle’s trajectory in momentum space can be written
abstractly as p(¢). Such a trajectory is shown in Fig. 3.2b.
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Phase space

This 7- or 8-dimensional phase
space, by contrast with the
nonrelativistic

6-dimensional phase space, is
frame independent. No
coordinates or reference
frame are actually needed to
define spacetime and explore its
properties, and

none are needed to define and
explore 4-momentum space or
the mass hyperboloid—
though inertial (Lorentz)

FIGURE33 Definition of the distribution function from the viewpoint of a specific observer in a specific

inertial reference frame, whose coordinate axes are used in these drawings. (a) At the event P, the coordinates are often helpful in

observer selects a 3-volume dV, and focuses on the set S of particles that lie in dV,.. (b) These particles
have momenta lying in a region of the mass hyperboloid that is centered on p and has 3-momentum
volume dV,.. IfdN is the number of particles in that set S, then N'(P, p) =dN/dV,dV),.

practical situations.
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Volumes in phase space and distribution function

Now turn attention from an individual particle to a collection of a huge number of
identical particles, each with the same rest mass m, and allow m to be finite or zero
(it does not matter which). Examine those particles that pass close to a specific event
P (also denoted X) in spacetime; and examine them from the viewpoint of a specific
observer, who lives in a specific inertial reference frame. Figure 3.3a is a spacetime
diagram drawn in that observer’s frame. As seen in that frame, the event P occurs
at time 7 and spatial location (x, y, z).
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Specifically, the observer, in her inertial frame, chooses a tiny 3-volume
dV,=dxdydz (3.5a)

centered on location P (little horizontal rectangle shown in Fig. 3.3a) and a tiny 3-
volume

dV,=dp, dp, dp, (3.5b)

centered on p in momentum space (little rectangle in the p,-p, plane in Fig. 3.3b).
Ask the observer to focus on the set S of particles that lie in 4V, and have spatial
momenta in dV,, (Fig. 3.3). If there are d N particles in this set S, then the observer
will identify

dN _ dN

(= ="
A dvdv, d*V

(3.6)

as the number density of particles in phase space or distribution function.
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PROOF OF FRAME INDEPENDENCE OF N = dN/d?V

To prove the frame independence of \, we shall consider the frame dependence of
the spatial 3-volume dV,, then the frame dependence of the momentum 3-volume
dV,, and finally the frame dependence of their product d*V = dV,dV, and thence
of the distribution function N = d N /d?V.

The thing that identifies the 3-volume dV, and 3-momentum dV, is the set of
particles S. We select that set once and for all and hold it fixed, and correspondingly,
the number of particles d N in the set is fixed. Moreover, we assume that the particles’
rest mass m is nonzero and shall deal with the zero-rest-mass case at the end by taking
the limit m — 0. Then there is a preferred frame in which to observe the particles S:
their own rest frame, which we identify by a prime.

In their rest frame and at a chosen event P, the particles S occupy the interior of
some box with imaginary walls that has some 3-volume dV,.. As seen in some other
“laboratory” frame, their box has a Lorentz-contracted volume dV, = V1 — v2dV,.
Here v is their speed as seen in the laboratory frame. The Lorentz-contraction factor
is related to the particles’ energy, as measured in the laboratory frame, by /1 — v2 =
m/&, and therefore £dV, = mdV,:. The right-hand side is a frame-independent
constant m times a well-defined number that everyone can agree on: the particles’
rest-frame volume dV,, i.e.,

£dV, = (a frame-independent quantity). (3.72)
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Thus, the spatial volume 4V, occupied by the particles is frame dependent, and their
energy & is frame dependent, but the product of the two is independent of reference

frame.
4-position
of event
(x, y,z,t)
z
clocks and rulers
y inx,y, z directions
X
observer O
at the origin
of coordinate
frameF 30
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Turn now to the frame dependence of the particles’ 3-volume dV),,. As one sees
from Fig. 3.3b, dV, is the projection of the frame-independent mass-hyperboloid
region d b » onto the laboratory’s xyz 3-space. Equivalently, it is the time component
d Eg of dS p- Now, the 4-vector d b)) p» like the 4-momentum p, is orthogonal to the
mass hyperboloid at the common point where they intersect it, and therefore d b pis
parallel to p. This means that, when one goes from one reference frame to another,
the time components of these two vectors will grow or shrink in the same manner:
d 22 =dV), is proportional to p® = &, so their ratio must be frame independent:

dy, . .
< = (a frame-independent quantity). (3.7b)

(If this sophisticated argument seems too slippery to you, then you can develop an
alternative, more elementary proof using simpler 2-dimensional spacetime diagrams:
Ex. 3.1.)

By taking the product of Egs. (3.7a) and (3.7b) we see that for our chosen set of
particles S,

d v_,dv,, =d*’V= (a frame-independent quantity); (3.7¢)

and since the number of particles in the set, d N, is obviously frame-independent, we
conclude that

N

dN dN
a2V

= = = (a frame-independent quantity). (3.8)
v.av, ( P quantity)
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Exercise 3.1 Derivation and Practice: Frame Dependences of dV, and dV, (& f72|

Use the 2-dimensional spacetime diagrams of Fig. 3.4 to show that 4V, and dV, /&

are frame independent [Egs. (3.7a) and (3.7b)].

mass

’
J 0
S
hyperboloid
|

‘ ~
W\X
(a)

FIGURE3.4 (a) Spacetime diagram drawn from the viewpoint of the (primed) rest frame of the particles

S for the special case where the laboratory frame moves in the —x’ direction with respect to them.
(b) Momentum-space diagram drawn from viewpoint of the unprimed observer.
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Distribution function for photons

When dealing with photons or other zero-rest-mass particles, one often expresses
N in terms of the specific intensity I,,. This quantity is defined as follows (see Fig. 3.5).
An observer places a CCD (or other measuring device) perpendicular to the photons’
propagation direction n—perpendicular as measured in her reference frame. The
region of the CCD that the photons hit has surface area d A as measured by her, and
because the photons move at the speed of light ¢, the product of that surface area with
¢ times the time dt that they take to all go through the CCD is equal to the volume
they occupy at a specific moment of time:

dV, =dA cdt. (3.11a)

Focus attention on a set S of photons in this volume that all have nearly the same
frequency v and propagation direction n as measured by the observer. Their energies
& and momenta p are related to v and n by

