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Ising Model



Criticality

Criticality refers to the behaviour of extended
systems at a phase transition where no
characteristic scale exists. Thermodynamically, a
phase transition occurs when there is a singularity
in the free energy. The liquid-gas, conductor-
superconductor, fluid-superfluid, or
paramagnetic-ferromagnetic phase transitions are
common examples.

The Ising model of a ferromagnet is one of the
simplest models displaying the paramagnetic-
ferromagnetic phase transition, that is, the
spontaneous emergence of magnetisation in zero
external field as the temperature is lowered
below a certain critical temperature.

At the critical point of critical temperature and
zero-external field there is no characteristic scale.
As in the case of percolation, the scale invariance
is intimately related to fixed points of a rescaling
transformation.
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Ferro to paramagnetic
phase transition

The paradigm of critical phase transitions is the transition from
the paramagnetic state of iron to the ferromagnetic state, at the
Curie temperature, Tc = 1043 K.

The spin of each iron atom has a particular orientation,
corresponding to the direction of its local magnetic field.

Above Tc, the spins point in different directions and their
magnetic fields are canceled. This disordered configuration is
caused by the random thermal movement of the spins. The
higher the temperature, the more difficult it is for any orderly
arrangement of spins to be maintained.

However, when the temperature drops, the spins align
spontaneously. Instead of canceling each other out, the
individual magnetic fields are added, producing a macroscopic
magnetic field.

At Tc critical fluctuations lead to scaling and universality, i.e.,
the same power laws describe different ferromagnets.




Ising Model

The Ising model has had an enormous
impact on modern physics in general and
statistical physics in particular, but also on
other areas of science, including biology
and neuroscience [Hopfield, 1982; Amit,
1989; Majewski et al., 2001], economics
[Sornette, 2003] and sociology [Weidlich,
2001) among others. The importance of
the Ising model cannot be overstated.

At present, hundreds of papers in these
research areas are published each year on
models inspired by the Ising model.
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A microstate of the 2d Ising
model on a lattice

Consider a 2d square lattice composed of
N = L x L sites. Every site i is occupied by a
spin, si. For a magnetic material, we may
think of the spins as the magnetic dipoles
positioned on the crystal structure lattice.
In uniaxial magnetic materials, the
magnetic dipole interactions constrain the
spins to point parallel or anti-parallel
along a given direction. Therefore, for
simplicity, we assume that the spins can
only be in one of two states, either spin-
up, si= +1, or spin-down, si=-1.
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Spin-spin and external interactions

i j si 38; interaction energy
) t +1 +1 =Jij
4 4 -1 -1 =Jij
1 4 +1 -1 +Jij
{ t -1 +1 +Jij

The spins at positions i and j interact with
one another. For a pair of parallel spins we
assign an interaction energy of -Jij, while
for a pair of anti-parallel spins we assign
an interaction energy of +lij.

Eint = - _S_ Jijsis;,
tj

In addition to the internal spin-spin
interaction, we can impose a uniform
external field, H, which acts upon every
spin. A spin aligned parallel with the
external field has energy -IHI associated
with the spin-externa field interaction,
while a spin aligned anti-parallel with the
external field has energy +IHI. The external
energy for each spin is thus —Hsi.

N
Eexi = .—sti,

=1




Nearest-neighbour (single-coupling) Ising
model|

N

E{,..} = —JZS;SJ' = HZSi,

(i5) =1




Ising Model
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Review of Statistical

Mechanics
(A) = Pla}Afsid
{a:}

Statistical mechanics attempts to derive the
thermodynamic laws of macroscopic
quantities from a microscopic description of
a system.

One can only measure the temporal
average of a macroscopic observable.
Microscopically, the temporal average of an
observable is identified as a suitably

weighted ensemble average, <A>, over all
possible microstates. Therefore, if py;is the Z = E Z e 3 Z
probability of the system being in a {s;} s1==%1s==%1 sny==1

particular microstate {si} with observable
Ay, its ensemble average is over 2N
configurations or microstates.




Boltzmann
distribution

In the canonical ensemble the temperature
and volume of the system are kept fixed.
The probability p to find the system in a
microstate {si} with energy E,is given by
the Boltzmann distribution:

p _ exp(—ﬂE{Oi})
Lol 2 (s} €XP(=BE(s:})’

1
(A) = E Z exp(_ﬂE{s.’})A’{si}a
{si}

Z(T,H,N) = Z exP(—ﬂE{s.-}),
{s:}

The partition function Z is a suitably
weighted average over all the possible
microstates and provides the link
between the microscopic and
macroscopic descriptions of a system. The
partition function depends on the
temperature T, the external field H, and
the number of spins N. Therefore, all
ensemble averages of observables also
depend on T, H, and N.




Magnetization

N'
M{,‘.} = Z L
i=1

Energy

1
(E) = 7 Zexp(—ﬂE{,‘.})E{.,.}.
{si}

Free energy

F(T,H) = —kgTn Z.

F=(E)-TS,

Ensemble average & free energy




Magnetization per spin

of 0
-N ('é'ﬁ) = kBTﬁ- InZ

190
= kBTEaHZ

—kasz-I—{ Zexp( BE(s.})

zzexp( BE(s:)) Miay
(o)




Response function:

susceptibility

H
d [1
—3 a—]{- (E Zexp(—ﬂE(,‘})M(,A})
{s:}
l'

1 02
=7 2 oP(-BEu)BME — Zr 50 Zexp( BE(s)) M5
(s}

2
%ZGXP( —BE(, })M{ )~ ﬂ( Zexp(»ﬂE{,i})M{.i))
{s:}

=8 (<M2) —(My?). (2.19)

sensitivity, vulnerability,

what are other sensitiveness, susceptibleness,
words for liability, responsiveness,

susceptibility? openness, exposure, sensibility
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Response function:
specific heat

ksT?e = ({B% - (B)?).




Summary

Quantity Relation Response function
Partition function: Z = E{s,} exp (—ﬂE{,i})
Free energy per spin: f = —Tb—kBTln Z
5 s : 8 2
Magnetisation per spin: m = — (—f— = (g—}}‘)T = — (gﬁ{r)T
. 2
Energy per spin: €= N(‘9 11;1132) =f-T (g%)li ci= (g%)H = T (gT B

Entropy per spin: S/N = —(g%) = % (e-f)




Thermodynamic limit

Specifically, in d dimensions, the total free energy F for a finite system of N = L¢
spins can be separated into a bulk contribution, F,,, and a boundary
contribution, Fyoyngary,» Which are proportional to L%and L% respectively. When
considering the free energy per spin, boundary effects decrease with
increasing system size and disappear altogether in the thermodynamic limit.
Therefore, in the thermodynamic limit, the free energy of the system per spin
reduces to the bulk free energy per spin,

F F
im — = lim bullf'*' boundary = kim

Fouik
N—aoco N N-oo N N oo )

In the thermodynamic limit, there is an infinite number of terms in the
partition function. In this case, the free energy is no longer guaranteed to be
analytic, and there is at least a possibility that it is not.



Non-interacting (independent) spins
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Z(T,H) =Y exp (-BE(.,))
{s:}

N
=) _exp (BHZSi)
{s:} i=1
=Y exp(BHs:) exp (BHs) - - exp (BHsN)

{s:}
=3 ¥ - Y exp(BHsi)exp(BHs)---exp(BHsn)

s1=%1s2=%1 sy=%1

= ) exp(BHs1) Y exp(BHsy)--- 3 exp(BHsn)

sy=+1 s2==+1 sn=%1
= (exp (BH) + exp (—BH))"
= (2cosh BH)" . (2.25)

F(T,H) = —kpTIn (2 cosh BH)N
—NkgTIn(2coshSH).

f(T,H) = —kpTIn(2cosh H).

Free energy density




Magnetization & susceptibilit

(a) |
d 2sinh BH 1+
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Fluctuations of the magnetization

Susceptibility

x(T,H) = (g—;’;)rp = B sech®’BH

1
x(T,0) = T

Fluctuations in the magnetization

kgTx = sech’BH = -1%,- ((M“) — (M)z) :

2\ _ 2
\ﬂM(iw)(M) =\/1NCSChﬂH°<'—\/1? for H # 0.



Average energy & specific heat

(a o

Average energy

_ 1 /0lnZ\ _ 2sinhpH . .
e(T,H)——N< 35 )H——ZcoshﬂHH— H tanh BH;

Specific heat

04

-H H? 03

65 P 2
a1 = ke T2 sech’SH;

o(T,H) = (——)H = —H sech?(BH)

(T, 1)

oT

0.2}

0.1




Fluctuations of the energy

kgT?c = H?sech?BH = -—11\7 ((E2) - (E)z) ;

2y _ 2 .
\/(E()E> (E) _ _SEHJLNIQ csch BH % for H #0.




Interacting
Spins




Expectations

Ising model

0 for T > T,

mo(T) = Hll)n(}:t m(T,H) < {:!:(Tc _ T)B forT =T,

m(T,, H) « sign(H)|H|'/® for |H| - 0,T =T,

Magnetization
i, 1) exponents f & 0
g
........




Response functions

x(T,0) x |T = Te|~" for T = T..

(T,0)x |T-T,|™* forT—T..

Correlation length

§T,0)  |T = T|™ for T - Te.

Ising model

Response
function
exponentsy & a

&

Correlation
length exponent
v




The spin-spin correlation function

g(ri,r5) = ((8: — (83)) (85 — (s5)))
= (sis;) — (si)(s;),

NkpTx = (M?) — (M)?

(EoE)-E)

k=1 j=1 j:l

M=

((sksj) — (sk)(s;))

M= I

j=1

9(re,rj)

i
iM=

13

N
Nzg(riarj)7

=1

Ising model

Correlation
function

Equal time correlation funtion

Ferromagnetic
:

(M)? below Tcurie

Dimensionless distance, /&

C(r, T=0) below Tcyrie



Ising model

Sum rule

/ g(r,-,rj) dr,- = kBTX. :
v Correlation
function

exponent n

At Tc the correlation function decays as a power law

g(ri,r;) o r=9=247)  for (T, H) = (T, 0),




Critical Exponents of the Ising Model
W——

V 0.6301
4 7/4 1.2373 1
(04 logarithmic 0.110
ﬂ * 1/8 0.3265 1/2
Fo) 15 4.789 3
n 1/4 0.0365

* the beta exponent here is not the inverse temperature
** exact results from mean field-theory




Configurations

Six microstates of the 2d Ising model on a
square lattice of size L = 150 for six
different temperatures in zero external
field, H = 0.

At relatively high temperatures T » Tc, the
spins are randomly orientated with no
correlations. As the temperature is
lowered, the spin-spin interactions are less
suppressed so that larger and larger
clusters of correlated spins form.

At T = Tc, a macroscopic cluster of
correlated spins appears for the first time.
This cluster is fractal and contains clusters
of all sizes of opposite spins, which
themselves. contain clusters of all sizes of
opposite spins, and so on, like droplets
within droplets within droplets ...




Symmetry breaking

The probabilities of finding the system in the microstates {si} and {-si} are

exp(—BEy,.})

p{&'} = VA
exp(—ﬂE —-8; )
p{_Si} = Z { } b}
p{a.—}
= exp —ﬂ E 8;} E —8; .
P (=8 (Bgeiy — E(-ss})]

In zero external field, the energy of a spin configuration is invariant if all the spins

are reversed:
E(s;} — E{_4)y =0, for H=0.

The magnetisation changes sign if all the spins are reversed:

(M) = zp{si}M{li} = 0)
{s:}



Have we just proved that the average total magnetisation in the Ising model is always
zero in zero external field, thereby destroying the possibility of a phase transition?
To answer this question negatively, we first consider the effect of introducing a small non-

zero external field. Explicitly, the energy difference

N
E{,‘.} == E{_s‘.} = —ZHZS,' = —2HM{3‘.},

=1

Without loss of generality, assume that M{si} > 0. Taking the external field to zero before
taking the thermodynamic limit, we find that

lim lim Ple} _ 1.

