
Ising Model



Criticality
Criticality refers to the behaviour of extended 
systems at a phase transition where no 
characteristic scale exists. Thermodynamically, a 
phase transition occurs when there is a singularity 
in the free energy. The liquid-gas, conductor-
superconductor, fluid-superfluid, or 
paramagnetic-ferromagnetic phase transitions are 
common examples. 

The Ising model of a ferromagnet is one of the 
simplest models displaying the paramagnetic-
ferromagnetic phase transition, that is, the 
spontaneous emergence of magnetisation in zero 
external field as the temperature is lowered 
below a certain critical temperature. 

At the critical point of critical temperature and 
zero-external field there is no characteristic scale. 
As in the case of percolation, the scale invariance 
is intimately related to fixed points of a rescaling 
transformation.



Ferro to paramagnetic
phase transition

The paradigm of critical phase transitions is the transition from 
the paramagnetic state of iron to the ferromagnetic state, at the 
Curie temperature, Tc = 1043 K.

The spin of each iron atom has a particular orientation, 
corresponding to the direction of its local magnetic field. 

Above Tc, the spins point in different directions and their 
magnetic fields are canceled. This disordered configuration is 
caused by the random thermal movement of the spins. The 
higher the temperature, the more difficult it is for any orderly 
arrangement of spins to be maintained. 

However, when the temperature drops, the spins align 
spontaneously. Instead of canceling each other out, the 
individual magnetic fields are added, producing a macroscopic 
magnetic field.

At Tc critical fluctuations lead to scaling and universality, i.e., 
the same power laws describe different ferromagnets.



Ising Model

The Ising model has had an enormous
impact on modern physics in general and
statistical physics in particular, but also on
other areas of science, including biology
and neuroscience [Hopfield, 1982; Amit, 
1989; Majewski et al., 2001], economics
[Sornette, 2003] and sociology [Weidlich, 
2001) among others. The importance of
the Ising model cannot be overstated.

At present, hundreds of papers in these
research areas are published each year on
models inspired by the Ising model.



A microstate of the 2d Ising
model on a lattice

Consider a 2d square lattice composed of
N = L x L sites. Every site i is occupied by a 
spin, si. For a magnetic material, we may
think of the spins as the magnetic dipoles
positioned on the crystal structure lattice. 
In uniaxial magnetic materials, the
magnetic dipole interactions constrain the
spins to point parallel or anti-parallel
along a given direction. Therefore, for 
simplicity, we assume that the spins can 
only be in one of two states, either spin-
up, si= +1, or spin-down, si= -1.



Spin-spin and external interactions

The spins at positions i and j interact with
one another. For a pair of parallel spins we
assign an interaction energy of -Jij, while
for a pair of anti-parallel spins we assign
an interaction energy of +Jij.

In addition to the internal spin-spin 
interaction, we can impose a uniform
external field, H, which acts upon every
spin. A spin aligned parallel with the
external field has energy -IHI associated
with the spin-externa field interaction, 
while a spin aligned anti-parallel with the
external field has energy +IHI. The external
energy for each spin is thus –Hsi.



Nearest-neighbour (single-coupling) Ising
model





Review of Statistical
Mechanics

Statistical mechanics attempts to derive the
thermodynamic laws of macroscopic
quantities from a microscopic description of
a system. 

One can only measure the temporal 
average of a macroscopic observable. 
Microscopically, the temporal average of an
observable is identified as a suitably
weighted ensemble average, <A>, over all
possible microstates. Therefore, if p{si} is the
probability of the system being in a 
particular microstate {si} with observable
A{si}, its ensemble average is over 2N 

configurations or microstates.



Boltzmann
distribution

In the canonical ensemble the temperature
and volume of the system are kept fixed. 
The probability p{si} to find the system in a 
microstate {si} with energy E{si} is given by
the Boltzmann distribution:

The partition function Z is a suitably 
weighted average over all the possible 
microstates and provides the link 
between the microscopic and 
macroscopic descriptions of a system. The 
partition function depends on the 
temperature T, the external field H, and 
the number of spins N. Therefore, all 
ensemble averages of observables also 
depend on T, H, and N.