E=hv, p=(hv/c)n, (3.11b)

where £ is Planck’s constant. Their frequencies lie in a range dv centered on v, and
they come from a small solid angle d<2 centered on —n; the volume they occupy in
momentum space is related to these quantities by

dV, = |pI*dd|p| = (hv/c)*dS2(hdv/c) = (h/c)*v*dQdv. (3.110)
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The photons’ specific intensity, as measured by the observer, is defined to be the total
energy

d€ = hvdN (3.11d)

(where dN is the number of photons) that crosses the CCD per unit area d A, per unit
time dt, per unit frequency dv, and per unit solid angle d<2 (i.e., per unit everything):
d€
I=——-—.
dAdtdvdQ2
(This 7, is sometimes denoted /,g.) From Egs. (3.8), (3.11), and (3.12) we readily
deduce the following relationship between this specific intensity and the distribution

(3.12)

function:

2
S

/—_ —_
h4 )3

(3.13)

This relation shows that, with an appropriate renormalization, /v is the photons’
distribution function.
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Mean occupation number n

As an aid in defining the mean occupation number, we introduce the concept of
the density of states: Consider a particle of mass m, described quantum mechanically.
Suppose that the particle is known to be located in a volume dV), (as observed in
a specific inertial reference frame) and to have a spatial momentum in the region
dV, centered on p. Suppose, further, that the particle does not interact with any other
particles or fields; for example, ignore Coulomb interactions. (In portions of Chaps. 4
and 5, we include interactions.) Then how many single-particle quantum mechanical
states® are available to the free particle? This question is answered most easily by
constructing (in some arbitrary inertial frame) a complete set of wave functions
for the particle’s spatial degrees of freedom, with the wave functions (i) confined
to be eigenfunctions of the momentum operator and (ii) confined to satisfy the
standard periodic boundary conditions on the walls of a box with volume dV,. For
simplicity, let the box have edge length L along each of the three spatial axes of the
Cartesian spatial coordinates, so dV, = L>. (This L is arbitrary and will drop out of
our analysis shortly.) Then a complete set of wave functions satisfying (i) and (ii) is
the set {y;  ;} with

1 . . - _
et(27r/L)(jx+k)+lz)e iwt

i (3.14a)

Viki(x,y,z)=
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The basis states (3.14a) are eigenfunctions of the momentum operator (%/i)V with
momentum eigenvalues
2h . 2rh 2h

px==Js Py=="k, p.=—h (3.140)

correspondingly, the wave function’s frequency w has the following values in Newto-
nian theory [Ell and relativity IEl:
1 (2nh

2 2
P 2 g2 2
B rw=E= = + kS +1%); 3.14c

2m  2m ( L > G ) ( )

B iw=¢=,/m2+ p? — m + E in the Newtonian limit. (3.14d)
Equations (3.14b) tell us that the allowed values of the momentum are confined
to lattice sites in 3-momentum space with one site in each cube of side 27 h/L.
Correspondingly, the total number of states in the region dV,dV, of phase space is
the number of cubes of side 2771/ L in the region dV,, of momentum space:
IN av, L*dV, dV.dv,
@S oxh/L)? T (2ah)y T K

(3.15)

This is true no matter how relativistic or nonrelativistic the particle may be.

Thus far we have considered only the particle’s spatial degrees of freedom. Particles
can also have an internal degree of freedom called “spin.” For a particle with spin s,
the number of independent spin states is

2s + 1 if m # 0 (e.g., an electron, proton, or atomic nucleus)

g =12 ifm =0and s > 0 [e.g., a photon (s = 1) or graviton (s = 2)]
1 if m = 0 and s = 0 (i.e., a hypothetical massless scalar particle) 6
(3.16)
36
k

Quantum states
iIn momentum

k+dk
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Density of states & occupation number

N dNates _ &s
states — dzv - h3 *

The ratio of the number density of particles to the number density of quantum
states is obviously the number of particles in each state (the state’s occupation number)
averaged over many neighboring states—but few enough that the averaging region is
small by macroscopic standards. In other words, this ratio is the quantum states’ mean
occupation number n:

Nk g
=" =—N; ie, [ = N. =25, 3
n ./\’Fs'ates g:A 5 Le N N states’] 3 n (3.18)

The mean occupation number 7 plays an important role in quantum statistical
mechanics, and its quantum roots have a profound impact on classical statistical
physics.

38
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Fermions, bosons and the classical limit

0 < n < 1 for fermions, 0 < n < oo for bosons. (3.19)
Quantum theory also teaches us that, when n « 1, the particles, whether fermions
or bosons, behave like classical, discrete, distinguishable particles; and when n > 1
(possible only for bosons), the particles behave like a classical wave—if the particles
are photons (s = 1), like a classical electromagnetic wave; and if they are gravitons
(s = 2), like a classical gravitational wave. This role of 5 in revealing the particles’
physical behavior will motivate us frequently to use n as our distribution function
instead of \V.

39
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Equilibrium distribution functions Bosons

(derived previously) \ /

\ /
\ /
! for fermions
= 1 >
= E—w/kaT) + |
1 forb \ Fermions
= Or bosons.
T= JE—w/ksT) _ e 7
© F
|
Notice that the equilibrium mean occupation number (3.22a) for fermions lies in \ © /

the range 0-1 as required, while that (3.22b) for bosons lies in the range 0 to oco.

40
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Classical or Boltzmann distribution function

The regime u < —kpT, the mean occupation number is small compared to unity for
all particle energies E (since E is never negative; i.e., £ is never less than m). This is

the domain of distinguishable, classical particles, and in it both the Fermi-Dirac and
Bose-Einstein distributions become

n ~ e—(E-w)/(ksT) — g—(E—o)/kgT)

when p =p —m « —kpT (classical particles).

41
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Mean occupation number: n =< n;, >
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Exercise 3.3 **Practice and Example: Regimes of Particulate and Wave-Like

Behavior 1 I

(a) CygnusX-1isasource of X-rays that has been studied extensively by astronomers.
The observations (X-ray, optical, and radio) show that it is a distance r ~ 6,000
light-years from Earth. It consists of a very hot disk of X-ray-emitting gas that
surrounds a black hole with mass 15M, and the hole in turn is in a binary orbit
with a heavy companion star. Most of the X-ray photons have energies £ ~ 2
keV, their energy flux arriving at Earth is F ~ 10! W m~2, and the portion of
the disk that emits most of them has radius roughly 7 times that of the black
hole (i.e., R ~ 300 km).> Make a rough estimate of the mean occupation number
of the X-rays’ photon states. Your answer should be in the region n < 1, so
the photons behave like classical, distinguishable particles. Will the occupation
number change as the photons propagate from the source to Earth?