N—-o00 H—)Oi p{_,‘.}
On the other hand, taking the thermodynamic limit before taking the external field
to zero, we find that
P{s;} {oo for H — 0%

c lim  lim ——=
H—0% N—oo P{_ 4.} 0 for H > 0.



The existence of a non-zero external field, however small, therefore
breaks the symmetry among the spin configurations.

The thermodynamic limit and the limit of vanishing external field are
not interchangeable, that is,

lim lim (M) =0,
N-ooo H0%

lim lim (M) # 0.

H—-0x Nooo

In the thermodynamic limit, the ergodicity of the system is said to be
'spontaneously broken' for T < Tc, and it is this that gives rise to a
nonzero magnetisation.



In d = 1 the total energy of the Ising model for N spins in a uniform
external field H is

N
E{.'.} = —JZS,'SJ' o= HZS,‘

(i3) i=1

N N
= —JZS;S,'.H — HZS{,

=1 =1

Periodic boundary conditions are applied, s;=sy,1
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Z =Y exp(-BE,)
(o0}

= Z exp (w > sisig1 +BH Y s,)

si}

=1 i=1

N
= Z exp (BJ z 8iSiy1 + ﬁ— Z(s, + s,+1)) (2.59)

i=1 =1

= Zexp (ﬁJslsz % 5'2-(81 + 82)) ©++ €xp (.BJ3N31 + ﬂ%(sN + 31)) :



There are four possible configurations of the two spins s, and s;,;, and it

is convenient to arrange these in a real and symmetric 2 x 2 transfer
matrix, T, with entries:

H
Tai8i+1 = exp (ﬂJ3i3i+1 + ﬂ—2—(si + 3i+1)) ’

T = (T+1+1 T+1—1) _ (exp(ﬂJ+ BH) exp(-pBJ) )
Loy Tt exp(—BJ) exp(BJ - pBH))"

Z = z T'uzTnzOs v 'TON-uNTaNa;
{s:}
== Z Z Z Taszazaa "'Tsn_laNTansl (2.62)

s1=%1s8=+1 sn==%1

Yy o3 (Z T,mT,z,,) (,2 T.,,,_I.NT.N.,)-

s1=%x1 sny_1=%1 \s2==%1 N==%1



AL = Audy.
k=1

We can therefore rewrite the sum over paired terms as entries from their product
matrix T2,

Z = Z Z o Z T32133T32385 “ .T32N—38N—1T32N—l31

s1=x183=%1 sny-_1==%1

= Z Z e Z T:usT:sco T T:N—'ISN—ST:N—SUI

s1=%x1s85=%1 sny_3=+1
s N
= > T,

s1==#1
= Tr (TV),

The final expression is the trace of TN, that is, the sum over the diagonal elements of the
matrix TN. For the trace we only need the diagonal elements rather than the whole matrix.

We use a result from linear algebra which states that for the real and symmetric 2 x 2
matrix T there exists a 2 x 2 unitary matrix U, such that

U-ITU = ("J N ) , det(T — Al) =0,

A+ = exp(BJ) (cosh BH + 1/sinh® BH + exp(—4ﬂJ))



Using the identity UU-1 = | and the commutative property of the trace operation, Tr (AB)
= Tr (BA), the partition function is therefore

Z=T (TV)
=Tr (TUU~!TUU™! ... TUUTY)
=Tr((U'TU)(U"'TU) --- (U'TU))
Nfactors
3 AN 0
= ( 0 ,\’_")

=AY+

For zero external field H = 0, the partition function is
Z(T,0) = (2cosh BJ)N (1+tanh™ BJ) = (2cosh BJ)N for N = oo

The total free energy is

F=—-kgT'nZ

o))

= —chngn)\iV for N - o0

= —~NkgT [ﬂJ + In (cosh BH + \/sinh® BH + exp(—44J) )] ;



f(T,H)

(a)

Critical point (7%, H.) = (0,0)

Free energy density
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f(T",O) = —kpTIn(2coshBJ) = {

kpT =0
-==kgT =1
=i kgT =2
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Magnetization per
Spin

. 28sinh BH cosh BH
P
= KB

cosh BH + {/sinh® BH + exp(—4BJ)
sinh BH
\/sinh? BH + exp(~48J)

(b)
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Susceptibility

A : sinh BH cosh BH
) ﬂcosh BH \/sinh®BH +exp(—48J)—sinh BH 7__2_.inh’ﬁl{+ex-;(—4ﬁ-’)

sinh? BH + exp(—48J)
cosh BH exp(—48J)

= Psinh? BH +exp(—4BJ)/2 (2.75)
In zero field,
B for T — o0
7)) = 28J
MNP ia). {ﬂexp(ZﬂJ) for T = 0,

ksTx(T,0) = exp(28J).

The fluctuations in m diverge at T=0
by contrast to the ideal paramagnet.

x(T, H)

x(T,0)

10
I —_—T1 =0
8 - m>m
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Energy & specific
heat (zero field)

laan(T,O)
N ap
= —JtanhgJ
0 for T = oo
-J for T — 0;

e(T,0) = -

c(T, 0) = ?i(l"_o_)

=298
- 3 aT

sech?BJ.

|=.-,

!

ks

kpT?c(T,0) = J?sech?fJ,




The spin-spin correlation function

g(ri,r5) = ((si — (s1)) (85 — (57)))
= (8i85) — (si)(s;)

The Ising model is translationally and rotationally invariant:

9(ri,r;) = (8iSitr) — m?.

9(ri,vj) = (si8itr) — mi(T) for H=0.

g(ri,l'j) = (s,-s.-.,.,.) ford=1,T>0,H=0
= % E eXp(—ﬁE{,..}) 8iSitr for d = I’T > 0, H=0.
{s:}

It is advantageous to assume, for the moment, that the nearest neighbour
interactions depend on position

N N
E{,..} = - Z JisiSit1. Z = H2cosh BJ;.

=1 i=1



Correlation
function

In the one-
dimensional Ising
model the spin-spin
correlation function
only depends on the
distance between
spins r =1Ir;-r;l, and
decays exponentially
with the correlation
length in zero external
field.

i=1

N
— —;— Z exp (ﬂ Z J,~s,~si+1
{si}

i=1

N
1
Q(Ti,rj) = 7z E :exp (ﬁ S Jisisit1
{s:}

67‘

) 8iSitr "

) 8iSi+18i4+1 ' ** Si4r—18i4r—18i4r

1 1
-z {Z} B7 8J:0Jiy1---0J;

1 or

N
exp (ﬁ Z Ji3i3i+l)

+r-1 i=1

~Zp 0Ji0Jit1 -+ - 0Jigr—1

1 or

N
Z exp (ﬂ Z Ji3i3i+l)

{1} i=1

T Zp 0J;0Ji41 - - 0Jigr—1
_ (2cosh BJ)N~"(2Bsinh B

N
H 2 cosh 8J;

i=1

J)

(2cosh BJ)N gr
= tanh"8J
= exp [rIn (tanh BJ)].

9(ri,x;) = exp (~r/§)

after restoring J; = J

(2.90

ford=1,T >0,H =0,




Correlation
length

2000 ——

4000 —— -

8000 ——*—
16000 —=—
32000 —=—
64000 ——
128000 ——
256000 ——

g(ri,r;) =exp(-r/§) ford=1,T>0,H=0,

1 |
“In(tanh B7) _ In(hs/A-)

§(T,0)= ford=1,




Correlation length

At high temperatures, the spins are

randomly orientated and thus uncorrelated.

The correlation length is zero and there are
no fluctuations away from states with
randomly orientated spins. As the
temperature is decreased, spins align to
form clusters of larger and larger size
limited only by the correlation length.

For temperatures a proachinF zero, the
correlation length diverges. Clusters of all
sizes form and there are fluctuations of all
scales away from states with randomly
orientated spins.

However, at T = 0 all spins are aligned and
the correlation length'is zero.

: 1
e Y W
1

T In[(1 + exp(=287)) / (1 — exp(—287))]
1

™ nl e e T
Y 2e31cp(—2/3J)] B0
- % exp(28J) for T — 0%.
0 for T = o0
§(T,0) = § 3exp(28J)  for T — 0%
0 for T = 0.




Critical temperature

We conclude our analysis of the one-dimensional Ising model by
remarking on the role played by the temperature T=0 in zero
external field. Approaching this value, the susceptibility and the
correlation length diverge.

This is intimately related to the onset of spontaneous
magnetisation at T = 0. We can therefore identify the critical
point (Tc, Hc) = (0, 0), at which the phase transition takes place.

To investigate whether the single domain of aligned spins is
stable against thermal fluctuations for T > 0, we calculate the
difference between the free energy for a single domain of aligned
spins, F, 4om and the free energy for two domains of oppositely
aligned spins, F

2-dom*

We will show that for any finite temperature T >0, F,_4om < F1-dom
when N — oo,




(a)

HERONERERRRERERERRNEER Fy.dom — Fidom = ~NJ +4J = kgTIn2N(N = 1) + NJ + kpTIn2
' ‘ =4J - kgTInN(N —1)
(b) ] ! ~4J —2kgTIn N for large N. (2.96)

3 I 3 A A 3 3 5 P

There are two microstates with a single spin domain, each with energy -NJ. The entropic contribution to the free
energy is —kT In2. Hence, the associated free energy for a single spin domain F,_4,,, = - NJ = kT In2.

To make two domains of oppositely aligned spins, two domain walls must be inserted with an energy cost of 4J.
There are 2N(N - 1) equally probable microstates with two domain walls. The free energy is then F =-NJ + 4J
— KT In2N(N - 1).

2-dom



Peierls argument

Thus, for any finite temperature, it is
energetically favourable to insert at
least two domain walls when N— oo,
However, the ensemble average over
all these microstates gives zero
magnetisation. Thus the critical
temperature Tc = 0 for the one-
dimensional Ising model.

In conclusion, there is no phase
transition at any finite temperature in
the one-dimensional Ising model.

K iRuidolf Peierls

Selected:Ri &and Scientific Correspondence Vol. 2

For large N

2J
-k—;f < InN.




It is relatively easy to solve the Ising model analytically when ignoring fluctuations. Such an
approach is generically referred to as mean field, and is often the first port of call when a

non-trivial problem is encountered.

In order to explicitly expose where the fluctuations enter the Ising model, we first rewrite the
interaction energy as follows:

Ejn, = —JZ 8i8;

(i)

=—J) (8i = (sa) + (8:))(s5 — (s5) + (55)) (2.98)
(i)

= —Jz [(ss=(s:))(8;)+ (55— (85))(s:) +(si)(s;) + (8: — (i) (55— (s))] -
(i)

When fluctuations around the average magnetisation per spin are small, we can neglect the
second-order term. This in turn simplifies the problem by discounting spin-spin interactions.



Since the Ising model is
translationally invariant, we
can write the energy as

N
Efs} = ‘JZ [(si + s5)m —m?] — sti
Therefore, the mean-field (i7) i=1
Ising model with

coordination number z — —2Jst, +J Zm - H Z S;
becomes a system of non- (,J) (i5)

interacting spins immersed in N

an effective field of strength _ .
(Jzm + H) plus a constant = -2Jmz Z Si + J—m - H E Si
term NJzm?2/2. The effective =1
field is made up of an NJz

'internal’ field, Jzm, resulting — -(sz -+ H) Z S; + 2 m2.

from the z nearest
neighbours each contributing
a field of strength Jm, and
the external field H.




The partition function is

N
Z = Zexp ((ﬂsz + BH) Zsi - ﬂNsz2/2)
{s:} i=1

N
= exp (—-BNJzm?/2) 3 [[ exp[(BJzm + BH) si]

{si} =1
= exp (~ANJzm?/2) [2cosh (8Jzm + BH)]"

And the free energy is

f= —]—b-kBTln [exp (=B8N Jzm?/2) [2cosh (BJzm + ,BH)]N]

2
= Jz2m — kT In[2cosh (BJzm + BH)]. (

To calculate the average magnetisation per spin m we keep in mind that it is a function of the
temperature T, and the external field H.