Ensemble average & free energy

Magnetization Energy Free energy



Magnetization per spin



Response function: 
susceptibility



Response function: 
specific heat



Summary



Thermodynamic limit

Specifically, in d dimensions, the total free energy F for a finite system of N = Ld

spins can be separated into a bulk contribution, Fbulk, and a boundary
contribution, Fboundary , which are proportional to Ld and Ld-1 respectively. When
considering the free energy per spin, boundary effects decrease with
increasing system size and disappear altogether in the thermodynamic limit. 
Therefore, in the thermodynamic limit, the free energy of the system per spin 
reduces to the bulk free energy per spin,

In the thermodynamic limit, there is an infinite number of terms in the
partition function. In this case, the free energy is no longer guaranteed to be
analytic, and there is at least a possibility that it is not.



Non-interacting (independent) spins



Free energy density



Magnetization & susceptibility



Fluctuations of the magnetization

Susceptibility

Fluctuations in the magnetization



Average energy & specific heat

Average energy

Specific heat



Fluctuations of the energy



Interacting 
spins



Ising model

Magnetization
exponents 𝛽 & 𝛿

Expectations



Ising model

Response 
function
exponents 𝛾 & 𝛼

& 

Correlation
length exponent
𝜈

Response functions

Correlation length



Ising model

Correlation
function

The spin-spin correlation function



Ising model

Correlation
function
exponent 𝜂

Sum rule

At Tc the correlation function decays as a power law





Configurations

Six microstates of the 2d Ising model on a 
square lattice of size L = 150 for six
different temperatures in zero external
field, H = 0. 

At relatively high temperatures T » Tc, the
spins are randomly orientated with no 
correlations. As the temperature is
lowered, the spin-spin interactions are less
suppressed so that larger and larger
clusters of correlated spins form.

At T = Tc, a macroscopic cluster of
correlated spins appears for the first time. 
This cluster is fractal and contains clusters 
of all sizes of opposite spins, which
themselves. contain clusters of all sizes of
opposite spins, and so on, like droplets
within droplets within droplets ...



Symmetry breaking

The probabilities of finding the system in the microstates {si} and {-si} are

In zero external field, the energy of a spin configuration is invariant if all the spins 
are reversed:

The magnetisation changes sign if all the spins are reversed:



Have we just proved that the average total magnetisation in the Ising model is always
zero in zero external field, thereby destroying the possibility of a phase transition?
To answer this question negatively, we first consider the effect of introducing a small non-
zero external field. Explicitly, the energy difference

Without loss of generality, assume that M{si} > 0. Taking the external field to zero before
taking the thermodynamic limit, we find that

On the other hand, taking the thermodynamic limit before taking the external field
to zero, we find that



The existence of a non-zero external field, however small, therefore
breaks the symmetry among the spin configurations.
The thermodynamic limit and the limit of vanishing external field are 
not interchangeable, that is,

In the thermodynamic limit, the ergodicity of the system is said to be
'spontaneously broken' for T < Tc, and it is this that gives rise to a 
nonzero magnetisation.



1d Ising model

In d = 1 the total energy of the Ising model for N spins in a uniform
external field H is

Periodic boundary conditions are applied, s1=sN+1



Partition function



Transfer matrix method

There are four possible configurations of the two spins si and si+1, and it
is convenient to arrange these in a real and symmetric 2 x 2 transfer
matrix, T, with entries:



We can therefore rewrite the sum over paired terms as entries from their product
matrix T2 ,

The final expression is the trace of TN, that is, the sum over the diagonal elements of the
matrix TN. For the trace we only need the diagonal elements rather than the whole matrix. 
We use a result from linear algebra which states that for the real and symmetric 2 x 2 
matrix T there exists a 2 x 2 unitary matrix U, such that



Using the identity UU-1 = I and the commutative property of the trace operation, Tr (AB) 
= Tr (BA), the partition function is therefore

For zero external field H = 0, the partition function is

The total free energy is



Free energy density



Magnetization per 
spin



Susceptibility

In zero field,

The fluctuations in m diverge at T = 0
by contrast to the ideal paramagnet.