(b) A highly nonspherical supernova in the Virgo cluster of galaxies (40 million light-
years from Earth) emits a burst of gravitational radiation with frequencies spread
over the band 0.5-2.0 kHz, as measured at Earth. The burst comes out in a time
of about 10 ms, so it lasts only a few cycles, and it carries a total energy of roughly
1073M %, where M, = 2 x 10%kg is the mass of the Sun. The emitting region
is about the size of the newly forming neutron-star core (10 km), which is small
compared to the wavelength of the waves; so if one were to try to resolve the source
spatially by imaging the gravitational waves with a gravitational lens, one would
see only a blur of spatial size one wavelength rather than seeing the neutron star.
‘What is the mean occupation number of the burst’s graviton states? Your answer
should be in the region 7 >> 1, so the gravitons behave like a classical gravitational
‘wave.

43
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Exercise 3.7 **Example: Observations of Cosmic Microwave Radiation
from Earth n 12}
The universe is filled with cosmic microwave radiation left over from the big bang. At
each event in spacetime the microwave radiation has a mean rest frame. As seen in that
mean rest frame the radiation’s distribution function n is almost precisely isotropic
and thermal with zero chemical potential:

1

= T — 1 with 7,=2725K. (329)
ehv/(kgTo) —

n

Here v is the frequency of a photon as measured in the mean rest frame.

(a) Show that the specific intensity of the radiation as measured in its mean rest frame
has the Planck spectrum, Eq. (3.23). Plot this specific intensity as a function of
frequency, and from your plot determine the frequency of the intensity peak.

(b) Show that 5 can be rewritten in the frame-independent form

1

"= T (3.30)

where p is the photon 4-momentum, and i, is the 4-velocity of the mean rest
frame. [Hint: See Sec. 2.6 and especially Eq. (2.29).]

(c) In actuality, Earth moves relative to the mean rest frame of the microwave back-
ground with a speed v of roughly 400 km s~ toward the Hydra-Centaurus region
of the sky. An observer on Earth points his microwave receiver in a direction that
makes an angle 6 with the direction of that motion, as measured in Earth’s frame.
Show that the specific intensity of the radiation received is precisely Planckian in
form [Eqs. (3.23)], but with a direction-dependent Doppler-shifted temperature

/ 2
T=T,\ —— . (3.31)
1—vcosf

Note that this Doppler shift of T is precisely the same as the Doppler shift of the
frequency of any specific photon [Eq. (2.33)]. Note also that the & dependence
corresponds to an anisotropy of the microwave radiation as seen from Earth.
Show that because Earth’s velocity is small compared to the speed of light, the
anisotropy is very nearly dipolar in form. Measurements by the WMAP satellite
give T, = 2.725 K and (averaged over a year) an amplitude of 3.346 x 10> K for
the dipolar temperature variations (Bennett et al., 2003). What, precisely, is the
value of Earth’s year-averaged speed v?

44
44
Particle density and flux (N)
From the definition N' =dN /dV.d Vp of the distribution function, it is clear that
the number density of particles n(x, ¢) in physical space is given by the integral
dN dN
=—= [ ——dV =//\de. 3.32a)
"=, / av.av," " P o
Similarly, the number of particles crossing a unit surface in the y-z plane per unit time
(i.e., the x component of the flux of particles) is
- _aN =/ dN d_xdvpzfj\r&dvp,
dydzdt dxdydzdV, dt m
where dx /dt = p,/m is the x component of the particle velocity. This and the anal-
ogous equations for S, and S, can be combined into a single geometric, coordinate-
independent integral for the vectorial particle flux:
dv
S= / Np—L. (3.32b)
m
45
45
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Stress tensor (N)

Notice that, if we multiply this S by the particles’ mass m, the integral becomes the
momentum density:

G=mS=/diVp. (3.320)

Finally, since the stress tensor T is the flux of momentum [Eq. (1.33)], its j-x compo-
nent (j component of momentum crossing a unit area in the y-z plane per unit time)
must be

T, =/ AN a4y, =f _ AN dx v, =//\/p,&dvp‘
dydzdtdV, dxdydzdV, dt m
This and the corresponding equations for 7}, and 7}, can be collected together into
a single geometric, coordinate-independent integral:

dy dV,
Tik:/Npl.pk#, ie, T://\J’p@pﬁ. (3.324)

Notice that the number density n is the zeroth moment of the distribution function
in momentum space [Eq. (3.32a)], and aside from factors 1/ m, the particle flux vector is
the first moment [Eq. (3.32b)], and the stress tensor is the second moment [Eq. (3.32d)].
All three moments are geometric, coordinate-independent quantities, and they are
the simplest such quantities that one can construct by integrating the distribution
function over momentum space.

46
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Equations of state

If the Newtonian distribution function is isotropic in momentum space (i.e., is
a function only of the magnitude p = |p]=/p2 + pf, + p? of the momentum, as
is the case, e.g., when the particle distribution is thermalized), then the particle flux
S vanishes (equal numbers of particles travel in all directions), and the stress tensor
is isotropic: T= Pg, or T} = P§ ;. Thus, it is the stress tensor of a perfect fluid.
[Here P is the isotropic pressure, and g is the metric tensor of Euclidian 3-space, with
Cartesian components equal to the Kronecker delta; Eq. (1.9f).] In this isotropic case,
the pressure can be computed most easily as 1/3 the trace of the stress tensor (3.32d):

1 2 2 2 va
P: T”:§/JV'(PX+P_V+PZ)7

1 [® 4np’dp 4n [
=- / NpZ2P _ T / N p*dp. (3.372)
0 3m Jo

3 m

1
3
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Here in the third step we have written the momentum-volume element in spherical
polar coordinates as dV,, = p? sin 8d0d¢dp and have integrated over angles to get
47 p*dp. Similarly, we can reexpress the number density of particles (3.32a) and the
corresponding mass density as

00 00
n=4n f szdp, p=mn=4mm / sz dp. (3.37b)
0 0

Finally, because each particle carries an energy E = p?/(2m), the energy density in
this isotropic case (which we shall denote by U) is 3/2 the pressure:

2 o0
U= | —NdV :—/ Npidp==P 3.37
/Zm P om )y TP PTY 3379

[cf. Eq. (3.37a)].