- (3),

_ om 2sinh(BJzm + BH) om
==l (6H>T kBT g on(BUzm + BH) (N" (aH)T i ‘3)

=Jz (g—g) [tanh(8Jzm + BH) — m] + tanh(8Jzm + fH). (2.102)
T



The average magnetization is then

m(T, H) = tanh(8Jzm + BH),

In zero field

mo(T) = tanh [8Jzmo(T)] = tanh [.TTcmo(T)] ;

1

0.5F

tanh[(T./T)mo(T))

05F rog,

my(T)

For all temperatures, mO(T) = 0 is a solution. This solution is stable and unique for T > Tc,
although only marginally so at T = Tc, and is unstable for T < Tc, where two stable non-zero
solutions appear for the first time. Mean-field theory therefore predicts a phase transition at
T = Tc from a disordered phase with zero average magnetisation above Tc to an ordered
phase with non-zero average magnetisation below Tc. The critical temperature for the mean-
field theory of the Ising model is therefore Tc= Jz/kB.



Magnetization in
zero field

The average magnetisation per spin
in zero external field, mO(T), versus
the relative temperature T/Tc.

For T > Tc, mO(T) = O but then picks
up abruptly for T < Tc.

The absolute average
magnetisation per spin in zero
external field, ImO(T)I, versus (Tc -
T)/Tc for T < Tc (solid line). For T< Tc
the order parameter mO(T) prop
+(Tc - T)? with B=1/2. The dashed
straight line has slope 1/2.

mo(T)

o
=) & -
j

T[T,




Free energy

The free energy is analytic
everywhere, except along the line

(T, 0) with 0 < T < Tc, terminating at
the critical point (Tc, 0) where a cusp
exists. Note that along the line (T, 0)
with 0 < T < Tc, the left and right first
derivatives of the free energy with
respect to the external field are non-
zero with opposite signs. This line of
so-called first-order transitions ends
at the critical point (Tc, 0) where the
first derivatives are zero.

(b)

o
)
-~

—T|T. =08
| ——=T/T. =082
v TTe =1

| e TYTe =12




Magnetization

The effect of the free energy per spin
losing analyticity at the critical point
is clearly visible, since, graphically,
the magnetisation per spin is minus
the slope of the free energy per spin
as a function of external field for a
given temperature.

H

(b) 1 ——
Cut along the plane H=0. For T < Tc, | ool e
a discontinuous first-order phase 05 — /7. =08
transition occurs when switching the Sl
direction of the external field through o . S
H = 0. For T = Tc, the continuous ol
second-order phase transition occurs, L e
where the first derivative of the =

magnetisation per spin with respect
to the external field diverges.




Magnetization

To investigate the continuous but abrupt pick-up of the order param-
eter from zero average magnetisation, we expand the right-hand side of
Equation (2.105) around mo(T) = 0,

mo(T) = tanh | Zomo()| = Fomo() - 3 (%mo(T))s +oor. (2107)

Keeping the first two non-zero terms and rearranging,
T . LT aps] o
mo(T) [1 T + 3 (T) mg(T)| =0. (2.108)

For T < T, the two non-trivial solutions are

mo(T) = :!:\’3 (%)3\/? for T = T, . (2.109)

Expansion around Tc

In summary, the order parameter

0 forT > T,
+/3/T(T. - T) for T - T,

where 8 = 1/2 for the mean-field theory of the Ising model.

mo(T) = {




Susceptibility

x(T,0)

(b)

x(T,0)

[T o Tc]/Tc

0H ) 1

T. T. {Om
sech® | —=m + BH T \ 38 T+ﬂ .

To investigate how the susceptibility diverges as T approaches T in
zero external field, we consider the two limits T — T separately, see
Equation (2.110). When T — T, the order parameter mq(T) approaches
zero. Using the Taylor expansion cosh’z & 1+ z2, see Appendix A, we find

1 1
X0 = B o (T Tyma )] — T
1 1

= ks T+ (T./T)Pm3(T)] - T.
_ {%(T -T)"  forT>T.

4 _ (2.113)
gy (Te—=T)7" forT - T, .

Hence, the susceptibility per spin in zero external field diverges as T — T*
as a power law with exponents v* in terms of the distance of T' from T.:
X(T,0) x [T = To|~"* for T - T%, (2.114)

see Figure 2.20(b). For the mean-field Ising model, v* = 1. We have
explicitly demonstrated the general result that the critical exponents take
the same value below and above T,. In addition, the ratio of the amplitudes,
T'%, which appear as prefactors in the power-law divergence, is universal,

T =3 (2.115)




Magnetization in
non-zero field

(a) displays the magnetisation per spin
m}T, H) versus the relative temperature
T /Tc for various external fields. In the
presence of na external field, the

magnetisation becomes non-zero at T = Tc.

(b) displays the absolute average
magnetisation per spin Im(Tc, H)lat T=Tc
as a function of an applied positive
external field.

Just as the critical exponent  describes

the pick-up of the magnetisation in the

vicinitY of Tc- in zero external field, the

critical exponent & describes the

_rrnagnetisation for small external fields at
C.

m(T, H)

|m(Te, H)|

T/T.




Magnetization
at Tc

We expand the right-hand side of Equation (2.104) at T = T, where
BcJz =1 in a small external field, keeping terms to third order

m(T., H) = tanh(m + :H)

=m+ﬂ¢H-%(m+ﬂ¢H)3+~--

=m+f.H - %m" + O(m?H,mH?, H®). (2.116)
After rearranging, we find that the mean-field Ising model predicts
m(T., H) = sign(H) (36 |H|)'/®  sign(H) |H|'/, (2.117)

with § = 3. Note that m?H o m® mH? «x m”, H®> « m? so that Equa-
tion (2.116) is indeed an expansion to the third order in m. The dashed
straight line in Figure 2.21(b) has slope 1/6 = 1/3.
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The critical exponents a* are defined through ) 00 0‘_ 5 i ll. 3
o(T,0) « |T = T,|=** for T — T*. (2.120) T/T.
Therefore, we conclude that for the mean-field theory of the Ising model
a~ =0. The critical exponent at associated with the limit T — T} is not
defined in the simple mean-field treatment presented here. However, more
elaborate mean-field approaches [Pathria, 1996] yield
ot = 0. (2.121)




Summary

We summarise the success of mean-field theory for the Ising model. Most
importantly, it predicts a second-order phase transition at a finite critical
temperature and zero external field, which is correct for d > 1. There is
also a line of first-order transitions (T,0) for 0 < T < T, terminating at the
critical point. The increase of the critical temperature T, = Jz/kp with
the coupling constant and the coordination number is qualitatively cor-
rect. Therefore, just as for percolation, the critical point depends on lattice
details and is not a universal quantity. However, the critical exponents
a=0,8=1/2,7y=1and § = 3 do not depend on the coupling constant
and the coordination number and are indeed universal. Finally, mean-field
theory predicts universal amplitude ratios, as in Equation (2.115).



Landau theory for the Ising model

An alternative and more fundamental approach to characterising the min-
ima of the free energy is to perform a Taylor expansion of the free energy
itself in powers of the order parameter. Of course, such an expansion is
only valid when the order parameter is small, that is, in the vicinity of the
critical temperature and zero external field. To see how this works in prac-
tice, after introducing fo = —kgT'In2 as the entropic (high temperature)
part of the free energy per spin, Equation (2.101) becomes

sz

f=fot

We now Taylor expand to fourth order the logarithmic term on the right-
hand side of Equation (2.124) around (T, 0) first using coshz = 1+2%/2!+
z4/4'+ ... and then In(1 4+ ) = z — 2%/2+---, see Appendix A, implying

— kgTIn[cosh (BJzm + BH)]. (2.124)

B(f — fo)

In(coshz) = (1 + =z + -l—z +- )

21
1,, 1, 1(1, 1 y =
=§-i:c +Z$ 2 2' + +--
=lzz——z + O(z%). (2.125)

2 12




Substituting the expansion with z = (T, /T)m + SH into Equation (2.124)
we find

2 4
f=fo+ Jz;"?' — kgT [1 (Em 5 ﬂH) 1 (§m+ BH) ] . (2.126)

2\ T T12\T

Collecting terms in increasing powers of m up to fourth order, the free
eriergy becomes

o Tc 1 Tc 2 1
f=fo-FHm+ Zks = (T - T)m® + 12kBT(

L

4
T) mt.  (2.127)

Since H ox m3, see Equation (2.117), we have dropped the terms propor-
tional to H2, Hm3, H?>m?, H3m, and H*, which are all of higher order than
m*. Therefore, in the vicinity of (T%,0) where T./T — 1, the free energy
to fourth order in the magnetisation reduces to

f=fo-Hm+ -12-k3 (T -T)m? + Ilikl_:;Tm4

= fo — Hm + a3(T — T.)m® + agm* for (T, H) = (T.,0), (2.128)

where
fo=—=kpTIn2, (2.129a)
az = %kB, (2129b)
1
a4 = ﬁkBT. (2.129c¢)

Note that the sign of the coefficient of m depends on the direction of the
external field. The coefficient of m?, namely a(T — T¢), changes sign at
T = T., while the coefficient of m* is positive. The average magnetisation
per spin m(T', H) is now determined by minimising the free energy in Equa-
tion (2.128).



The starting point for all calculations is the Taylor expanded free energy
per spin

f = fo— Hm + ay(T — T.)m? + agm®, (2.130)

which is valid in the vicinity of the critical temperature and small external

fields. Figure 2.24(a) displays the free energy per spin f — fo in zero external
field versus myg.

To find the average magnetisation per spin m(T, H), we look for solu-
tions of Equation (2.122),
—H + 205(T — T,)m + 4a4m® = 0, (2.131)

that minimise the free energy.



Magnetization

B=1/2

In zero external field, Equation (2.131) reduces to
2mo(T){as(T — To) + 2a4m3(T)} = 0. (2.132)

For all temperatures mo(T) = 0 is a solution. When T > T, the square
bracket is always positive so that the only solution is mo(T) = 0. When
T = T, the first term in the square bracket vanishes so that the only
solution is mo(T) = 0. However, when T < T, two additional solutions
appear, mo(T) = *+/a3(T, — T)/2a4. These two solutions minimise the
free energy, see Figure 2.24(a).

In summary, the magnetisation per spin in zero external field,

forT>T,

0
ma ()= {i,/'——a,,(r,_. “T)/2a: for T—T-
_Jo forT>T,
T\ 2VIT. (T.-T)®  for T = T:,




Susceptibility
in zero field

To determine the susceptibility per spin, we take the partial derivative
of Equation (2.131) with respect to H,

~142a(T-T,) (g%)'r + 12a4m? (-g-g)r =0. (2.134)

To investigate how the susceptibility per spin diverges as T approaches
T, in zero external field, we solve Equation (2.134) for (dm/0H )z and
substitute m with mo(T"). Considering the two limits T — T* separately,
see Equation (2.133), we find

x(T,0) = 1/(2a3(T — Te) + 12a4m3?)
1/2ax(T - T.) for T+ T2
1/ [2a2(T - T.) + 12a4(a2(T: — T)/2a4)] for T —» T,

e T)™"" for T = T3

#(Te-T)™" faT-T,

(2.135)

(using 2a; = kg, see Equation (2.129b)) with the critical exponents y* =1,
in agreement with the mean-field results in Equation (2.113).




Magnetization
at Tc

To extract the critical exponent § that describes the magnetisation for
small external fields at T, we evaluate Equation (2.131) at T, with the
coefficients given in Equation (2.129) and find

-H+ %kBTcm3 =0 forT=T.. (2.136)

After rearranging, we recover tﬁe mean-field result of Equation (2.117)
m(T., H) = sign(H) (38:|H|)"/* o« sign(H)|H|*/%, (2.137)
with the critical exponent § = 3.