Energy & specific
heat (zero field)



Correlation function

The spin-spin correlation function

The Ising model is translationally and rotationally invariant:

It is advantageous to assume, for the moment, that the nearest neighbour
interactions depend on position



Correlation
function

In the one-
dimensional Ising
model the spin-spin 
correlation function
only depends on the
distance between
spins r = lri - rjI, and
decays exponentially
with the correlation
length in zero external
field.



Correlation
length



Correlation length

At high temperatures, the spins are 
randomly orientated and thus uncorrelated.
The correlation length is zero and there are 
no fluctuations away from states with
randomly orientated spins. As the
temperature is decreased, spins align to 
form clusters of larger and larger size
limited only by the correlation length. 
For temperatures approaching zero, the
correlation length diverges. Clusters of all
sizes form and there are fluctuations of all
scales away from states with randomly
orientated spins. 
However, at T = 0 all spins are aligned and
the correlation length is zero.



Critical temperature

We conclude our analysis of the one-dimensional Ising model by 
remarking on the role played by the temperature T = 0 in zero 
external field. Approaching this value, the susceptibility and the 
correlation length diverge.

This is intimately related to the onset of spontaneous 
magnetisation at T = 0. We can therefore identify the critical 
point (Tc, Hc) = (0, 0), at which the phase transition takes place.

To investigate whether the single domain of aligned spins is 
stable against thermal fluctuations for T > 0, we calculate the 
difference between the free energy for a single domain of aligned 
spins, F1-dom and the free energy for two domains of oppositely 
aligned spins, F2-dom.

We will show that for any finite temperature T > 0, F2-dom < F1-dom
when N → ∞.



There are two microstates with a single spin domain, each with energy -NJ. The entropic contribution to the free 
energy is –kT ln2. Hence, the associated free energy for a single spin domain F1-dom = - NJ – kT ln2. 

To make two domains of oppositely aligned spins, two domain walls must be inserted with an energy cost of 4J. 
There are 2N(N - 1) equally probable microstates with two domain walls. The free energy is then F2-dom =-NJ + 4J 
– kT ln2N(N - 1).



Peierls argument

Thus, for any finite temperature, it is 
energetically favourable to insert at 
least two domain walls when N→ ∞. 
However, the ensemble average over 
all these microstates gives zero 
magnetisation. Thus the critical 
temperature Tc = 0 for the one-
dimensional Ising model.

In conclusion, there is no phase
transition at any finite temperature in 
the one-dimensional Ising model.

For large N



Mean-field theory for the Ising model

It is relatively easy to solve the Ising model analytically when ignoring fluctuations. Such an
approach is generically referred to as mean field, and is often the first port of call when a 
non-trivial problem is encountered.
In order to explicitly expose where the fluctuations enter the Ising model, we first rewrite the
interaction energy as follows:

When fluctuations around the average magnetisation per spin are small, we can neglect the
second-order term. This in turn simplifies the problem by discounting spin-spin interactions.



Since the Ising model is
translationally invariant, we
can write the energy as 

Therefore, the mean-field
Ising model with
coordination number z 
becomes a system of non-
interacting spins immersed in 
an effective field of strength
(Jzm + H) plus a constant
term NJzm2/2. The effective
field is made up of an
'internal' field, Jzm, resulting
from the z nearest
neighbours each contributing
a field of strength Jm, and
the external field H.



The partition function is

And the free energy is

To calculate the average magnetisation per spin m we keep in mind that it is a function of the
temperature T, and the external field H.



The average magnetization is then

In zero field

For all temperatures, m0(T) = 0 is a solution. This solution is stable and unique for T > Tc, 
although only marginally so at T = Tc, and is unstable for T < Tc, where two stable non-zero 
solutions appear for the first time. Mean-field theory therefore predicts a phase transition at
T = Tc from a disordered phase with zero average magnetisation above Tc to an ordered
phase with non-zero average magnetisation below Tc. The critical temperature for the mean-
field theory of the Ising model is therefore Tc= Jz/kB.