48

48

If we know the distribution function for an isotropic collection of particles,
Egs. (3.37) give us a straightforward way of computing the collection’s number density
of particles n, mass density p = nm, perfect-fluid energy density U, and perfect-fluid
pressure P as measured in the particles’ mean rest frame. For a thermalized gas, the
distribution functions (3.22a), (3.22b), and (3.22d) [with A" = (g,/ h*)n] depend on
two parameters: the temperature 7" and chemical potential u, so this calculation gives
n, U, and P in terms of 1 and 7. One can then invert n(u, T') to get u(n, T') and
insert the result into the expressions for U and P to obtain equations of state for
thermalized, nonrelativistic particles:

U=U(p,T), P=P(p,T). (3.38)

For a gas of nonrelativistic, classical particles, the distribution function is Boltz-
mann [Eq. (3.22d)], NV = (g,/ h*)e®™ BV *sD) with E = p?/(2m), and this proce-
dure gives, quite easily (Ex. 3.8):

1/ (kgT)
& %(ZkaBT)”Ze“/ (ksT), (3.3%)

3
}‘TdB

U= %nkBT, P =nkpgT. (3.39b)

Notice that the mean energy per particle is (cf. Ex. 3.4b)

E= %kBT . (3.39)
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Classical ideal gas PV = NkgT

Propane Gas Tank Molecules inside the gas tank

50
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Relativistic Number-Flux 4-Vector S and Stress-
Energy Tensor T

When we switch from Newtonian theory to special relativity’s 4-dimensional space-
time viewpoint, we require that all physical quantities be described by geometric,
frame-independent objects (scalars, vectors, tensors, ...) in 4-dimensional
spacetime. We can construct such objects as momentum-space integrals over the
frame-independent, relativistic distribution function N (P, p) = (g,/h*)n. The
frame-independent quantities that can appear in these integrals are (i) N itself,
(ii) the particle 4-momentum p, and (iii) the frame-independent integration ele-
mentdV, /€ [Eq. (3.7b)], which takes the form dp_,dp).dpz/\/szp2 in any inertial
reference frame. By analogy with the Newtonian regime, the most interesting such
integrals are the lowest three moments of the distribution function:
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Oth, 1st and 2nd moments of N

dy
R= | N £
IES:
- dy dy
SE/N,; T” ie., S”E/Npﬂ T”;
dVv dy
T= Nﬁ@iij, i.e.,T‘“’Epr“p"Tp.

Here and throughout this chapter, relativistic momentum-space integrals are taken
over the entire mass hyperboloid unless otherwise specified.

52
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Meaning of the moments of N

Zeroth

dN 1
R= —dy (3.34)
f dvdy, €

(where of course dV; = dxdydz and dV, = dp,dpdp;). This is the sum, over all
particles in a unit 3-volume, of the inverse energy. Although it is intriguing that
this quantity is a frame-independent scalar, it is not a quantity that appears in any

important way in the laws of physics.
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Time component of S: number density

By contrast, the 4-vector field S of Eq. (3.33b) plays a very important role in
physics. Its time component in our chosen frame is

0 dN P /
S / av,dv, € 4Vp v, dv A

(since p° and £ are just different notations for the same thing—the relativistic energy
/m? + p? of a particle). Obviously, this S is the number of particles per unit spatial
volume as measured in our chosen inertial frame:

S% — n = (number density of particles). (3.35b)

54

54
Spatial components of S: particle flux
The x component of Sis
dN p* f dN dx /' dN
S = —dV,=| ——dV,= | —dV,,
/ dv.dv, € " ] dxdydzdV,dt " | didydzdv, °
(3.35¢0)
which is the number of particles crossing a unit area in the y-z plane per unit time
(i.e., the x component of the particle flux); similarly for other directions j:
s/ = (j component of the particle flux vector S). (3.35d)
[In Eq. (3.35¢), the second equality follows from
J J J J
% = % = % = ddit = (j component of velocity), (3.35¢)
where ¢ is the affine parameter such that p = dx/d¢.] Since S is the particle number
density and S/ is the particle flux, S [Eq. (3.33b)] must be the number-flux 4-vector .
55
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Components of T: energy&momentum density
and stress (flux of momentum)

Turn to the quantity T defined by the integral (3.33c). When we perform a 3+1
split of it in our chosen inertial frame, we find the following for its various parts:

av, dN

= AN upo e _ p
av,av,” T p av,dv,

10

"dy, (3.36a)

is the . component of 4-momentum per unit volume (i.e., 7% is the energy density,
and T79 is the momentum density). Also,

dN 4V, / dN  dx , f dN
= p——_— E _— dv S — Ildv
avav,” P p =] axdyazav, ar” 7"~ ) arayazav,”

(3.36b)

T

is the amount of £ component of 4-momentum that crosses a unit area in the y-z plane
per unit time (i.e., it is the x component of flux of . component of 4-momentum).

56

56

More specifically, 7% is the x component of energy flux (which is the same as the
momentum density 7*°), and T/* is the x component of spatial-momentum flux—
or, equivalently, the jx component of the stress tensor. These and the analogous
expressions and interpretations of 7#Y and T## can be summarized by

T — (energy density), T7° = (momentum density) = 7% = (energy flux),
Tik = (stress tensor). (3.36¢)

Therefore [cf. Eq. (2.67f)], the T of Eq. (3.33c) must be the stress-energy tensor
introduced and studied in Sec. 2.13. Notice that in the Newtonian limit, where £ — m,
the coordinate-independent Eq. (3.33c) for the spatial part of the stress-energy tensor
(the stress) becomes [N'p ® p dV,/m, which is the same as our coordinate-
independent Eq. (3.32d) for the stress tensor.
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Hydrogen (p+e): Boundaries of various regimes as

a function of density and temperature

log o7 (K)

L relativistic

nonrelativistic

- Plasma

ionized

neutral
r Fluid

1 1 1 1 1 1

Solid,_

nonrelativistic
UL AT 1

relativistic

H
electron

degenerate

28 -24 -20 -16 -12 -8
log, (g cm™)

0

4

8

58

58

plasma regime and its boundaries, see Fig. 20.1.