Specific heat

The specific heat is related to the second partial derivative of the free energy
with respect to temperature. Therefore, we first substitute Equation (2.133)

into Equation (2.130) to obtain the free energy per spin as a function of
temperature,

f= {fo forT > T,
fo+ az(T — To)(az(Te — T)/2a4) + a4a3(T — Te)?/4a2  for T - T
_ {fo for T > T.
fo— a3(T - T.)?/4aq for T - T,
_ {fo for T > T, (2.138)
fo— k(T -T2 for T 1T,

such that the specific heat in zero external field is

8% f )‘ 0 for T > T,
T,0)==~T [ == = 2.139
¢(T,0) ( T2 )|yo |3kg for T T;, (2.139)

consistent with the results in Equation (2.119). Thus we recover the mean-
field exponent o~ = 0.




Biblical theory

The Molten Sea or Brazen Sea was a large
basin in the Temple for ablution of the
priests. It is described in 1 Kings 7:23—

26 and 2 Chronicles 4:2-5. It stood in the
south-eastern corner of the inner court.

According to the Bible it was five

cubits high, ten cubits in diameter from
brim to brim, and thirty cubits in
circumference.




T<T, T="T, T >T.

£ 1o f=fo 3
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Landau
Theory

The Taylor expansion of the mean-field free energy is a specific example
of a general phenomenological approach to continuous phase transitions
devised by Landau in 1937 [Landau, 1937]. Landau was awarded the Nobel
prize in physics 1962 for ‘his pioneering theories for condensed matter,
especially liquid helium’ explaining the fluid-superfluid phase transition in
“He. He argued that if the free energy is analytic near the critical point,
then it can be expanded in terms of the order parameter which is small in
the vicinity of the phase transition

f(T,H;¢) = ax(T,H)¢* for T — T, H -0, (2.140)
k=0

where ¢ denotes a general order parameter and oy (T, H) are coefficients
that depend on the control parameters. For example, in the Ising model
these control parameters are the temperature and the external field. We
remind the reader that the order parameter is defined implicitly by min-
imising the free energy and is thus not an independent variable in the same
way that the temperature and the external field are.




Landau theory

Symmetry arguments can be used to constrain the coefficients ax (T, H).
For example, for the Ising model in zero external field, the free energy is an
even function of the order parameter, since in the absence of any external
field the spins are equally likely to be pointing up or down, on average.
This up-down symmetry is mathematically expressed as

f(T,0;¢) = £(T,0;-9), (2.141)

from which it immediately follows that no odd powers of ¢ may appear in
Equation (2.140), so that ax(7',0) = 0 for odd k in zero external field.

In the vicinity of the phase transition, the order parameter is small.
Thus we expect the higher-order terms in the expansion of the free energy
to be negligible. Furthermore, our experience with a mean-field Ising model
leads us to expect three extrema for the free energy when T' < T..

Therefore, in zero external field, the simplest possible form of the free
energy that can describe a continuous phase transition is a fourth-order
polynomial in even powers of the order parameter

f(T,0;9) = ao(T, 0) + (T, 0)¢5 + 4 (T, 0)4;. (2.142)

When T > T, the order parameter is zero and ag(7',0) is the only term
remaining in the expansion of the free energy. Thus we identify ao(7’,0)
as the entropic part of the free energy since the average energy is zero.




Landau theory

Furthermore, the free energy has a unique extremum at ¢o = 0 which is a
stable minimum. It follows that the coefficients az(T,0) and a4(T,0) are
positive for T > T..

When T < T, the order parameter is non-zero and all three terms
are present in the expansion of the free energy. The free energy has three
extrema, one unstable maximum at zero order parameter, and two stable
minima at non-zero order parameters, symmetric around zero. It follows
that the coefficient a2 (T, 0) is negative and a4(T',0) is positive for T < T..

At T =T, the free energy has a unique extremum at ¢p = 0 which is a
marginally stable minimum. Since a3(7',0) is positive for T > T, and neg-
ative for T < T, it follows that a»(7,0) must be zero at T' = T,. However,
a4(T,0) remains positive to ensure that the extremum is a minimum.

Assuming that the coefficients ax (T, H) are analytic around (T, 0), they
can themselves be expanded in powers of (I'—-T,) and H. For temperatures
close to the critical temperature and small external fields, it is sufficient to
keep only the leading-order term.

The leading-order terms for ao(7T', H) and a4(T, H) are the zeroth-order
terms &y, for which the sign is irrelevant, and a4, which is positive.

The leading-order term for az(T, H) is the first-order term,

ay(T,H) = a(T - T.) for T — T.,H =0, (2.143)

where &; is positive.
If we restore a small external field, the coefficients ax (T, H) with odd

k become non-zero. The leading-order term for a, (7', H) is the first-order
term

ay(T,H) =& H for T — T, H —0. (2.144)




Summary

In summary, in the Landau theory of continuous (second-order) phase
transitions with order parameter ¢, the simplest form of the free energy is

f(T,H;$) = o + @1 H¢ + @a(T — T.)¢* + aud", (2.145)

where @g is the entropic part of the free energy, & = -1, @ > 0, and
the coefficient of ¢* changes sign at 7., and @ > 0. The coefficients
in Equation (2.128) are consistent with the general considerations of the
phenomenological Landau theory of continuous phase transitions.

Following the steps in Sections 2.6.2 and 2.6.3 one could once again
derive the mean-field exponents for the Ising model, @ = 0,8 =1/2,y=1,
and § = 3.



Landau Theory

Most phases can be understood through the lens
of spontaneous symmetry breaking. For example,
crystals are periodic arrays of atoms that are not
invariant under all translations (only under a
small subset of translations by a lattice vector).
Magnets have north and sout Boles that are
oriented in a specific direction, breaking
rotational symmetry. In addition to these
examples, there are a whole host of other
symmetry-breaking phases of matter — including
nematic phases of liquid crystals, and many
others in soft matter and beyond.

Lev Landau introduced a framework in an
attempt to formulate a general theory of
continuous (i.e., second-order) phase transitions.
This theory can be extended to systems under
externally-applied fields and used as a
guantitative model for discontinuous (i.e., first-
order) transitions.

Other generalizations include vector and tensor
order parameters, appropriate to describe polar
and nematic ordered phases. More complicated
ordered phases, with two or more coupled order
parameters may also be considered, and the
generalized Landau theory is a useful tool to
understand the structure of complex soft matter
phases.



Scale invariance

In statistical mechanics, scale invariance is a feature of phase
transitions. The key observation is that near a phase transition

or critical point, fluctuations occur at all length scales, and thus
one should look for an explicitly scale-invariant theory to describe
the phenomena. Such theories are scale-invariant statistical field
theories, and are formally very similar to scale-invariant quantum
field theories.




Widom
scaling
ansatz

The failure of mean-field theory in low dimensions motivates its replacement
with a more general framework. Just as for the cluster number density in
percolation, we now search for a general scaling ansatz for the free energy
per spin that compactly summarises the behaviour of the Ising model in
the vicinity of the critical point. With a scaling ansatz for the free energy
per spin, we would be able to derive a scaling ansatz for all thermodynamic
quantities and establish scaling relations among the critical exponents.

It is convenient to introduce the dimensionless reduced temperature, t,
and the dimensionless reduced external field, h:

— 2.162
t Tc ) ( a)
H
= — = 2.162b
such that the limits
t=0f & T T (2.163a)

h—=0* & H-0% (2.163b)




Widom
scaling
ansatz

The free energy f(¢,h) describes a two-dimensional surface which is
analytic everywhere except along a line (¢,0) for —1 < ¢t < 0, terminating
at the critical point (0,0) where a cusp exists, see e.g. Figure 2.18. The
free energy can be decomposed into regular (analytic) and singular (non-
analytic) parts, f(¢,h) = f-(t,h) + fs(t,h), and it is the latter that is
responsible for the cusp. Since we are interested in the critical behaviour
of the Ising model we are only concerned with the singular part of the
free energy which contains information about critical exponents, scaling
functions, associated amplitudes, and so on. Specifically, it is the singular
part of the free energy f;(t, h) for which we construct the scaling ansatz.

We are more familiar with the behaviour of the magnetisation in the
vicinity of the critical point; therefore we first discuss how to encapsulate
its limiting behaviour in a compact scaling ansatz. Since the magnetisation
is a partial derivative of the free energy with respect to the external field,
we are then in a position to propose a scaling ansatz for the free energy.




Widom
scaling
ansatz

Recall that the magnetisation is an odd function of the external field

m(t,h) = —m(t,—h). (2.164a)

In addition, the magnetisation per spin in the limit of zero external field

>
it e for ¢ 20 (2.164b)
h—0% +|t|P fort - 0,
and for small external fields at t = 0
m(0, h) « sign(h)|h|*/® for h — 0. (2.164c)

The symmetry and the limiting behaviours can be compactly summarised
in the following Widom scaling ansatz for the magnetisation [Widom, 1965):

m(t,h) = [t|PMx (h/[t|*) for t — 0%,k — 0, (2.165)

where A is known as the gap exponent and M, and M_ are the scaling
functions for the magnetisation per spin in the two regimes ¢t > 0 and ¢ < 0,
respectively. Note that while the magnetisation per spin on the left-hand
side of Equation (2.165) is a function of the reduced temperature ¢t and the

reduced external field h, the scaling functions on the right-hand side is only
a function of the ratio h/|t|®.




Scaling of the
magnetization

To recover the known behaviour of the magnetisation per spin in Equa-
tions (2.164), the scaling functions M4 must satisfy certain constraints and
the gap exponent A must be related to known exponents.

By symmetry, the scaling functions are odd functions

My(z) = ~My(-2), (2.166a)
and in the limit of zero external field
lim, M. (2) =0,

lim M_(z) = + non-zero constant. (2.166b)

z—0%

Finally, when ¢ — 0 in small external field, the argument of the scaling
functions z = h/|t|® — +0o. Therefore, we require

Ma(z) o« sign(z)|z|/®  for z — +oo,
Av=035, (2.166¢)

to ensure that

m(t, h) o |t/%sign(h) (|h|/[t]|*)"°  for h — 0%, h/|t|® = +o0
o sign(h)|h|*/¢ , for b — 0%, h/[t|* = +o0. (2.167)
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Scaling for the free energy and the
specific heat

We now propose a scaling ansatz for the singular part of the free energy
per spin which must be consistent with the magnetisation per spin in Equa-
tion (2.165), and the singular behaviour of the susceptibility per spin and
the specific heat. Widom argued that

fo(t,h) = [t>~*Fx (h/|t|*) fort— 0%,k -0, (2.168)

where F and F_ are the scaling functions for the free energy per spin in the
two regimes ¢ > 0 and ¢ < 0, respectively [Widom, 1965]. Note that while
the free energy on the left-hand side of Equation (2.168) is a function of the
reduced temperature and the reduced external field, the scaling function on
the right-hand side is only a function of the ratio h/|t|*. In Section 2.15
we will justify the Widom scaling ansatz by exploiting scale invariance at
the critical point within the real-space renormalisation group theory.

Since we have the operator identity

(7] 190
— = = 2.1
oT  T.é8t’ (2169
we find for the specific heat,
_ 1 (8]
oem==17; (55
= - TE-a9) y-ag, (nyj0) + Oh, 1)
T, T,
= |t|7%Cx (h/|t|®) fort— 0%,h >0, (2.170)
where the scaling functions for the specific heat is given by
Pais) = 2 — S oy (2.171)
T.
In the limit of zero external field
c(t,0) = |t|~*C+(0) for t — 0. (2.172)

This explains why the exponent 2 — a appears in the scaling ansatz for the
free energy in Equation (2.168).