Magnetization in 
zero field

The average magnetisation per spin 
in zero external field, m0(T), versus 
the relative temperature T/Tc. 
For T > Tc, m0(T) = 0 but then picks
up abruptly for T < Tc.

The absolute average
magnetisation per spin in zero 
external field, lm0(T)I, versus (Tc -
T)/Tc for T < Tc (solid line). For T < Tc
the order parameter m0(T) prop
±(Tc - T)𝛽 with 𝛽= 1/2. The dashed
straight line has slope 1/2.



Free energy

The free energy is analytic
everywhere, except along the line
(T, 0) with 0 < T < Tc, terminating at
the critical point (Tc, 0) where a cusp
exists. Note that along the line (T, 0) 
with 0 < T < Tc, the left and right first
derivatives of the free energy with
respect to the external field are non-
zero with opposite signs. This line of
so-called first-order transitions ends
at the critical point (Tc, 0) where the
first derivatives are zero.



Magnetization

The effect of the free energy per spin 
losing analyticity at the critical point
is clearly visible, since, graphically, 
the magnetisation per spin is minus
the slope of the free energy per spin 
as a function of external field for a 
given temperature.
Cut along the plane H = 0. For T < Tc, 
a discontinuous first-order phase
transition occurs when switching the
direction of the external field through
H = 0. For T = Tc, the continuous
second-order phase transition occurs, 
where the first derivative of the
magnetisation per spin with respect
to the external field diverges.



Magnetization Expansion around Tc



Susceptibility



Magnetization in 
non-zero field
(a) displays the magnetisation per spin 
m(T, H) versus the relative temperature
T /Tc for various external fields. In the
presence of na external field, the
magnetisation becomes non-zero at T = Tc.

(b) displays the absolute average
magnetisation per spin lm(Tc, H)I at T = Tc
as a function of an applied positive 
external field.

Just as the critical exponent 𝛽 describes
the pick-up of the magnetisation in the
vicinity of Tc- in zero external field, the
critical exponent 𝛿 describes the 
magnetisation for small external fields at
Tc.



Magnetization
at Tc



Energy and specific
heat



Summary



Landau theory for the Ising model 







Magnetization 𝛽 = 1/2



Susceptibility
in zero field

𝛾 = 1



Magnetization
at Tc

𝛿 = 3



Specific heat

𝛼 = 0



Biblical theory

The Molten Sea or Brazen Sea was a large
basin in the Temple for ablution of the
priests. It is described in 1 Kings 7:23–
26 and 2 Chronicles 4:2–5. It stood in the
south-eastern corner of the inner court.

According to the Bible it was five
cubits high, ten cubits in diameter from
brim to brim, and thirty cubits in 
circumference.

𝜋 = 3



Landau 
Theory



Landau 
Theory



Landau theory



Landau theory



Summary



Landau Theory
Most phases can be understood through the lens 
of spontaneous symmetry breaking. For example, 
crystals are periodic arrays of atoms that are not 
invariant under all translations (only under a 
small subset of translations by a lattice vector). 
Magnets have north and south poles that are 
oriented in a specific direction, breaking 
rotational symmetry. In addition to these 
examples, there are a whole host of other 
symmetry-breaking phases of matter — including 
nematic phases of liquid crystals, and many 
others in soft matter and beyond.

Lev Landau introduced a framework in an 
attempt to formulate a general theory of 
continuous (i.e., second-order) phase transitions. 
This theory can be extended to systems under 
externally-applied fields and used as a 
quantitative model for discontinuous (i.e., first-
order) transitions. 

Other generalizations include vector and tensor 
order parameters, appropriate to describe polar 
and nematic ordered phases. More complicated 
ordered phases, with two or more coupled order 
parameters may also be considered, and the 
generalized Landau theory is a useful tool to 
understand the structure of complex soft matter 
phases. 



Scale invariance

In statistical mechanics, scale invariance is a feature of phase 
transitions. The key observation is that near a phase transition 
or critical point, fluctuations occur at all length scales, and thus 
one should look for an explicitly scale-invariant theory to describe 
the phenomena. Such theories are scale-invariant statistical field 
theories, and are formally very similar to scale-invariant quantum 
field theories.