FIGURE3.7 Physical nature of hydrogen at various densities and temperatures. The plasma regime
is discussed in great detail in Part VI, and the equation of state in this regime is Eq. (3.40). The
region of relativistic electron degeneracy (to the right of the vertical dotted line) is analyzed in
Sec. 3.5.4, and that for the nonrelativistic regime (between slanted solid line and vertical dotted
line) in the second half of Sec. 3.5.2. The boundary between the plasma regime and the electron-
degenerate regime (slanted solid line) is Eq. (3.41); that between nonrelativistic degeneracy and
relativistic degeneracy (vertical dotted line) is Eq. (3.46). The upper relativistic/nonrelativistic
boundary is governed by electron-positron pair production (Ex. 5.9 and Fig. 5.7) and is only
crudely approximated by the upper dashed line. The ionized-neutral boundary is governed by
the Saha equation (Ex. 5.10 and Fig. 20.1) and is crudely approximated by the lower dashed
line. For a more accurate and detailed version of this figure, including greater detail on the
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Non-relativistic plasma (chapter 20)
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Non-relativistic plasma

A nonrelativistic hydrogen plasma consists of a mixture of two fluids (gases): free
electrons and free protons, in equal numbers. Each fluid has a particle number density
n = p/m ,, where p is the total mass density and m , is the proton mass. (The electrons
are so light that they do not contribute significantly to p.) Correspondingly, the energy
density and pressure include equal contributions from the electrons and protons and
are given by [cf. Egs. (3.39b)]

U =3(kg/mp)pT, P =2(kg/mp)pT. (3.40)

In zeroth approximation, the high-temperature boundary of validity for this equa-
tion of state is the temperature T, = m,c?/ kg = 6 x 10° K, at which the electrons
become highly relativistic (top dashed line in Fig. 3.7).
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The bottom dashed line in Fig. 3.7 is the temperature 7, , ~ (ionization energy of
hydrogen)/(a few k) ~ 10* K, at which electrons and protons begin to recombine
and form neutral hydrogen.

The solid right boundary is the point at which the electrons cease to be-
have like classical particles, because their mean occupation number 7, ceases to be
& 1. As one can see from the Fermi-Dirac distribution (3.22a), for typical electrons
(which have energies E ~ k;T'), the regime of classical behavior (7, < 1; to the left
of the solid line) is 1, < —kzT and the regime of strong quantum behavior (n, >~ 1;
electron degeneracy; to the right of the solid line) is p, > +kpT. The slanted solid
boundary in Fig. 3.7 is thus the location x, = 0, which translates via Eq. (3.39a) to

P = Paeg = 2Mp/ Ay gy = (2m,/ h*)2rm kpT)** = 0.00808(T /10" K)*/* gcm ™.

(3 41)
62

62

Non-relativistic degeneracy

Although the hydrogen gas is degenerate to the right of this boundary, we can still
compute its equation of state using our kinetic-theory equations (3.37), so long as we
use the quantum mechanically correct distribution function for the electrons—the
Fermi-Dirac distribution (3.22a).” In this electron-degenerate region, i, > k5T, the
electron mean occupation number 7, = 1/(e'E—#e)/*8T) 4 1) has the form shown
in Fig. 3.8 and thus can be well approximated by 5, = 1for E = p?/(2m,) < u, and
n. = 0 for E > p; or equivalently by

ne=1for p < pp=./2mp,, n,=0for p > pg. (3.42)

63

63

25



24/10/24

Here p- is called the Fermi momentum. (The word “degenerate” refers to the fact that
almost all the quantum states are fully occupied or are empty; i.e., 1, is everywhere
nearly 1 or 0.) By inserting this degenerate distribution function [or, more precisely,
N, = (2/ h®)n,] into Eqgs. (3.37) and integrating, we obtain n, o p;* and P, o p°.
By then setting n, = n, = p/m, and solving for py n;/ 3 o p'/3 and inserting into
the expression for P, and evaluating the constants, we obtain (Ex. 3.9) the following
equation of state for the electron pressure:

5/3
poL(3) me( o (3.43)
e 3 3 ’ :

20 \ 7 A \mp/A;

he=h/(m,c) =2.426 x 1070 cm (3.44)

Here

is the electron Compton wavelength.

P = P, =Eq. (3.43)

64

64
Isotropic number density and pressure (non-
relativistic)
o0
n=47r/ szdp,
0
1 1 dy
P=3Ty=3 [N +p2+ 2
o.¢] 2 o0
=1/ Np24—7wdp=4—”/ N p*dp.
3Jo m 3m Jo
65
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Evolution of stars

Planetary Nebula

Small Star Red Giant

White Dwarf

o—@&)— .

Supernova

Neutron Star

Stellar Cloud
with
Protostars
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IMAGES NOT TO SCALE Black Hole
66
cloud of hydrogen helium core star finally
and dust condenses forms as hydrogen collapses,
shell expands forming a
white dwarf
. —» . . L . o
main-phase star burns
hydrogen in its core
(current state of star becomes a red giant consisting
Earth’s sun) of a carbon core surrounded
by hydrogen envelope
billions of years
© Encyclopeedia Britannica, Inc.
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White dwarfs

68

Neutron stars

/ S
A
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Eq. 3.43 for P with m, substituted by m,

69

28



24/10/24

Relativistic degeneracy

When the density of hydrogen in this degenerate regime is pushed on upward to

8mtm
P ~98x10° gcm_3 (3.46)

Prel deg = Tz

(dotted vertical line in Fig. 3.7), the electrons’ zero-point motions become relativis-
tically fast (the electron chemical potential /¢, becomes of order m c? and the Fermi
momentum p g of order m,c), so the nonrelativistic, Newtonian analysis fails, and the
matter enters a domain of relativistic degeneracy (Sec. 3.5.4). Both domains, nonrel-
ativistic degeneracy (p, < m %) and relativistic degeneracy (p, = m .¢2), occur for
matter inside a massive white-dwarf star—the type of star that the Sun will become

70

70
Relativistic equations of state
by //’V //6142":' xch
; ‘ ' xryEabrse @‘) CUV)
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Relativistic Density, Pressure, Energy Density, and
Equation of State (isotropic systems)

E=—liy-p expressed in frame-independent form [Eq. (2.29)],

E=p’=/m?+ p? in mean rest frame.