Widom scaling relation

To confirm that Equation (2.168) does contain the correct scaling ansatz
for the magnetisation, we differentiate with respect to the external field H
at fixed temperature. Using the operator identity

a 1 9

we find for the magnetisation per spin,

1 —a—
= -,w—Tltl2 *=8F, (/1)

=t2*"2 My (h/|t|*) for t = 0%, h =0, (2.174)

where the scaling functions for the magnetisation per spin is given by
1
. . 2.1
Ms(@) = -7 Fal@) (2.175)
Taking the limit of zero external field,

0 fort —» 0t

2.176
+[t|>~o=2 fort — 0~ ( )

s — |4]2—a—-A q:
lim, m(t,h) = I g&Maw«{

and we identify the scaling relation
2—-a-A=4. (2.177)




Scaling for the susceptibility
and correlation function

Using the operator identity in Equation (2.173), the susceptibility per spin

1 (0m
x(t:h) = % (ﬁ)t

1 -
=~ L (W)

= |t|>7o"28x, (h/|t|*) fort — 0%, h -0, (2.178)

where the scaling functions for the susceptibility per spin is given by
1
Taking the limit of zero external field,

x(t,0) = [t|>~*"22X4(0), (2.180)

and we conclude that
X41(0) = non-zero constants,
2—a—-2A=—1. (2.181)

Correlation function (Fisher)

g(r,t,h) < r~=2MG, (r /€ B/|t|A) for t — 0%,k 0,

g(r,t,0) c r~@=2+Mg, (r/€, 0) for t — 0F.

constant forr € ¢

G+(r/€,0) {(T/f)"+(d_3)/2 exp(—-r/€)  forr > £




Scaling relations and hyperscaling

We note that the critical exponents are not independent. The divergences
of the specific heat and the susceptibility in zero external field A = 0 as
t — 0 are described by a and -, respectively. The pick-up of the order
parameter m(t,0) at ¢ = 0 is described by 3, while § describes how the
order parameter m(0, h) vanishes when the external field h — 0. Finally,
7 is related to the power-law decay of the spin-spin correlation function at
the critical point, while v describes the divergence of the correlation length
in zero external field as ¢t — 0. The critical exponents ¢, 3,7, and § are a
feature of the non-analyticity of the free energy at the critical point and
are characterised by the geometry of the free energy surface in the vicinity
of the cusp; they are therefore related through scaling relations.

Combining Equations (2.166c), (2.177) and (2.181) and eliminating A
yields two scaling relations, namely

85 =B +7, (2.185)
a+2B+y=2. (2.186)

Using a simple scaling argument, a third scaling relation follows from
considering the singular part of free energy per spin in zero external field

fs(t,0) o |¢]>~* fort — 0. (2.187)

The free energy per spin is the density of the free energy and therefore
scales with inverse volume’

fa(t,0) oc L™9, (2.188)
so that the free energy density within a length scale ¢
fs(t,0) oc €79 o [t|“? for t — 0. (2.189)
Therefore, we conclude that

2-a=vd. (2.190)




Summary

In summary, only two of the six critical exponents are independent since
they obey the four scaling relations

Bé =B+, (2.195a)
a+28+v=2, (2.195b)
v =v(2-1), (2.195¢)
2-a=vd for d < 4. (2.195d)

Note that the first three relations are valid in all dimensions. The hyper-

scaling relation in Equation (2.195d) involving the dimensionality is only
valid for d < 4.



Critical
temperatures

Table 2.3 The critical temperature in zero external field, kgT./J, in units of J for
various lattice types and dimensions in the Ising model. The second column lists the

coordination number, z, for a given lattice.

Lattice z kpTe/J

d =1 line 2 0

d = 2 hexagonal 3 2/1n(2 + V3)*
square 4 2/In(1 + V2)® = 2.269185
triangular 6 4/In3®

d = 3 diamond 4 2.70°
simple cubic 6 4.511524
body-centred cubic 8 6.40¢
face-centred cubic 12 9.79¢

Mean-field z z

8[Baxter, 1982].

b[Kramers and Wannier, 1941).

¢[Gaunt and Sykes, 1973).
d[Arisue et al., 2004].
¢[Sykes et al., 1972).



Critical

ex

oonents

Table 2.4 The values of the critical exponents for the Ising model in dimensions
d = 1,2,3, and d > 4, and in the mean-field theory of the Ising model. The criti-
cal exponents in d = 3 are not known exactly but the current best numerical results
are listed with the uncertainty on the last digit(s) given by the figure(s) in the brackets.
Two of the critical exponents have been measured numerically and the remaining critical
exponents are evaluated from the scaling relations in Equation (2.195).

Exponent: Quantity d=1* d=2 d=3 d>4 Mean-field
a: c(t,0) o |t|== 2-2/k 0(log) 0.111(2) 0 0 (dis)
B: m(t,0) x (—t)f 0 1/8 0.3262(13)> 1/2 1/2
v: x(¢,0) o |t|=7 2/k 7/4 1.237(3) 1 1
8 : m(0,h)  sign(h)|h|*/é 00 15  4.792(18) 3 3
v: £(t,0) o |t|=Y 2/k 1 0.6297(8)> 1/2 1/2
n: g(r,t,0) x r=@=2+ng, (r/£,0) 1 1/4 0.036(5) 0 0

#Using the reduced ‘temperature’ t = exp(—kJ/kgT), where k > 0 is a constant.
®[Binder and Luijten, 2001].



Block spins @

Kadanoff argued that since spins are

correlated over scales up to the correlation

Ienﬁth it may be plausible to re% ard splns

within re%lons up to ¢ in size as-behaving like

a single block sfpln [Kadanoff, 1966]. In this (b)
spirit, Kadanoff outlined a real-space

renormalisation procedure over scalesb < &

(1) Divide the lattice into blocks, |, of linear
size b (in terms of the lattice constant) with
each block containing bd spins, (a).

(2) Replace each block I of spins with a single
block spin, sl, according to some coarse
graining rule which is some function of the
spins within block I, (b).

(3) Rescale all lengths by the dimensionless
scale factor b to restore the original lattice
spacing
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Coarse graining

Real-space renormalisation group
transformation of the two-
dimensional Ising model on a
square lattice. The panels are
windows of size | = 80 inside larger
lattices.

The three panels in the top row
correspond to lattices in zero
external field with reduced
temperaturest<0,t=0,t >0 from
left to right. In each of the three
columns, the renormalisation
transformation, Rb, is carried out
twice from top to bottom, revealing
large scale behaviour. Coarsening is
achieved by employing the majority
rule with b = 3.




Real space RG: correlation length

The real-space renormalisation reduces all lengths, including the corre-
lation length, by a factor b. If the system is not at the critical point, the
correlation length is finite and becomes shorter with each application of the
renormalisation transformation. The reduction in the correlation length is
associated with a flow away from the critical point. In terms of the re-
duced variables (t, h), which gives the distance from the critical point, the
flow can be described as (t,h) — (¢',h'). If the system is at the critical
point, the correlation length is infinite and is therefore unaffected by the
renormalisation transformation. From the flow in the vicinity of the critical
point, we note that if t = 0, t' = 0, while if ¢t > 0, t' > t, and finally if
t <0, t <t Since the flow is directed away from the critical point, we
deduce that t' o t, to first order. Similarly, by symmetry one can argue
that h' « h. to first order.

Therefore, in the vicinity of the critical point, to first order, t' = A;(b)t
where );(b) is a proportionality constant that depends on the block size b.
If b > 1, then Ay (b) > 1 while A\;(1) = 1. Renormalising twice with blocks
of sizes b; and b, should be equivalent to renormalising once with a block

of size byby. Therefore, t" = Ay (b2)t' = At(b2)Ae(b1)t = Ae(b1b2)t, implying
that the proportionality constant satisfies the functional equation
At(b2)Ae(b1) = Ae(brd2),
A(l) =1,

(2.217a)
(2.217b)

and similarly for the proportionality constant of the reduced external field.

The unique functional solution to this equation is a power law, see Ap-
pendix C, so that

t' =b¥t for t - 0%, withy, >0,
K =b¥h for h — 0%, with y, > 0.

(2.218a)
(2.218b)

The exponents y; and y;, are positive since the flow is directed away from
the critical point. The exponent y, describing the flow of the temperature
away from the critical temperature is in fact related to the critical exponent
v. Upon renormalisation, the correlation length is reduced by a factor b,

¢ = % (2.219)
The correlation length £(t,0) = constant |t| =¥ as ¢ — 0%, so that
constant |- OB ILE o0 os 0k huo, (2.220)

b

Substituting ¢’ = b¥¢ and rearranging, we find b'~¥ = 1. Since b > 1 is
arbitrary, the exponent must be zero and we conclude that

1
Ye=-—.

= (2.221)



Real space RG: free energy

With respect to the partition function, the coarse graining amounts to
summing over all those configurations {s;} in the original lattice which
are consistent with a particular block spin configuration {s;} in the renor-
malised lattice. The calculation of the partition function is then completed
by summing over all possible block spin configurations,

Z(t,h, N) =) _ exp (-BE(,,))
{s:}
{81} configurations {s;}
consistent with {ss}

exp (~BE(s,)) - (2:222)

Defining the energy of the Ising model in the renormalised lattice, Ef, ,,
through the equation

exp (-—ﬁE’("}) = E

configurations {s;}
consistent with {sr}

exp (-—ﬂE{,'_.}) 3 (2.224)

and substituting into Equation (2.222) we have that the partition function
remains invariant under the real-space renormalisation transformation

2(t,h,N) = 3 exp (-BE}, ;)
{81}
=Z@{ K, N'). (2.225)

Since the partition function remains invariant under renormalisation, so

does the total free energy. However, the free energy per spin renormalises
according to

£t h) = —-lekBTln Z(t,h, N)

- _pd %kBTln 2(¢ 0, N")
=b"f(t',R). (2.226)

Substituting Equations (2.218) into Equation (2.226) gives
f(t,h) =b"4f(b¥¢t, b h) fort = 0% h 0. (2.227)

The singular part of the free energy per spin transforms as a generalised
homogeneous function in the vicinity of the critical point. Although the free
energy per spin consists of regular and singular parts, it is the latter that
is responsible for the critical behaviour. For the purposes of obtaining the
Widom scaling ansatz in Equation (2.168), we concentrate on the singular
part of the free energy per spin which, from Equation (2.227), obeys

fo(t, h) = b= f,(b¥t,bh) for t = 0%, h = 0. (2.228)

Equation (2.228) implies the Widom scaling ansatz. The right-hand
side is a function of two variables but can be recast as a function of one
variable by setting the block size b = |t|~}/¥ « £ in Equation (2.228),

e = o] 1 (o] ]
= 1t 2 (218, b/t
= [014f, (£1,h/1g/) fort 0% ,h 0. (2229)



Summary

By comparing with Equation (2.168) we make the identifications

2 —-a=uvd, (2.230a)
A =yn/ys, (2.230b)
Fe(h/It1®) = fo (£L,h/1t"), (2:230c)

so that we recover the Widom scaling ansatz
fs(t,h) = |t|>~Fx (h/|t]*) fort— 0% h—0. (2.231)

The two branches of the scaling function for the free energy per spin for
t — 0% appear naturally as a result of the first argument in the free energy
per spin on the right-hand side of Equation (2.230c).

In summary, the renormalised partition function takes the same form as
the original partition function but with rescaled parameters. This implies
that the free energy per spin is a generalised homogeneous function. To-
gether with Equations (2.218), this provides an explanation for the Widom
scaling ansatz in Equation (2.168) and the hyperscaling relation.