Widom 
scaling 
ansatz



Widom 
scaling 
ansatz



Widom 
scaling 
ansatz



Scaling of the
magnetization



Scaling for the free energy and the 
specific heat 



Widom scaling relation



Scaling for the susceptibility 
and correlation function 

Correlation function (Fisher)



Scaling relations and hyperscaling



Summary



Critical 
temperatures



Critical 
exponents



Block spins

Kadanoff argued that since spins are 
correlated over scales up to the correlation
length, it may be plausible to regard spins 
within regions up to 𝜉 in size as-behaving like
a single block spin [Kadanoff, 1966]. In this
spirit, Kadanoff outlined a real-space
renormalisation procedure over scales b ≤ 𝜉

(1) Divide the lattice into blocks, I, of linear 
size b (in terms of the lattice constant) with
each block containing bd spins, (a).
(2) Replace each block I of spins with a single 
block spin, sI, according to some coarse
graining rule which is some function of the
spins within block I, (b).
(3) Rescale all lengths by the dimensionless
scale factor b to restore the original lattice
spacing



Real-space renormalisation group
transformation of the two-
dimensional Ising model on a 
square lattice. The panels are 
windows of size l = 80 inside larger
lattices.

The three panels in the top row
correspond to lattices in zero 
external field with reduced
temperatures t < 0, t = 0, t > 0 from
left to right. In each of the three
columns, the renormalisation
transformation, Rb, is carried out 
twice from top to bottom, revealing
large scale behaviour. Coarsening is
achieved by employing the majority
rule with b = 3.

Coarse graining



Real space RG: correlation length



Real space RG: free energy



Summary



Renormalization: Ising chain 
d=1 & b=2



Renormalization: 
Ising chain



Renormalization: 
Ising chain



( a) The renormalised coupling
constant, K’, in the one-
dimensional Ising model in zero 
external field versus the coupling
constant in the original lattice, K. 
The fixed points ( K*) lie at the
intersections between the graph
for K’ and the dashed line K’ = K. 
The fixed point K* = oo is not
visible. 
(b) The associated
renormalisation group
transformation flow in K -space. 
In the renormalised lattice, 
nearest-neighbour spins couple
with strength K'< K, The fixed
point K* = oo is unstable. For 0 < 
K  < oo, applying the
renormalisation group
transformation will induce a flow
towards the stable fixed point K* 
= 0.

RG flow



Renormalization: Ising on a square 
lattice (b=2)



Renormalization: 
Ising square 
lattice



Renormalization: 
Ising square 
lattice



Renormalization: 
Ising square 
lattice



Renormalization: 
Ising square 
lattice



( a) The renormalised coupling constant, 
K’, for the two-dimensional Ising model on
a square lattice in zero external field
versus the coupling constant in the
original lattice, K. The fixed points (*) lie at
the intersections between the graph for K’ 
and the dashed line K’ = K. The fixed point
K*= oo is not visible. 

(b) The associated renormalisation
transformation flow in K -space. The fixed
point K* = 0.507 is unstable. For 0 < K < 
0.507, applying the renormalisation
transformation will induce a flow towards
the stable fixed point K* = 0. For K  > 
0.507, applying the renormalisation
transformation will induce a flow towards
the stable fixed point K* = oo.

RG flow



Wilson’s renormalization 
group theory



Wilson´s 
RG theory



Wilson´s 
RG theory



Wilson´s 
RG theory



Self-
similarity & 
fixed points



Self-
similarity & 
fixed points



Basin of 
attraction



RG flow



RG flow



Universality



Universality



Universality



Universality



Universality





Widom 
scaling



Widom 
scaling



Landau’s school

• In Kharkiv, he and his friend and former 
student, Evgeny Lifshitz, began writing the Course 
of Theoretical Physics, ten volumes that together 
span the whole of the subject and are still widely 
used as graduate-level physics texts.

• Landau developed a famous comprehensive 
exam called the "Theoretical Minimum" which 
students were expected to pass before admission 
to the school. The exam covered all aspects of 
theoretical physics, and between 1934 and 1961 
only 43 candidates passed, but those who did 
later became quite notable theoretical physicists.