Asin Newtonian theory, isotropy greatly simplifies the momentum-space integrals
(3.33) that we use to compute macroscopic properties of the particles: (i) The inte-
grands of the expressions S/ = [ N p/(dV,/€) and T/* =T% = [ N pJ p°(dV, /&)
for the particle flux, energy flux, and momentum density are all odd in the
momentum-space coordinate p/ and therefore give vanishing integrals: $/ = T/° =
T% = 0. (ii) The integral 77X = [ N p/ p*kdV »/€ produces an isotropic stress ten-
sor, T/* = Pgik = P§ik  whose pressure is most easily computed from its trace,

72

72
Using these results and the relations |p| = p for the magnitude of the mo-
mentum, dV,, = 47 p2dp for the momentum-space volume element, and £ = p° =
/m?+ p? for the particle energy, we can easily evaluate Egs. (3.33) for the particle
number density n = S, the total density of mass-energy T (which we denote p—
the same notation as we use for mass density in Newtonian theory), and the pressure
P. The results are
[o.¢]
IIESO=/¢/\/(1VP=4N‘/ ./'szdp)
0
o0
p=T"= / NEAV, =4n / NEptdp,
3 £ ‘/m2 + 7
73
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Equation of State for a Relativistic Degenerate
Hydrogen Gas (zero T)

We can do so with the aid of the following approximation for the relativistic Fermi-
Dirac mean occupation number 1, = 1/[e(€—#e/*k8T) 4 1]:

e~ 1for& < ji,=&p; ie,forp < pp=,/E% —m?, (3.50)

ne = 0for & > Ep; e, for p > pp. (3.51)

Here & is called the relativistic Fermi energy and p . the relativistic Fermi momentum.
By inserting this 1), along with NV, = (2/ h®)1), into the integrals (3.49) for the electron
number density n,, total density of mass-energy p,, and pressure P,, and performing
the integrals (Ex. 3.10), we obtain results that are expressed most simply in terms of
a parameter ¢ (not to be confused with time) defined by

EF =i, =m, cosh(t/4), PF= ‘/S% —m?=m,sinh(t/4).  (352)

74

74
Relativistic Degenerate Electron Gas
The results are
81 (pp } 8 .3
n,= 3—)\3 (E) = Kg sinh (1/4), (3.52b)
8 PF/me
Pe = e / x2V/14 x2dx = w[sinh(t) —t], (3.52¢)
PER 43
8wm, [PF/me x4 Tm, . .
= )»g A m dx = 12)&3 [sinh(t) — 8sinh(7/2) + 3t].  (3.52d)
75
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White dwarfs

In a white-dwartf star, the protons, with their high rest mass, are nondegenerate,
the total density of mass-energy is dominated by the proton rest-mass density, and
since there is one proton for each electron in the hydrogen gas, that total is

8am, 3
p=mpn, = N sinh’(¢/4). (3.53a)
([

By contrast (as in the nonrelativistic regime), the pressure is dominated by the elec-
trons (because of their huge zero-point motions), not the protons; and so the total
pressure is

Tm

P=P, = 12}\;’ [sinh(7) — 8 sinh(z/2) + 3t]. (3.53b)

76

76
White Dwarf
In the low-density limit, where t < 1s0 pr <« m, = m,c, we can solve the rela-
tivistic equation (3.52b) for f as a function of n, = /)//np and insert the result into the
relativistic expression (3.53b); the result is the nonrelativistic equation of state (3.43).
The dividing line p = pre| geg = 87m ,/(312) = 1.0 x 10° gcm =3 [Eq. (3.46)] be-
tween nonrelativistic and relativistic degeneracy is the point where the electron Fermi
momentum is equal to the electron rest mass [i.e., sinh(7 /4) = 1]. The equation of state
(3.53a) and (3.53b) implies
i P, o p°/ in the nonrelativistic regime, p < prel deg>
Sirius B
M= 1.0 My, P, x p*3  in the relativistic regime, p 3> Prel deg- (3.53¢)
R ~ 5800 km
These asymptotic equations of state turn out to play a crucial role in the structure and
stability of white dwarf stars
77
77
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Hot Stove

Two best examples of
(BBR) are the sun and
hot stove, both of which

emit red light due to
their temperature.

When heated, the

molecules comprising a
perfect blackbody
vibrate and emit light of
the same wavelength
as their vibration.

Mustafar

Even the fictitious
planet, , emits
BBR due to its immense
quantity of lava.

Equation of state for termal radiation

As was discussed at the end of Sec. 3.3, for a gas of thermalized photons in an en-

vironment where photons are readily created and absorbed, the distribution func- 14 -
tion has the blackbody (Planck) form n = 1/(e‘€/("87) — 1), which we can rewrite as .
1/(eP/®*8T) — 1), since the energy € of a photon is the same as the magnitude p of its g 124
momentum. In this case, the relativistic integrals (3.49) give (see Ex. 3.13) N Classical theory (5000 K)
E 10 -
R . 1 L
n=>bT>, p=aT®, P=-p, (3.54) 2 &
3 3
=3
8
where 5 %7
K g
b=16m¢(3)—L. =20.28cm™ K3, @sa)  § 4
h3c3 3
&
87° kg —15 34 167 -3 -4 27
=——5=>=7.566x 10" " ergcm " K" =7.566 x 10 JmK (3.54¢)
15 h3c3
0 T T T T T - 1
are radiation constants. Here ¢ (3) = Z:’;l n~3=1.2020569 . . . is the Riemann zeta 0 05 1 15 2 2.5 3
function. Wavelength (um)
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Comparison of blackbody radiation to the solar

Blackbody radiation intensity

)

L

T=5,500K

irradiance

2.0
] Extraterrestial solar spectral
8 1.6 irradiance, Total area: 1,367 W/m?
= .
T=5,000K ® o~ i -
= & Blackbody spectrum for
S K= 1.24 T=5,777K, Total area 1367 W/m?
H g 1
T=4,500K — ]
e § 0.8
o 1
T=4,000K
@ & 0.4
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EoS through
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Quantum gases: fermions and bosons (grand
canonical ensemble)

The equation of state for a quantum ideal gas is
pV = KTInZ = -I_-k’l‘z In[1 + ePreb%]
J
The summation over states can be replaced by an integration over energy levels with:

3

2 1
w(g)de = 2n<hr;> Vezde 3D

From this, derive the quantum virial expansion (where A = ef):

P _ 15: 1)
kT T A__

EE TR
]2
82
E O S Of B O S O n S fo r a n y Equation of state (with fugacity z in the role of parameter):
H H pV gp/2+1(2)
=——=, z<L
B D/2
dimension D Wt~ s
! o
_ Vv m \D/2 5y D 08 J
DO =t (27rh2) L V=In z
‘_‘n s D=1
Fundamental thermodynamic relations for BE gas: z
S

- o _pe \4 &

kBT Z]n(lfw Fer) :74 de D(€)In (1 — ze 5):@51,,“(:) 04
_ _ [T D) _V R 0z
N= z‘: z’led‘ﬂ' 3 —/0 de a3 —7= Eyvﬂ(% z<1,
o < D(e)e D v o I TR "
v=>3" T :/0 de—r 5 — = ?kBTE_fID/ZJA(;)- o o1 02 03 o4 ozs 06 07 08 03 1
ke
The range of fugacity is limited to the interval 0 < z < 1. At z = 1, the
expression for N must, in some cases, be amended by an additive term to
account; for the possibility of a macroscopic population of the lowest energy Note the classical limit when the dimensionality
level (at € = 0).
D> oo
where z = eBH
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35



24/10/24

EoS for Bosons and

Equation of state for d = 2

Fermions in 2D —

* The classical limit is the straight line
for positive p below the FD and above

the BE equations.