Renormalization: Ising chain
d=1 & b=2

Consider the d = 1 Ising model of N spins with periodic boundary condi-
tions in zero external field [Nelson and Fisher, 1975]. The partition function

Z(K1,N) = ) exp(~BE(,,))

{si}
N
= E exp (Kl Zsi3i+l) ) (2.240)
{8} i=1
where the reduced nearest-neighbour coupling constant,’ K, is given by
J
=pJ = +—. 2.241
K, =8J 5T ( )

First, we divide the lattice into blocks of size b = 2 each containing
two spins, see Figure 2.33(a). Second, we replace each block of spins with a
single block spin sy which takes the value of the odd spin, see Figure 2.33(b).
This choice is arbitrary and constitutes a decimation coarsening rule. Third,
all length scales are reduced by the factor b = 2 to restore the original lattice
spacing. We are left with a renormalised system with N’ = N/2 spins where
{s1} are the odd spins in the original lattice, see Figure 2.33(c).
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Renormalization:
Ising chain

To determine the partition function for the renormalised system, we sum
out (integrate over) even spins in the original lattice so that only the odd
spins in each block survives. Since each spin has two nearest neighbours,
each spin appears twice in the exponent. Collecting each even spin in a
single term, we find

N
Z(K,N)= 3 3 exp (K: Elism)
CO A
=Y Y exp(Kisisz + 5255)) - exp (Ki[sn-18n + sns1])
Lo
= )" 2cosh(Ki[sy +ss]) - 2cosh (Ki[sn—1 +81]), (2.242)
ool

where the coarse graining sum over each of the even spins is readily per-
formed. For example, for the spin s, that couples to spins s, and s3,

S~ exp(Kuisg[sy + ss]) = 2cosh (K [s1 + 53)) - (2.243)
sa==%1

The pair of spins (s1, 53) can be in one of 2° = 4 microstates. However, the
right-hand side of this equation takes only two different values because of
symmetry, and may be written with two appropriately defined renormalised
(reduced) coupling constants K§ and K} in the form

2cosh (K [s1 + s3]) = exp (Kj + K}3183) - (2.244)

The two simultaneous equations that determine the renormalised coupling
constants are

2cosh2K, = exp (Ky + K1) for s, = s3, (2.245a)
2=exp(Ky— K]) fors =—s3. (2.245b)

Solving for K} and K} in terms of K, we find

Ky =1n (2/cosh2K; ), (2.246a)

K| = % In(cosh 2K:). (2.246b)




Renormalization:
Ising chain

Therefore, expressing the partition function in terms of the renormalised
coupling constants
Z(K1,N) = Y exp(Kj + K{s1s3) - exp (Kp + Kisn-181)

i
N'
=exp(N'KG) Y exp (Ki > mm)

{s:} =1
= exp(N'Kp) Z(K}, N'). (2.247)

In the penultimate line, the odd spins sy, 53,...,85-1 in the original lat-
tice are relabelled as s; in the renormalised lattice, with [ = 1,...,N".
Factorising out the constant exp(/N'Kp), we recognise that the summation
term takes the same form as the partition function for the original system
but with a reduced number of spins N' = N/b and a renormalised coupling
constant K| < K, given by Equation (2.246b).

The entire expression in the last line of Equation (2.247) is the partition
function for the renormalised system. The total free energy remains the
same after renormalisation and, in units of kg7, is given by

~InZ(K,,N) = -N'K} - In Z(K}, N"), (2.248)

where the term N'K{ appears explicitly as a free energy offset. How-
ever, when calculating probabilities and ensemble averages, the constant
exp(N'Kj) cancels out and plays no role.

How does the renormalised system behave compared to the original
system? The renormalisation of the coupling constant in Equation (2.246b)
implies that

K| < K, for Ky >0. (2.249)

This manifests itself in Figure 2.34(a) in that the graph of the renor-
malised coupling constant K| lies below the dashed line K| = K, for all
K, > 0. Therefore, the coupling between nearest-neighbour spins in the
renormalised lattice is weaker than between nearest-neighbour spins in the
original lattice. The renormalisation procedure can be readily applied again
and again with the effect that the coupling constant becomes weaker and
weaker.

Successive applications of the renormalisation procedure induces a flow
in the coupling constant towards the fixed point K} = 0, see Figure 2.34(b).




RG flow

(@) The renormalised coupling
constant, K’, in the one-
dimensional Ising model in zero
external field versus the coupling
constant in the original lattice, K.
The fixed points ( K*) lie at the
intersections between the graph
for K’ and the dashed line K’ = K.
The fixed point K* =00 is not
visible.

(b) The associated
renormalisation group
transformation flow in K -space.
In the renormalised lattice,
nearest-neighbour spins couple
with strength K'< K, The fixed
point K* = 0o is unstable. For 0 <
K < 00, applying the
renormalisation group
transformation will induce a flow
towards the stable fixed point K*
=0.




Renormalization: Ising on a square

(a)

(b)

(c)

lattice (b=2)

Consider the d = 2 Ising model of N spins on a square lattice in zero
external field [Maris and Kadanoff, 1978]. The partition function

Z(Ky,N) =Y exp(-BE(,,))

{si}
N
= Eexp (Kl ZS"SJ') N (2250)
{si} (i3)

where Ky = J/(kgT) is the reduced nearest-neighbour coupling constant
and the sum in the exponential runs over all distinct nearest-neighbour
pairs.

We apply a renormalisation transformation where the coarse graining
is effected by summing out every second spin in the original lattice, which
is a realisation of a decimation coarsening rule. In Figure 2.35(a), the
decimated spins, that is, the spins to be summed over, have been shaded
dark grey. Note that each pair of remaining spins, for example (s1, s2), has
two common nearest neighbours of decimated spins. The remaining spins
form a square lattice rotated by 45° with lattice constant ba = V2a, see
Figure 2.35(b). To complete the renormalisation transformation, all length
scales are reduced by the factor b = /2 to restore the original lattice
spacing. After a 45° clockwise rotation, we are left with a renormalised
version of the original system with N’ = N/b? spins, see Figure 2.35(c).




Renormalization:
Ising square
lattice

To determine the partition function for the renormalised system, we
have to perform the coarse graining explicitly by summing over every second
spin. Since each spin has four nearest neighbours, each spin appears four
times in the exponent of the exponential.

Collecting each decimated spin in a single term, we find

kM= Y ¥ exp(K;Za;a;)

ek it \ W

= Z "‘W(Kl“[‘l+”+“+a‘])”'
“opina G5t
S 2cosh(Kfsy+s2+s3+s4) oo, (2251)
remaining
spins
where the coarse graining over each decimated spins is readily performed.

For example, for the spin ss that couples to spins sy, 82,83, 84, See Fig-
ure 2.35(a), we find

3~ exp(Kyss[sy+sa+83+84]) = 2cosh (Ku[sy +s2+83+84]) . (2.252)
=41

The quadruple of spins (s, 52, 83, 54) can be in one of 2! = 16 microstates.
However, the right-hand side of this equation takes only three different
values because of symmetry, and may be written with four appropriately
defined renormalised coupling constants K, Kj, K} and Kj in the form

2cosh (Ki[sy + 82 + 83 + 84]) = (2.253)

K'
exp ("5"'?'[8191 + 8184 + 8253 + s384)+ Ky[sy83 + am]+l(§ams;:.).

Just as in the one-dimensional case, the coarse graining generates a
constant coupling term K§ which only plays a role as a free energy offset
that does not affect the calculation of probabilities and ensemble averages.
Similarly, the nearest-neighbour coupling constant K, is renormalised to
become K.

This is not all, however. Contrary to one dimension, the coarse graining
in two dimensions generates, in addition, renormalised coupling constants
K}, representing next-nearest-neighbour (nnn) interactions and Kj, repre-
senting quadruple (O) interactions.




Renormalization:
Ising square
lattice

Physically, the introduction of these extra coupling constants K} and
K} can be understood with reference to Figure 2.35(a). For example, spins
8; and 83 interact indirectly through spin s5. Therefore, when summing out
spin s5, an effective coupling K between s; and s3 must be introduced.
Likewise, the quadruple of spins ), s3, 53, 84 interact indirectly through
spin s5. Therefore, when summing out spin s;, an effective coupling K3
between s, , 82, 83, 84 must also be introduced.

The four simultaneous equations that determine the renormalised cou-
pling constants are

2coshaKy = exp(Kp + 2K} +2K3 + K3) { 1= ;= &=

—§1= 8= 8=
2c0sh 2K, = exp (K} - K3) B Dot

§1 = 82 =-—83= 8y,
1= 82= 83=-8,

8) = 83=—83=—84,

2= exp (K} - 2K} + Kj) {" PRES

2=exp(Ky-2Ki +2K3+K)) { si=-s= s3=-u.

Each of the eight conditions specifies two microstates of the quadruple of
spins. For , —8) = 8 = 83 = 84 specifies either (—1,+1,+1,+1)
or (+1,-1,~1,~1).

Solving for K, K{, K} and K} in terms of K, we find after some algebra

Ki=In (2\/oo|h 2K; (cosh4K:)'"?) (2.254a)

K] = %m(mml), (2.254b)

K= %ln(conh&K;), (2.254c)

K= %ln(eoshﬂﬁ) K %m (cosh2K). (2.254d)

Thenﬁbn.theparuuonfuncuoncmbeexpreuedlnmmohhem-
malised coupling constants.

Note that an additional term of exp (K} /2 (s182 + 8154 + 5283 + 8354))

arises from the additional common nearest neighbour for each pair of the
remaining spin (8, 52), (8134), (2, 83), (83, 84), see Figure 2.35(a).




Renormalization:
Ising square
lattice

Relabelling the remaining spins from the original lattice as s;,sy,...
and factoring out the constant exp(N'Kj), we have

{1} (1) nnn =)
=exp(N'K}) Z(K}, K3, K3, N'), (2.255)

Z(Ky, N)=exp(N'Kp) Zexp (K{ 25,3; +K§23134 +K§Es:s;sxu)

where the sums in the exponential run over all distinct nearest-neighbour
and next-nearest-neighbour pairs and quadruples, respectively. Without
the couplings K, K3, the sum over block spin configurations {s;} takes the
same functional form as the original partition function but with a reduced
number of spins N' = N/b? and a renormalised coupling constant K| given
by Equation (2.254b). With the couplings K3, K3, however, the energy
E¢,;) must be generalised to include next-nearest-neighbour and quadruple
spin interactions for the sum over block spin configurations {ss} to be iden-
tified with a partition function Z(K}, K3, K}, N'), see Equation (2.250).

In fact; upon successive applications of the renormalisation transforma-
tion, the coupling constants Kj, K, K3 and Kj are renormalised in turn
and additional renormalised coupling constants are generated at each itera-
tion. As a result, the energy must be generalised still further to include all
possible spin interactions of which there are, in principle, infinitely many.

The possible spin interactions must respect the symmetry of the prob-
lem. In the Ising model in zero external field, for example, the energy
must be invariant under the reversal of spins s; — —s;, thereby precluding
interaction terms with an odd number of spins, such as s;s;s;¢. In Sec-
tion 2.16 we present a general theory of real-space renormalisation group
transformations that will allow for an infinite number of couplings.

In order to calculate the partition function for the two-dimensional Ising
model exactly, all generated couplings must be retained. However, let us
investigate whether a truncated coupling space can yield a phase transition
at non-zero temperature.

The most drastic approximation is to ignore all the generated couplings.
After setting K; = Kj = .- = 0, the flow of the remaining coupling
constants is described by

K = In (2y/cosh 2K (cosh4K;)'/%) , (2.256a)
K. = %ln (cosh4Ky). (2.256b)




Renormalization:
Ising square
lattice

Equation (2.256b) is similar to Equation (2.246b) describing the flow in
the one-dimensional case and has only two fixed points: an unstable low-
temperature fixed point K7 = oo and a stable high-temperature fixed point’
K} = 0. Only the low- and high-temperature fixed points survive this crude
truncation of the coupling space. Therefore, when ignoring all the gener-
ated couplings, the renormalisation transformation incorrectly predicts that
there is no phase transition in zero external field for any finite temperature
in the d = 2 Ising model.