* The effective repulsions in FD increase
p while the effective attractions in BE
decrease it, w. r. to the classical EoS.

Bosons
Fermions

84
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Exercise 3.10 Derivation and Practice: Equation of State for Relativistic,

Electron-Degenerate Hydrogen Bl EZ1

Derive the equations of state (3.52) for an electron-degenerate hydrogen gas. (Note:

It might be easiest to compute the integrals with the help of symbolic manipulation

software, such as Mathematica, Matlab, or Maple.)
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Exercise 312 Example: Specific Heat for Phonons in an Isotropic Solid Il
In Sec. 12.2 we will study classical sound waves propagating through an isotropic,
elastic solid. As we shall see, there are two types of sound waves: longitudinal with
frequency-i peed C7,and witha somewhat smaller frequency-
independent speed C7. For each type of wave, s = L or T, the material of the solid
undergoes an elastic displacement & = Af, exp(ik - x — wr), where A is the wave
amplitude, f, is a unit vector (polarization vector) pointing in the direction of the
displacement, k is the wave vector, and w is the wave frequency. The wave speed is
C, =w/|K| (= C;, or Cr). Associated with these waves are quanta called phonons. As
for any wave, each phonon has a momentum related to its wave vector by p = fik, and
an energy related to its frequency by £ = fiw. Combining these relations we learn
that the relationship between a phonon's energy and the magnitude p = [p| of its
momentum is E = C, p. This is the same relationship as for photons, but with the
speed of light replaced by the speed of sound! For longitudinal waves f; is in the
propagation direction k, so there s just one polarization, g, = L For transverse waves
- is orthogonal to k, so there are two orthogonal polarizations (e, fr = e, and
fr = e, when k points in the e, direction), g7 = 2.
(a) Phonons ofboth types, longi arebosons. Why? [Hint: Each
‘normal mode of an elastic body can be described mathematically as a harmonic
oscillator.]

(b) Phonons are fairly easily created, absorbed, scattered, and thermalized. A general
argument that we will give for chemical reactions in Sec. 5.5 can be applied to
phononc d , once they
equilibrium with their environment, the phonons will have vanishing chemical
potential 2 = 0. What, then, will be their distribution functions » and \V'?

Ignoring the fact that the sound waves' wavelengths 2. = 27/ |k| cannot be smaller
than about twice the spacing between the atoms of the solid, show that the total
phonon energy (wave energy) in a volume V of the solid is identical to that for
blackbody photons in a volume V, but with the speed of light ¢ replaced by
the speed of sound C,, and with the photon number of spin states, 2, replaced
by g, =3 (2 for transverse waves plus 1 for longitudinal): Ey,, = a,7*V, with
ag = g,(47/15)(k/ (H3C)) [cf. Egs. (3.54)].

Show that the specific heat of the phonon gas (the sound waves) is Cy = 4a,T°V.
This scales as 7, whereas in a metal the specific heat of the degenerate electrons
scales as T (previous exercise), so at sufficiently low temperatures the electron
specific heat will dominate over that of the phonons.

&

(e) Show that in the phonon gas, only phonon modes with wavelengths longer than
~Ar = C;h/(kgT) are excited; that is, for A < A7 the mean occupation num-
ber is n < 1; for A ~ A7, n ~ I; and for A > A7, n > 1. As T is increased, Ar
gets reduced. Ultimately it becomes of order the interatomic spacing, and our
computation fails, because most of the modes that our calculation assumes are
thermalized actually don’t exist. What is the critical temperature (Debye temper-
ature) at which our computation fails and the 7 law for Cy changes? Show by a
roughly one-line argument that above the Debye temperature, Cy is independent
of temperature.

86

Formalism: Liouville’s Theorem

The foundation for the collision-free evolution law will be Liouvilles theorem.
Consider a set S of particles that are initially all near some location in phase space
and initially occupy an infinitesimal (fr: independent) ph: pace volumed?) =
dV,dV,. Pick a particle at the center of the set S and call it the “fiducial particle”
Since all the particles in S have nearly the same initial position and velocity, they
subsequently all move along nearly the same trajectory (world line): they all remain
congregated around the fiducial particle. Liouville’s theorem says that the phase-space
volume occupied by the set of particles S is conserved along the trajectory of the
fiducial particle:

d
Jp@dvy) =0, (3.63)

Here ¢ is an arbitrary parameter along the trajectory. For example, in Newtonian
theory £ could be universal time 7 or distance / traveled, and in relativity it could be
proper time  as measured by the fiducial particle (if its rest mass is nonzero) or the
affine parameter ¢ that is related to the fiducial particle’s 4-momentum by p = dx /d¢.

86
P P
| i
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y o —Ax|—
(a) (b)
FIGURE 39 The phase-space region (x-p, part) occupied by a set S of
particles with finite rest mass, as seen in the inertial frame of the central,
fiducial particle. (a) The initial region. (b) The region after a short time.
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Proof

We shall prove Liouville’s theorem with the aid of the diagrams in Fig. 3.9. Assume,
for simplicity, that the particles have nonzero rest mass. Consider the region in phase
space occupied by the particles, as seen in the inertial reference frame (rest frame)
of the fiducial particle, and choose for £ the time ¢ of that inertial frame (or in
Newtonian theory the universal time #). Choose the particles’ region dV,dV), at
t =0 to be a rectangular box centered on the fiducial particle (i.e., on the origin
xJ =0 of its inertial frame; Fig. 3.9a). Examine the evolution with time # of the 2-
dimensional slice y = p, =z = p, = 0 through the occupied region. The evolution
of other slices will be similar. Then, as # passes, the particle at location (x, p,) moves
with velocity dx /dt = p, /m (where the nonrelativistic approximation to the velocity
is used, because all the particles are very nearly at rest in the fiducial particle’s inertial
frame). Because the particles move freely, each has a conserved p,, and their motion
dx /dt = p,/m (larger speeds are higher in the diagram) deforms the particles’ phase
space region into a skewed parallelogram as shown in Fig. 3.9b. Obviously, the area
of the occupied region, AxAp,, is conserved.