A less drastic approximation is to ignore all the generated couplings,
except K. After setting K3 = --- = 0, the flow of the remaining coupling
constants is described by

K,=n (2\/oosh2K| (coshﬂ(;)l/') : (2.257a)
K = %In (cosh4Ky), (2.257b)
vy %m(muq) . (2.257¢)

Both coupling constants K| and K7 are positive and favour the align-
ment of spins. It is therefore reasonable to combine their effect into a single
coupling constant Kj. To estimate how much of a contribution K} makes in
the effective nearest-neighbour coupling constant K}, consider a system of
fully aligned spins. Since there are N'z/2 different nearest-neighbour and
next-nearest-neighbour pairs, the renormalised reduced energy (without the
constant offset N'Kj)

E(,,) = K} Za;u + K;Zuu
{1y nnn
'
= (K; + ; %je

_Therefore, the effective nearest-neighbour coupling constant

K=K +K
= %m (eoshu?,).




RG flow

(a) The renormalised coupling constant,
K’, for the two-dimensional Ising model on
a square lattice in zero external field
versus the coupling constant in the
original lattice, K. The fixed Eoints (*) lie at
the intersections between the graph for K’
and the dashed line K’ = K. The fixed point
K*= 00 is not visible.

(b) The associated renormalisation
transformation flow in K -space. The fixed
point K* = 0.507 is unstable. For 0 < K <
0.507, applying the renormalisation
transformation will induce a flow towards
the stable fixed point K* = 0. For K >
0.507, applying the renormalisation
transformation will induce a flow towards
the stable fixed point K* = oo.

(b)
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K> K
Kr=0 0.507 o0




Wilson’s renormalization
group theory

A strong-coupling fixed
point, £(K) =0 ¥

K., generalised
Ising model

K., original ;
Ising model

weak-coupling fixed
point, {(K*) =0

K




Wilson’s

RG theory

Similarly, applying the renormalisation group transformation once to
the two-dimensional Ising model reduces the degrees of freedom from N
to N' = N/b* and generates a renormalised nearest-neighbour coupling
constant K] and a constant coupling term K;. However, in contrast to
one dimension, next-nearest neighbour interactions Kj; and quadruple spin
interactions K3 are generated in addition — even though K; = K3 = 0 in
the original system. In general for d > 1, a coupling constant that is zero in
the original system may be non-zero in the renormalised system. On suc-
cessive applications of the renormalisation group transformation, these cou-
pling constants are themselves renormalised and, furthermore, additional
renormalised coupling constants are generated. In fact, applying the renor-
malisation group transformation indefinitely generates an infinite number
of renormalised coupling constants. Therefore, the renormalisation group
transformation applied to the two-dimensional Ising model is associated
with a flow in an infinite-dimensional coupling space:

ST SR S -
0=Ks K} KP oo KV s K™ s oo (2.261

0=Ks~ K} KV b oo KV i KV 1 -

This motivates the introduction of an infinite-dimensional coupling
space consisting of all possible coupling constants

K = (K, K2, Ks,...), (2.262)

see Figure 2.37. Since the constant coupling term is not on the same footing
as all the other coupling constants, it is not included in the coupling space.
Physically, the constant coupling term represents a contribution to the free
energy arising from summing out the degrees of freedom over the short
length scale ba. Even though the constant coupling term neither affects
expectation values nor is included in the coupling space, it plays a vital
role of its own since its contribution to the free energy guarantees that the
formalism is self-consistent.

For the following discussion, recall that the coupling constants are pro-
portional to 1/(kgT). Consider the ‘original’ Ising model at a given tem-
perature T in zero external field with coupling constant K = (K,,0,0,...)
represented by a point lying on the K;-axis in the infinite-dimensional
coupling space, see Figure 2.37. The temperature determines where the
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Now, consider a ‘generalised’ Ising model at a given temperature T in
zero external field with coupling constant K = (K, K3, K3, .. .) represented
by a point in the infinite-dimensional coupling space. The temperature
determines where the particular generalised Ising model lies along the line
from the origin in the direction given by K, see Figure 2.37. If T = oo, the
coupling constant K = (0,0,0,...) and the associated correlation length
§(K) = 0. Therefore, the weak-coupling (high-temperature) generalised
Ising model lies at the origin. If T = T, the coupling constant takes
its critical value K. = (K., Ka., K3,...) and the associated correlation
length §(K.) = oco. If T = 0, the coupling constant K = (00,00, 00,...)
and the associated correlation length £(K) = 0. The strong-coupling (low
temperature) generalised Ising model lies at infinity.

Now that we have become familiar with the infinite-dimensional cou-
pling space, we can show that the repeated application of the renormalisa-
tion group transformation on a generalised Ising model can be visualised
as a discrete flow in this space.

As a starting point, consider a generalised Ising model in zero exter-
nal field that allows for an infinite number of coupling constants rep-
resenting nearest-neighbour interactions, next-nearest-neighbour interac-
tions, quadruple spins interactions, etc. Such a generalised Ising model
is defined by a coupling constant K and a constant coupling term Kp. The
associated generalised reduced energy takes the form!!

—ﬂE(.‘) = KogN+ K, Z 8i8,’+K2 zaia,-+K3 Z 8888+ (2.263)
(i5) nnn a

The generalised reduced energy contains all possible spin interactions, of
which there are infinitely many, respecting the symmetry of the problem:
in zero external field, for example, interaction terms with an odd number ol
spins, such as s;s;s;, cannot be present since the energy must be invariani
under the reversal of spins s; — —sy; however, all interaction terms witt
an even number of spins, such as s;s;s,s;, are present. Note that we may
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Applying the renormalisation group transformation once to a gener-
alised Ising model renormalises the associated reduced energy. The reduced
energy in the renormalised system, ﬂEz o) is defined through the equation

~BE, =W 3 exp(-BE,)] (2.264)

configurations {s}
consistent with {#;}

= KuN' + K} Zs,u + K;Za,s, + KQZ”"J"K’L TR
(1J) nnn =]

The renormalisation group transformation reduces the degrees of free-
dom from N to N’ = N/b? block spin variables {S;}, whose couplings
are given by the renormalised coupling constants K' = (K}, K3, K3,...)
and, in addition, the spin-independent term renormalises to KgN'. Note
that, in contrast to the Kadanoff block spin transformation, this general
formulation allows for ‘new’ coupling constants to be generated.

Let us now formally introduce the renormalisation group transformation
Ry as a transformation acting on the members of the infinite-dimensional
coupling space, that effects coarse-graining over blocks of size ba:

K' = Ry(K). (2.265)

Equation (2.265) expresses a recursion relation that can be applied in-
definitely on a system in the thermodynamic limit. Since the renormal-
isation group transformation involves a coarse-graining procedure over a
block with a finite number of b? spins, the transformation is analytic. This
analyticity will allow for a Taylor expansion of R, which will prove im-
portant shortly. However, if the renormalisation group transformation is
applied indefinitely to a system in the thermodynamic limit, singular be-
haviour may occur. In this respect the renormalisation group transforma-
tion is able to account for critical phenomena. Note also that renormalising
twice, first with R, and then with Ry, , is equivalent to renormalising once
with Ryp,. The renormalisation group transformation therefore satisfies
Ry, (R, (K)) = Rs,0,(K) for all K. Expressed as an operator identity:'?

R°a Ry, = Rblh' (2'266)
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A fixed point of the renormalisation group transformation is a point K* in
the infinite-dimensional coupling space that is invariant under renormali-
sation, that is,

Ry(K*) = K*. (2.268)

Equation (2.268) is the fixed point equation for the renormalisation group
transformation. For a fixed point K*, the associated reduced energy is
invariant under renormalisations; hence, the associated generalised Ising
model is invariant under rescaling. We will show that the fixed points
of the renormalisation group transformation are associated with zero or
infinite correlation length. Hence, as in percolation, self-similarity and
scale invariance are associated with the fixed points of the renormalisation
group transformation.

The discrete flow in the infinite-dimensional space of coupling constants
generated by applying the renormalisation group transformation is associ-
ated with a flow in the correlation length. Applying the renormalisation
group transformation once reduces the correlation length from £(K) to
£(K') where

¢K') = i:;(—) (2.269)

Since the correlation length after each application of the renormalisation

group transformation is reduced by the rescaling factor b, after n successive
transformations

E[Ry(K)] = %19, forn=1,2,... (2.270)

If the initial correlation length is finite, £(K) < oo, then the correlation

length after n transformations is reduced by a factor ™ and the renor-
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malised system moves further and further away from criticality, disclosing
the large scale behaviour of the original system. The correlation length
eventually shrinks to zero as n — oco. If, however, the initial correlation
length is infinite, £(K) = oo, then so too is the correlation length in all the
renormalised systems.

We will now show that a system with no characteristic scale is a fixed
point of the renormalisation group transformation and vice versa.

Applying the renormalisation group transformation indefinitely,

2 " _ . &K) _JO for £(K) < oo

€ [ tim, R (K] = tim S = {w P I
The correlation length associated with the generalised Ising model corre-
sponding to the point lima-, Ry (K) in coupling space is zero or infinite
so there is no characteristic scale associated with lim,., R} (K). There-
fore, limy o R (K) must be invariant under the renormalisation group
transformation, that is,

Ry [ Jim R:(K)] = lim R}(K). (2.272)

Equation (2.272) demonstrates that lim,_, R} (K) satisfies the fixed point
equation for the renormalisation group transformation and we identify

7 AR, m
K'= ,.‘l.'E,'., R} (K), (2.273)

with an associated correlation length that is £(K*) = 0 or £(K*) = co.
Now, assume that there exists a fixed point K* for the renormalisa-
tion group transformation. From Equation (2.269) we have £(Ry(K*)) =

£(K*)/b, and after applying Equation (2.268) we find for the correlation
length at a fixed point

((K.)=&:;) a5 f(K,)z{o O (2.274)
0 non-trivial',

In summary, a fixed point of the renormalisation group transformation im-
plies that there is no characteristic scale; scale invariance prevails. Likewise,
if scale invariance prevails, it is associated with a fixed point of the renor-
malisation group transformation.



Basin of

attraction

In general, a renormalisation group transformation may have several fixed
points. For simplicity, consider a renormalisation group transformation
which has only three fixed points in the infinite-dimensional coupling space:
the weak-coupling (high-temperature) fixed point K* = (0,0,0,...) lying
at the origin with £(K*) = 0, the strong-coupling (low-temperature) fixed
point K* = (oc,00,00,...) lying at infinity with £(K*) = 0, and a non-
trivial fixed point K* with £(K*) = oc, see Figure 2.37.

Each of the fixed points K* will have a so-called basin of attraction,
consisting of all points in the coupling space that flow into the fixed point
K* when the renormalisation group transformation is applied indefinitely.

The basin of attraction of the non-trivial fixed point K* with §(K*) = oo
is known as the ‘critical surface’ or, more generally the ‘critical manifold’,
since its dimensionality need not be restricted to 2. We can show that for K
to lie in the basin of attraction of the non-trivial fixed point, its associated
correlation length must be infinite, £(K) = oc. A simple rearrangement of
Equation (2.270) yields

§(K) = b"¢[R§(K)]. (2.275)

The correlation length at an initial point K in coupling space is a factor b"
larger that the correlation length associated with the point after n trans-
formations. The left-hand side of Equation (2.275) is independent of n.
Therefore, if K lies in the basin of attraction of the non-trivial fixed point
K* with §(K*) = co, then taking the limit of n = co we find

§(K) = lim b"¢[Rp(K)] = lim 5"¢(K") = oo. (2.276)

Hence, for K to lie in the basin of attraction of the non-trivial fixed point,
the associated correlation length must be infinite, that is, £(K) = co. Equiv-
alently, we may also define the critical surface as the set of all coupling
constants K where £(K) = oo. In Figure 2.37, the surface that has been
shaded dark grey is part of the infinite critical surface.

The critical surface divides the coupling space into the basin of attrac-
tion of the weak-coupling fixed point, lying at the origin, consisting of all
points ‘below’ the critical surface, the basin of attraction of the strong-
coupling fixed point, lying at infinity, consisting of all points ‘above’ the
critical surface, and finally the basin of attraction of the non-trivial criti-
cal fixed point, lying on the critical surface, consisting of all points on the
critical surface, see Figure 2.37.