88

88

Since, in the absence of collisions or other nongravitational interactions, the
number dN of particles in the set S is conserved, Liouville’s theorem immediately
implies the conservation of the number density in phase space, N' = dN /(dV,dV,):

This conservation law is called the collisionless Boltzmann equation; in the context of
plasma physics (Part VI) it is sometimes called the Vlasov equation. Note that it says
that not only is the distribution function N frame independent; N also is constant along

Collisionless Boltzmann equation

T 0 along the trajectory of a fiducial particle. (3.64)

momentum p

the phase-space trajectory of any freely moving particle. pO S ltl on x

The collisionless Boltzmann equation is most nicely expressed in the frame-
independent form Eq. (3.64). For some purposes, however, it is helpful to express
the equation in a form that relies on a specific but arbitrary choice of inertial ref-
erence frame. Then ' can be regarded as a function of the reference frame’s seven
phase-space coordinates, N = A/ (, x/, py), and the collisionless Boltzmann equa-
tion (3.64) takes the coordinate-dependent form

N _diaN
de — de ar

Here we have used the equation of straight-line motion dp/dt = 0 for the particles

energy

dxj N dpjoN _dt (aN | N
- i Bk i v;— | =0. (65
de 8x; ' dt ap; de\ ar ax;

position z

and have set dx;/dt equal to the particle velocity v;.
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Boltzmann transport equation

Since our derivation of the collisionless Boltzmann equation relies on the as- " " ) ) ) ) ) )
Scatter event

sumption that no particles are created or destroyed as time passes, the collisionless
Boltzmann equation in turn should guarantee conservation of the number of parti-
cles, dn/dt 4+ V - S = 0 in Newtonian theory (Sec. 1.8), and V-5=0 relativistically
(Sec. 2.12.3). Indeed, this is so; see Ex. 3.14. Similarly, since the collisionless Boltz-
mann equation is based on the law of momentum (or 4-momentum) conservation +

for all the individual particles, it is ble to expect that the collisionless Boltz- roe

mann equation will guarantee the conservation of their total Newtonian momen- streaming

tum [0G/dt + V - T =0, Eq. (1.36)] and their relativistic 4-momentum [5 -T=0, I

Eq. (2.73)]. And indeed, these conservation laws do follow from the collisionless [ —F»

Boltzmann equation; see Ex. 3.14.

Thus far we have assumed that the particles move freely through phase space with
no collisions. If collisions occur, they will produce some nonconservation of A along
the trajectory of a freely moving, noncolliding fiducial particle, and correspondingly,
the collisionless Boltzmann equation will be modified to read

(3.66)

where the right-hand side represents the effects of collisions. This equation, with
collision terms present, is called the Boltzmann transport equation. The actual form of
the collision terms depends, of course, on the details of the collisions. We meet some
specific examples in the next section [Egs. (3.79), (3.86a), (3.87), and Ex. 3.21] and in
our study of plasmas (Chaps. 22 and 23).
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. M What are t t coefficients? A le is electrical conductivity «,. Wh
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responds by developing a current density

(3.70a)

The electrical conductivity is high if electrons can move through the material with
ease; it islow if electrons have difficulty moving. The impediment to electron motion is
scattering off other particles—off ions, other electrons, phonons (sound waves), plas-
mons (plasma waves), . . . . Ohm’s law is valid when (as almost always) the electrons
scatter many times, so they diffuse (random-walk their way) through the material. To
compute the electrical conductivity, one must analyze, statistically, the effects of the
many scatterings on the electrons’ motions. The foundation for an accurate analysis
is the Boltzmann transport equation (3.66).
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Another example of a transport coefficient is thermal conductivity «, which ap-
pears in the law of heat conduction

Here F is the diffusive energy flux from regions of high temperature T to low. The im-
pediment to heat flow is scattering of the conducting particles; and, correspondingly,
the foundation for accurately computing « is the Boltzmann transport equation.

Other examples of transport coefficients are (i) the coefficient of shear viscosity
Nshear» Which determines the stress 7;; (diffusive flux of momentum) that arises in a
shearing fluid [Eq. (13.68)]

T;j = =20 ghearij> (3.70c)
where o;; is the fluid’s rate of shear (Ex. 3.19), and (ii) the diffusion coefficient D,

which determines the diffusive flux of particles S from regions of high particle density
n to low (FicK’s law):
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There is a diffusion equation associated with each of these transport coeffi-
cients. For example, the differential law of particle conservation dn/dt +V -S=0
[Eq. (1.30)], when applied to material in which the particles scatter many times so

S = —DVn, gives the following diffusion equation for the particle number density:
)
2 DV, (3.71)
at

where we have assumed that D is spatially constant. In Ex. 3.17, by exploring solutions
to this equation, we shall see that the root mean square (rms) distance [ the particles
travel is proportional to the square root of their travel time, I = /4D, a behavior
characteristic of diffusive random walks.!? See Sec. 6.3 for deeper insights into this.
Similarly, the law of energy conservation, when applied to diffusive heat flow
F = —«VT, leads to a diffusion equation for the thermal energy density U and
thence for temperature [Ex. 3.18 and Eq. (18.4)]. Maxwell’s equations in a magnetized
fluid, when combined with Ohm’s law j = «,E, lead to diffusion equation (19.6) for
magnetic field lines. And the law of angular momentum conservation, when applied to
ashearing fluid with 7;; = —2n,.,,0;;, leads to diffusion equation (14.6) for vorticity.
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These diffusion equations, and all other physical laws involving transport coef-
ficients, are approximations to the real world—approximations that are valid if and
only if (i) many particles are involved in the transport of the quantity of interest (e.g.,
charge, heat, momentum, particles) and (ii) on average each particle undergoes many
scatterings in moving over the length scale of the macroscopic inhomogeneities that
drive the transport. This second requirement can be expressed quantitatively in terms
of the mean free path ) between scatterings (i.e., the mean distance a particle trav-
els between scatterings, as measured in the mean rest frame of the matter) and the
macroscopic inhomogeneity scale L for the quantity that drives the transport (e.g., in
heat transport that scale is £ ~ T/|VT|; i.e., it is the scale on which the temperature
changes by an amount of order itself). In terms of these quantities, the second criterion
of validity is A <« L. These two criteria (many particles and A <« L) together are called
diffusion criteria, since they guarantee that the quantity being transported (charge,
heat, momentum, particles) will diffuse through the matter. If either of the two dif-
fusion criteria fails, then the standard transport law (Ohm’s law, the law of heat con-
duction, the Navier-Stokes equation, or the particle diffusion equation) breaks down
and the corresponding transport coefficient becomes irrelevant and meaningless.
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