RG flow

Consider the original Ising model in zero external field at reduced temper-
ature ¢. If £ is in the neighbourhood of the critical temperature ¢t = 0, the
model lies along the K;-axis in the neighbourhood of the critical surface
in the infinite-dimensional coupling space, see Figure 2.37. Applying the
renormalisation group transformation induces a discrete flow in coupling
space. In Figure 2.32, we have seen the associated flow in configurational
space for the two-dimensional Ising model with a particular choice of the
renormalisation group transformation, namely the majority rule with b = 3.

Assume that the initial temperature is slightly below the critical tem-
perature, that is, £ < 0. Applying the renormalisation group transforma-
tion repeatedly induces the flow in configurational space displayed in the
left-hand column of Figure 2.32 towards the trivial fixed point of all spins
aligned associated with 7' = 0. This flow in configurational space is asso-
ciated with the discrete flow in coupling space along the dotted line com-
mencing on the Ky-axis just above the critical surface and ‘terminating’ at
the strong-coupling fixed point K* = (oc,00,00,...) lying at infinity with
correlation length §(K*) = 0. Therefore, the two microstates associated
with K* = (00, 00,00,...) are trivially self-similar.

Next assume that the initial temperature is slightly above the critical
temperature, that is, ¢ > 0. Applying the renormalisation group transfor-
mation repeatedly induces the flow in configurational space displayed in the
right-hand column of Figure 2.32 towards the trivial fixed point of randomly
orientated spins associated with 7' = oo. This flow in configurational space
is associated with the discrete flow in coupling space along the dashed line
commencing on the K;-axis just below the critical surface and terminating
at the weak-coupling fixed point K* = (0,0,0,...) lying at the origin with
correlation length £(K*) = 0. Therefore, the microstates associated with
K* = (0,0,0,...) are trivially self-similar.

Finally, assume that the initial temperature is critical, that is, t = 0.
Applying the renormalisation group transformation repeatedly does not
induce a flow in configurational space, see the middle column of Figure
2.32. Nevertheless, the absence of flow in configurational space is associated
with the flow in coupling space commencing on the K)-axis on the critical
surface along the solid line terminating at the non-trivial fixed point K*
with correlation length £(K*) = oc. Therefore, the microstates associated
with K* are self-similar.
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Universality

Assume that K lies on the critical surface, that is, £(K.) = co. As we have
just seen, it is not the initial critical value of the coupling constant nor the
flow in the neighbourhood of K, that determines the critical behaviour of
the associated generalised Ising model. Rather, the critical behaviour is
determined by the flow of R}'(K) for n — oo, which takes place in the
neighbourhood of the non-trivial fixed point K* on the critical surface!
Each point K, on the critical surface represents a particular generalised
Ising model at its critical point. However, since they all flow into the same
non-trivial fixed point when applying the renormalisation group transfor-
mation indefinitely, their critical behaviour is determined by the flow close
to this fixed point. Indeed, universality refers to the identical behaviour
shown by systems close to the fixed point K*, rather than at the fixed point
itself. Therefore, we need to investigate in more detail the flow in coupling
space close to the non-trivial fixed point on the critical surface. In doing so,
we will, as a by-product, also be able to demonstrate how the Widom scal-
ing ansatz for the singular part of the free energy per spin can be derived
using the general framework of the renormalisation group transformation.
Let K = K* 4 JK be close to the fixed point K*, that is, the entries
0K in the deviation from the fixed point are small. Applying the renormal-
isation group transformation once, Ry(K) = K' = K* 4+ dK' where dK',
the deviation from the fixed point after renormalisation, is a function of K.

Since K* is a fixed point of the renormalisation group transformation, we
have

Ry(K) = K* + 6K’
= Ry(K*) + 6K (2.277)

However, since R, is analytic, we can Taylor expand the renormalisation
group transformation around the fixed point K*, and to first order in 6K
we find

Rs(K) = Ry(K*) + M(b)dK + O (6K7) A (2.278)
where the ijth entry in the matrix M(b) = 8K'/8K
_ oKl
(M(b)]i,j s aK, s (2.279)

is evaluated at the non-trivial fixed point K*. The matrix M(b) is the so-
called linearised renormalisation group transformation in the vicinity of the
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fixed point K*.
Comparing Equation (2.277) with Equation (2.278), we identify that, to
first order in 6K, the deviation from the fixed point after renormalisation

6K' is related to the original deviation from the fixed point 6K via the
matrix M(b):

SK' = M(b)éK. (2.280)

For the ith entry 6 K, Equation (2.280) implies that

sK! = 3" [M(b)],; 6K;

;
=y 9K;
= 2 BK;

Hence, the matrix M(b) determines the speed of the flow towards or away
from the fixed point. The real matrix M(b) is not necessarily symmetric.
For simplicity, however, we assume that M(b) is symmetric to guarantee
that its eigenvalues are real and that the associated set of eigenvectors are
orthogonal and form a convenient basis in which to discuss the flow. The
aim is to investigate the flow in the coupling space along the eigenvectors
of M(b). This will allow us to make simple but far reaching conclusions
about the nature of the flow.!?

To investigate the flow in detail, we introduce the eigenvalues, A;(b),
and the eigenvectors e;(b) of the matrix M(b):

‘am. (2.281)
K.

M(b)e;(b) = Ai(b)es(b). (2.282)
The eigenvectors {e;(b)} are normalised and orthogonal

ei(b) - e5(b) = {(‘) i :; (2.283)

and form a basis for the infinite-dimensional coupling space. We further
assume that this basis is complete, that is, every point in the infinite-
dimensional coupling space can be written as a linear combination of

{ei(b)}.
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We next define the (scalar) scaling field, u;, as the length of the projec-
tion of the deviation from the fixed point along the direction of e;(b):

u; = e;(b) - 6K, (2.284)

such that the component of 6K in the direction of e;(b) is [e;(b) - 6K]e;(b)
and therefore we may write

JK =" [ei(b) - K] ei(b)

=1

o
=3 we(d). (2.285)
=1
We will shortly be able to identify the scaling fields with reduced control

parameters, such as the reduced temperature, reduced external field and so

on. Hence, as experimenters we can control the initial value of the scaling
fields.

The renormalised scaling field, u, is the projection of the deviation from
the fixed point along the direction of e;(b) after renormalisation. Using the
expansion in Equation (2.285) of 6K along the directions of the eigenvectors,
we can relate the transformed scaling field to the original scaling field:

ul = e;(b) - 6K’
= ei(b) - M(b)SK

= e;(b)-M(b) Y uje;(b)

=1

= ei(b) - Y u;M(b)e;(b)

=1

= e;(b)- Z u;A;(b)e;(b)

=1

= Ai(b)u, (2.286)

where in the last step we have made use of the orthonormality of the eigen-
vectors, see Equation (2.283). Hence, the transformed scaling field is related
to the original scaling field by the factor Ai(b), which is the eigenvalue of
M(b) associated with the eigenvector in the direction e;(b).
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Now, from the semi-group property of the renormalisation group trans-
formation in Equation (2.266) it follows that

M(b2)M(by) = M(bzb1), (2.287)
implying that the eigenvalues satisfy the condition
Ai(b2)Ai(b1) = Ai(bzby). (2.288)

The unique solution of the functional equation in Equation (2.288) is a
power law, such that

Ai(b) = b%, (2.289)

where y; are the so-called renormalisation group eigenvalues. Substituting
Equation (2.289) into Equation (2.286) we arrive at our principle result

uj = b%u,. (2.290)

The derivation of the relation in Equation (2.290) between the renormalised
and original scaling field puts the heuristic assumptions in Equation (2.218)
of the Kadanoff block spin transition on a firm mathematical footing.

The factor b¥ determines whether the scaling field increases, decreases
or remains constant under renormalisation. We may distinguish three dif-
ferent cases:

— Relevant scaling field. If y; > 0, then X\;i(b) = ¥ > 1. The deviation
from the fixed point along the direction of e;(b) increases upon renor-
malisation. The scaling field u; with y; > 0 is said to be relevant, since
the renormalisation group flow is driven away from the non-trivial fixed
point. A relevant scaling field eventually explodes upon application of
the renormalisation group transformation.

— Irrelevant scaling field. If y; < 0, then A;(b) = b* < 1. The deviation
from the fixed point along the direction of e;(b) decreases upon renor-
malisation. The scaling field u; with y; < 0 is said to be irrelevant, since
the renormalisation group flow is driven towards the non-trivial fixed
point. An irrelevant scaling field eventually vanishes upon application
of the renormalisation group transformation.

— Marginal scaling field. If y; = 0, then A;(b) = ¥ = 1. The scaling field
u; with y; = 0 is said to be marginal. A first order Taylor expansion in
JK is insufficient to determine whether the flow is directed towards or
away from the fixed point.
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Widom

scaling

Z(K,N) =) exp(-BE,)
{2}

= ) B exp (—BE,))

{21} configurations {s;}
consistent with {s,}

= exp(N'K}) 3 exp (-BEY,, )
{s1}
= exp(N' K1) Z(K', N'). (2.292)

Meanwhile, since the number of spins is reduced to N' = N/b?, the free
energy per spin transforms according to

f(K) = —%kngn Z(N,K)
NI;kBT [N'K} +In Z(N',K")]

= fr(K) + b™*f,(K'). (2.293)

= —b-d

We identify the term arising from the renormalised constant coupling K,
as the regular part of the free energy per spin'? f,(K). Therefore, the free
energy per spin transforms inhomogeneously. However, the singular part of

the free energy per spin transforms as a generalised homogeneous function
according to

fo(K) = b™f,(K'). (2.294)

Although coupling constants involving Ky, renormalised or otherwise,
do not appear in the probability distribution of microstates, they are nev-
ertheless required for the correct transformation of the free energy per spin.
To see this, we argue that Equation (2.294) alone cannot be valid: Assume,
for the moment, that (2.294) is a valid transformation for the free energy
per spin. Then, at the non-trivial fixed point f(K*) = b~%f(K*), implying
that f(K*) = 0 or f(K*) = co. The latter is not physical and the former
cannot be true in general. Equation (2.294) only pertains to the singular
part of the free energy, which indeed takes the value f,(K*) = 0, but with
derivatives that are diverging [Wilson, 1971a).
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Close to the fixed point on the critical surface it is convenient to use the
eigenvectors of M as the basis. Since the scaling fields are the deviations
of K from the fixed point, we find that after applying the renormalisation
group transformation n times

f,(t, h, usz, uyq,. - ) = b—df..;(byt t, by"h, by"U3, by4U4, .. )

= b—ndfs (™Yt t, bR h, b™V3ug, b V4 uy, . . ). (2.295)

In the limit of n — oo all the irrelevant scaling fields ugs, u4, . .: iterate to
zero and

fao(t, b uz, ug,...) = b~ "4 £, (b™¥t,b"¥* 1,0,0,...). (2.296)

However, we would like to express the transformation in Equation
(2.296) in a form that does not explicitly refer to the arbitrary scale factor
b. Therefore, choosing b™¥t = |t|~! we find

fs(t, hyug, ug, .. ) = [ fo(¢/ |8, h/18**/+,0,0,..)
= |t|%/v f,(£1, h/|t|¥*/,0,0,...)
= |t|%/ Fy (/lt/%) . (2.297)
Hence, we have derived the Widom scaling ansatz in the general formalism
developed by Wilson. In principle, the eigenvalues and eigenvectors of the

renormalisation group transformation can be determined and hence critical
exponents calculated, see Exercise 2.8.



Llandau’s school

* In Kharkiv, he and his friend and former
student, Evgeny Lifshitz, began writing the Course
of Theoretical Physics, ten volumes that together
span the whole of the subject and are still widely
used as graduate-level physics texts.

* Landau developed a famous comprehensive
exam called the "Theoretical Minimum" which
students were expected to pass before admission
to the school. The exam covered all aspects of
theoretical physics, and between 1934 and 1961
only 43 candidates passed, but those who did
later became quite notable theoretical physicists.




